

Deep Learning for Natural Language Processing

Deep learning is becoming increasingly important in a technology-dominated world. However, the building of computational models that accurately represent linguistic structures is complex, as it involves an in-depth knowledge of neural networks and the understanding of advanced mathematical concepts such as calculus and statistics. This book makes these complexities accessible to those from a humanities and social sciences background by providing a clear introduction to deep learning for natural language processing. It covers both theoretical and practical aspects and assumes minimal knowledge of machine learning, explaining the theory behind natural language in an easy-to-read way. It includes pseudo code for the simpler algorithms discussed and actual Python code for the more complicated architectures, using modern deep learning libraries such as PyTorch and Hugging Face. Providing the necessary theoretical foundation and practical tools, this book will enable readers to immediately begin building real-world, practical natural language processing systems.

MIHAI SURDEANU is an associate professor in the computer science department at the University of Arizona. He works in both academia and industry on natural language processing systems that process and extract meaning from natural language.

MARCO A. VALENZUELA-ESCÁRCEGA is a research scientist in the computer science department at the University of Arizona. He has worked on natural language processing projects in both industry and academia.

Deep Learning for Natural Language Processing

A Gentle Introduction

Mihai Surdeanu

University of Arizona

Marco Antonio Valenzuela-Escárcega

University of Arizona

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781316515662

DOI: 10.1017/9781009026222

© Mihai Surdeanu and Marco Antonio Valenzuela-Escárcega 2024

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2024

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-316-51566-2 Hardback ISBN 978-1-009-01265-2 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

L_i	ist of Fi	igures	page x
L_i	ist of Ta	ables	XV
P	reface		xvii
1	Intro	duction	1
	1.1	What This Book Covers	3
	1.2	What This Book Does Not Cover	5
	1.3	Deep Learning Is Not Perfect	5
	1.4	Mathematical Notations	6
2	The I	Perceptron	8
	2.1	Machine Learning Is Easy	8
	2.2	Use Case: Text Classification	11
	2.3	Evaluation Measures for Text Classification	12
	2.4	The Perceptron	14
	2.5	Voting Perceptron	22
	2.6	Average Perceptron	24
	2.7	Drawbacks of the Perceptron	26
	2.8	Historical Background	28
	2.9	References and Further Readings	29
	2.10	Summary	29
3	Logis	stic Regression	30
	3.1	The Logistic Regression Decision Function and Learning	
		Algorithm	30
	3.2	The Logistic Regression Cost Function	32
	3.3	Gradient Descent	34
	3.4	Deriving the Logistic Regression Update Rule	38
	3.5	From Binary to Multiclass Classification	40
	3.6	Evaluation Measures for Multiclass Text	
		Classification	43

V

vi		Contents	
	3.7	Drawbacks of Logistic Regression	46
	3.8	Historical Background	46
	3.9	References and Further Readings	47
	3.10	Summary	48
4	Imple	ementing Text Classification Using Perceptron and Logistic	
	Regre	ession	49
	4.1	Binary Classification	49
	4.2	Multiclass Classification	62
	4.3	Summary	72
5	Feed-	Forward Neural Networks	73
	5.1	Architecture of Feed-Forward Neural Networks	73
	5.2	Learning Algorithm for Neural Networks	77
	5.3	The Equations of Backpropagation	79
	5.4	Drawbacks of Neural Networks (So Far)	85
	5.5	Historical Background	85
	5.6	References and Further Readings	86
	5.7	Summary	86
6	Best	Practices in Deep Learning	87
	6.1	Minibatching	87
	6.2	Other Optimization Algorithms	91
	6.3	Other Activation Functions	94
	6.4	Cost Functions	97
	6.5	Regularization	99
	6.6	Dropout	101
	6.7	Temporal Averaging	102
	6.8	Parameter Initialization and Normalization	103
	6.9	References and Further Readings	105
	6.10	Summary	106
7	Implementing Text Classification		
	with	Feed-Forward Networks	107
	7.1	Data	108
	7.2	Fully Connected Neural Network	109
	7.3	Training	111
	7.4	Summary	115
8	Distr	butional Hypothesis and Representation Learning	117
	8.1	Traditional Distributional Representations	117

		Contents	vii
	8.2	Matrix Decompositions and Low-Rank	
		Approximations	120
	8.3	Drawbacks of Representation Learning Using Low-Rank	
		Approximation	123
	8.4	The Word2vec Algorithm	123
	8.5	Drawbacks of the Word2vec Algorithm	128
	8.6	Historical Background	129
	8.7	References and Further Readings	130
	8.8	Summary	131
9	Imple	ementing Text Classification Using Word	
	Embe	eddings	132
	9.1	Pretrained Word Embeddings	132
	9.2	Text Classification with Pretrained Word	
		Embeddings	140
	9.3	Summary	146
10	Recu	rrent Neural Networks	147
	10.1	Vanilla Recurrent Neural Networks	148
	10.2	Deep Recurrent Neural Networks	150
	10.3	The Problem with Simple Recurrent Neural Networks:	
		Vanishing Gradient	151
	10.4	Long Short-Term Memory Networks	152
	10.5	Conditional Random Fields	155
	10.6	Drawbacks of Recurrent Neural Networks	163
	10.7	Historical Background	163
	10.8	References and Further Readings	164
	10.9	Summary	164
11	Imple	ementing Part-of-Speech Tagging Using Recurrent Neural	
	Netw		165
	11.1	Part-of-Speech Tagging	165
	11.2	Summary	177
12	Conte	extualized Embeddings and Transformer Networks	178
	12.1	Architecture of a Transformer Layer	179
	12.2		186
	12.3	Training a Transformer Network	188
	12.4	Drawbacks of Transformer Networks	190
	12.5	Historical Background	191

References and Further Readings

12.6

12.7

Summary

192

193

viii	Contents

Using	Transformers with the Hugging Face Library	194
13.1	Tokenization	194
13.2	Text Classification	196
13.3	Part-of-Speech Tagging	204
		215
Encod	er-Decoder Methods	216
14.1	BLEU: An Evaluation Measure for Machine	
	Translation	217
14.2	A First Sequence-to-Sequence Architecture	219
		221
		224
		227
		227
	e e e e e e e e e e e e e e e e e e e	227
14.8	Summary	228
Impla	menting Enceder Deceder Methods	229
-		
	6 6	229
	•	235
		237
	· ·	244
15.5	Summary	244
		246
16.1		246
16.2	Part-of-Speech Tagging	248
16.3	Named Entity Recognition	252
16.4	Dependency Parsing	255
16.5	Relation Extraction	260
16.6	Question Answering	264
16.7	Machine Translation	269
16.8	Summary	271
pendix	A Overview of the Python Language and Kev	
	, , , , , , , , , , , , , , , , , , , ,	272
A.1	Python	272
A.2	•	286
A.3	PyTorch	296
	13.1 13.2 13.3 13.4 Encod 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 Implee 15.1 15.2 15.3 15.4 15.5 Neura Applic 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 Pendix Librar A.2	13.2 Text Classification 13.3 Part-of-Speech Tagging 13.4 Summary Encoder-Decoder Methods 14.1 BLEU: An Evaluation Measure for Machine Translation 14.2 A First Sequence-to-Sequence Architecture 14.3 Sequence-to-Sequence with Attention 14.4 Transformer-Based Encoder-Decoder Architectures 14.5 Drawbacks of Encoder-Decoder Methods 14.6 Historical Background 14.7 References and Further Readings 14.8 Summary Implementing Encoder-Decoder Methods 15.1 Translating English to Romanian 15.2 Implementation of Greedy Generation 15.3 Fine-Tuning Romanian to English Translation 15.4 Using a Previously Saved Model 15.5 Summary Neural Architectures for Natural Language Processing Applications 16.1 Text Classification 16.2 Part-of-Speech Tagging 16.3 Named Entity Recognition 16.4 Dependency Parsing 16.5 Relation Extraction 16.6 Question Answering 16.7 Machine Translation 16.8 Summary pendix A Overview of the Python Language and Key Libraries A.1 Python A.2 NumPy

Index

Cambridge University Press & Assessment 978-1-316-51566-2 — Deep Learning for Natural Language Processing Mihai Surdeanu, Marco Antonio Valenzuela-Escárcega Frontmatter More Information

Contents ix

Appendix B Character Encodings: ASCII and Unicode 301
B.1 How Do Computers Represent Text? 301
B.2 How to Encode/Decode Characters in Python 304
B.3 Text Normalization 305

References 308

321

Figures

	page 9 10
copyright © Axel Scheffler 2000	
2.2 The heatender taken to help the little mention for 1 here were 1. 4	10
2.2 The butterfly tries to help the little monkey find her mom, but	10
fails initially (Donaldson and Scheffler, 2008)	
2.3 A depiction of a biological neuron, which captures input stim-	
uli through its dendrites and produces an activation along	
its axon and synaptic terminals (left), and its computational	
simplification, the perceptron (right)	15
2.4 Visualization of the perceptron learning algorithm: (a) incor-	
rect classification of the vector \mathbf{x} with the label Yes, for a	
given weight vector \mathbf{w} ; and (b) \mathbf{x} lies on the correct side of the	
decision boundary after \mathbf{x} is added to \mathbf{w}	19
2.5 An example of a binary classification task and a voting per-	
ceptron that aggregates two imperfect perceptrons. The voting	
algorithm classifies correctly all the data points by requiring	
two votes for the \times class to yield a \times decision. The decision	
boundary of the voting perceptron is shown with a continuous	
line	23
2.6 Visualization of the XOR function operating over two variables,	
x and y. The dark circles indicate that the XOR output is 1; the	
clear circles stand for 0	26
3.1 The logistic function	31
3.2 Plot of the function $f(x) = (x+1)^2 + 1$	35
3.3 Plot of the function $f(x) = x \sin(x)^2 + 1$	37
3.4 Multiclass logistic regression	41
3.5 Example of a two-dimensional decision boundary for a four-	
class logistic regression classifier	47
5.1 Decision boundary of a nonlinear classifier	74
5.2 Fully connected feed-forward neural network	
architecture. The dashed lines indicate optional components.	74

X

	List of Figures	xi
5.3	A feed-forward neural network with linear activation functions is a linear classifier	76
5.4	Visual helper for Equation 5.5	81
5.5	Visualization of the vanishing gradient problem for the logistic function: changes in x yield smaller and smaller changes in y at the two ends of the function, which means that $\frac{d}{dx}\sigma$ approaches	0.4
6.1	zero in the two extremes Illustration of momentum: sled 1 is more likely to get stuck in the ravine than sled 2, which starts farther up the hill, and	84
6.2	carries momentum when it enters the ravine Comparison of the tanh (continuous line) and logistic (dashed line) functions. The derivative of the tanh is larger than the	92
	derivative of the logistic for input values around zero	95
6.3	The ReLU (a) and Leaky ReLU (b) activation functions	95
6.4	A simple neural network (a), and two views of it after dropout is applied (b and c). Greyed-out nodes and edges are dropped out and thus ignored during the corresponding forward pass and	
	backpropagation in (b) and (c)	101
8.1	Summary of the four matrices in the singular value decomposition equation: $\mathbf{C} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$. The empty rectangles with dashed lines indicate which elements are zeroed out under the low-rank	
	approximation	121
8.2	An illustration of the word2vec algorithm, the skip-gram variant, for the word bagel in the text: A bagel and cream cheese (also known as bagel with cream cheese) is a common food pairing in American cuisine. The algorithm clusters together output vectors for the words in the given context window (e.g., cream and cheese) with the corresponding input vector (bagel), and pushes away output vectors for words that do not appear in	
8.3	its proximity (e.g., <i>computer</i> and <i>cat</i>) Two-dimensional projection of 1,000-dimensional vectors learned by word2vec for countries and their capitals (Mikolov	124
	et al., 2013a)	129
9.1	GloVe embedding corresponding to the word <i>house</i> , found in the GloVe file glove.6B.50d.txt. We have broken the vector in several lines for display purposes, but this is a single line in	12)
	the text file	133
10.1	"Vanilla" recurrent neural network, where \mathbf{s}_i are state vectors, \mathbf{x}_i are input vectors, and \mathbf{y}_i are output vectors. R and O are functions that compute the next state and the current output vector, respectively	1/10
10.2	· · · · · · · · · · · · · · · · · · ·	148
10.2	Stacked or "deep" recurrent neural network Bidirectional recurrent neural network	150 151
- 0.0	21011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101

152
153
155
156
160
179
180
181
101
189
213
214
217
21/
217
21/

> List of Figures xiii the input word embeddings, \mathbf{x}_1 to \mathbf{x}_n , to produce a sequence of hidden states, \mathbf{h}_1 to \mathbf{h}_n . The decoder is a left-to-right recurrent neural network. To avoid confusion between the source and target languages, we use y_t to indicate the input representation of the target word decoded at position t, and s_t to indicate the hidden state produced by the decoder cell at position t. \mathbf{c}_t indicates the custom encoding vector of the source text for position t in the decoder 222 14.4 Example of attention weights from Bahdanau et al., 2015. The x-axis corresponds to words in the source language (English); the y-axis contains the decoder words from the target language (French). Each cell visualizes an attention weight α between the corresponding words, where black indicates 0 and white indicates 1 224 14.5 Architecture of an individual transformer decoder layer. The decoder layer follows closely the architecture of the encoder layer (see Figure 12.3), but it includes two new components (shown in grey in the figure): a component that implements an attention mechanism between the encoded and the decoded texts, and an additional add-and-normalize layer that normalizes the outputs of the encoder-decoder attention component 226 16.1 Deep averaging network (DAN) for text classification 247 16.2 An acceptor bidirectional recurrent neural network for text classification 247 16.3 Transformer network for text classification 248 16.4 A bidirectional transducer recurrent neural network for sequence modeling 251 16.5 Transformer network transducer for sequence 251 modeling 16.6 A sample sentence parsed with universal dependencies 255 16.7 257 Dependency parsing as sequence modeling 16.8 An example of a maximum spanning tree for a hypothetical graph containing two head predictions for each sentence word. Each edge shows a (hypothetical) prediction score; these scores are included to emphasize that the maximum spanning tree has 260 the highest overall score of all possible spanning trees 16.9 Examples of relation mentions from the TACRED corpus, from https://nlp.stanford.edu/projects/tacred. The first example is an instance of the per:city_of_death relation, which holds between a person and the city where this person died; the second example is a mention of the org:founded_by relation, which holds between an organization and the person who

XiV	List of Figures	
16.10	founded it. The last example is not a relation, according to the TACRED relation schema	261
16.10	Relation extraction architecture with mention pooling. In this example, the first entity spans two tokens, while the second entity spans one. We omit the [CLS] and [SEP] tokens for	
	simplicity	263
16.11	Relation extraction architecture with entity markers	264
16.12	Sample passage and question-answer pairs from the SQuAD	
	dataset	265
16.13	Example of an unanswerable question from the SQuAD dataset	265
16.14	Example of a multiple-choice question from the QASC dataset,	
	and the necessary facts to answer it	267
16.15	Examples of 3 of the 18 NLP problems that T5 trains on,	
	all of which are formulated as text-to-text transfer. The three	
	tasks are: English-to-German translation, summarization, and	
	question answering	270
16.16	Example data point for T5 pretraining	270

Tables

snake, and monkey 2.2 Example output of a hypothetical classifier on five evaluation examples and two labels: positive (+) and negative (-). The "Gold" column indicates the correct labels for the five texts; the "Predicted" column indicates the classifier's predictions 2.3 Confusion matrix showing the four possible outcomes in binary classification, where + indicates the positive label and - indicates the negative label 2.4 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with three examples 2.5 The perceptron learning process for the dataset shown in Table 2.4, for one pass over the training data. Both w and <i>b</i> are initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the <i>total</i> number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, <i>f</i> and <i>g</i> are functions, <i>a</i> and <i>b</i> are constants, and <i>x</i> is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class <i>C</i> 1,	2.1	An example of a possible feature matrix X (left table) and a label vector y (right table) for three animals in our story: elephant,	
 2.2 Example output of a hypothetical classifier on five evaluation examples and two labels: positive (+) and negative (-). The "Gold" column indicates the correct labels for the five texts; the "Predicted" column indicates the classifier's predictions 2.3 Confusion matrix showing the four possible outcomes in binary classification, where + indicates the positive label and - indicates the negative label 2.4 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with three examples 2.5 The perceptron learning process for the dataset shown in Table 2.4, for one pass over the training data. Both w and b are initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the total number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 5.1 Three cost functions commonly used in natural language process- 			age 10
 2.3 Confusion matrix showing the four possible outcomes in binary classification, where + indicates the positive label and - indicates the negative label 2.4 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with three examples 2.5 The perceptron learning process for the dataset shown in Table 2.4, for one pass over the training data. Both w and b are initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the total number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 5.1 Three cost functions commonly used in natural language process- 	2.2	examples and two labels: positive (+) and negative (-). The "Gold" column indicates the correct labels for the five texts; the	
 2.4 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with three examples 2.5 The perceptron learning process for the dataset shown in Table 2.4, for one pass over the training data. Both w and b are initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the total number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 5.1 Three cost functions commonly used in natural language process- 	2.3	Confusion matrix showing the four possible outcomes in binary	12
for a review classification training dataset with three examples 2.5 The perceptron learning process for the dataset shown in Table 2.4, for one pass over the training data. Both w and <i>b</i> are initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the <i>total</i> number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, <i>f</i> and <i>g</i> are functions, <i>a</i> and <i>b</i> are constants, and <i>x</i> is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class <i>C</i> 1, 100 in class <i>C</i> 2, and 898 in class <i>C</i> 3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie <i>Puss in Boots</i> (1988). The second is a negative review of the movie <i>Valentine</i> (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process		<u>e</u>	13
 2.5 The perceptron learning process for the dataset shown in Table 2.4, for one pass over the training data. Both w and b are initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the total number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 5.1 Three cost functions commonly used in natural language process- 	2.4	· · · · · · · · · · · · · · · · · · ·	
Table 2.4, for one pass over the training data. Both w and <i>b</i> are initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the <i>total</i> number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, <i>f</i> and <i>g</i> are functions, <i>a</i> and <i>b</i> are constants, and <i>x</i> is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class <i>C</i> 1, 100 in class <i>C</i> 2, and 898 in class <i>C</i> 3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie <i>Puss in Boots</i> (1988). The second is a negative review of the movie <i>Valentine</i> (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process		<u>.</u>	20
initialized with 0s 2.6 The feature matrix X (left table) and label vector y (right table) for a review classification training dataset with four examples. In this example, the only feature available is the <i>total</i> number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, <i>f</i> and <i>g</i> are functions, <i>a</i> and <i>b</i> are constants, and <i>x</i> is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class <i>C</i> 1, 100 in class <i>C</i> 2, and 898 in class <i>C</i> 3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie <i>Puss in Boots</i> (1988). The second is a negative review of the movie <i>Valentine</i> (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process	2.5	· · ·	
a review classification training dataset with four examples. In this example, the only feature available is the <i>total</i> number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, <i>f</i> and <i>g</i> are functions, <i>a</i> and <i>b</i> are constants, and <i>x</i> is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class <i>C</i> 1, 100 in class <i>C</i> 2, and 898 in class <i>C</i> 3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie <i>Puss in Boots (1988)</i> . The second is a negative review of the movie <i>Valentine (2001)</i> . These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process		· · · · · · · · · · · · · · · · · · ·	21
example, the only feature available is the <i>total</i> number of positive words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process	2.6	, , , , , , , , , , , , , , , , , , , ,	
words in a review 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process			
 3.1 Rules of computation for a few functions necessary to derive the logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 5.1 Three cost functions commonly used in natural language process- 			22
logistic regression update rules. In these formulas, f and g are functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class $C1$, 100 in class $C2$, and 898 in class $C3$ 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie $Puss$ in $Boots$ (1988). The second is a negative review of the movie $Valentine$ (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process	3.1		
functions, a and b are constants, and x is a variable 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process		•	
 3.2 Example of a confusion matrix for three-class classification. The dataset contains 1,000 data points, with 2 data points in class C1, 100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process- 			40
100 in class C2, and 898 in class C3 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie Puss in Boots (1988). The second is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process-	3.2	Example of a confusion matrix for three-class classification. The	
 4.1 Two examples of movie reviews from IMDb. The first is a positive review of the movie <i>Puss in Boots (1988)</i>. The second is a negative review of the movie <i>Valentine (2001)</i>. These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process- 			44
ond is a negative review of the movie Valentine (2001). These reviews can be found at www.imdb.com/review/rw0606396 and www.imdb.com/review/rw0721861, respectively 6.1 Three cost functions commonly used in natural language process-	4.1	Two examples of movie reviews from IMDb. The first is a	
6.1 Three cost functions commonly used in natural language process-		ond is a negative review of the movie <i>Valentine (2001)</i> . These reviews can be found at www.imdb.com/review/rw0606396	51
	6.1	Three cost functions commonly used in natural language process-	31

xv

xvi	List of Tables	
	dataset (or the minibatch, in the case of minibatch gradient descent). y_i is the correct label for example i	97
12.1	A self-attention walkthrough example for computing the contextual embedding \mathbf{z}_1 for the word bank in the text bank of the	104
12.2	river	184
12.2	Two examples of natural language processing application inputs formatted for transformer networks. In the first example, the clas- sifier on top of the [CLS] embedding should predict the Positive	
	label; in the second case, the prediction is Entailment	191
14.1	A simple example of the BLEU evaluation measure. The underlined words indicate matches between the candidate translation and the reference. The BLEU score for this candidate translation	
	is 3/6	218
14.2	The BLEU measure allows multiple reference translations. In	210
	such cases, the highest overlap is used. In this example, the BLEU	
	score is 4/6 due to the higher overlap with the second reference	
1.4.2	translation	218
14.3	Simple overlap can be abused by repeatedly generating the same word from the reference translation. BLEU prevents this by allowing each word from a reference translation to be used just	
	once. Naive overlap would score this candidate translation 6/6; BLEU scores it 2/6	219
16.1	Universal part-of-speech tags	250
	Example annotations for the BIO, IO, and BILOU annotation schemas, and the CoNLL named entity types. Because in the IO representation the only label prefix is I-, it sometimes is omitted completely – for example, I-PER becomes PER. We show the	
	prefix here for clarity	254
16.3	Some universal dependency types from https://universaldependencies.org/u/dep/all.html. See this URL for the complete list of	
	dependency types	256
B.1	ASCII control characters	302
B.2	ASCII printable characters	303
D 2	The four normalization forms in Unicode	206

Preface

Upon encountering this publication, one might ask the obvious question, "Why do we need another deep learning and natural language processing book?" Several excellent ones have been published, covering both theoretical and practical aspects of deep learning and its application to language processing. However, from our experience teaching courses on natural language processing, we argue that, despite their excellent quality, most of these books do not target their most likely readers. The intended reader of this book is one who is skilled in a domain other than machine learning and natural language processing and whose work relies, at least partially, on the automated analysis of large amounts of data, especially textual data. Such experts may include social scientists, political scientists, biomedical scientists, and even computer scientists and computational linguists with limited exposure to machine learning.

Existing deep learning and natural language processing books generally fall into two camps. The first camp focuses on the theoretical foundations of deep learning. This is certainly useful to the aforementioned readers, as one should understand the theoretical aspects of a tool before using it. However, these books tend to assume the typical background of a machine learning researcher and, as a consequence, we have often seen students who do not have this background rapidly get lost in such material. To mitigate this issue, the second type of book that exists today focuses on the machine learning practitioner — that is, on how to use deep learning software, with minimal attention paid to the theoretical aspects. We argue that focusing on practical aspects is similarly necessary but not sufficient. Considering that deep learning frameworks and libraries have become fairly complex, the chance of misusing them due to theoretical misunderstandings is high. We have commonly seen this problem in our courses too.

This book therefore aims to bridge the theoretical and practical aspects of deep learning for natural language processing. We cover the necessary theoretical background and assume minimal machine learning background from the reader. Our aim is that anyone who took introductory linear algebra and calculus courses will be able to follow the theoretical material. To address practical aspects, this book includes pseudocode for the simpler algorithms

xvii

xviii Preface

discussed and actual Python code for the more complicated architectures. The code should be understandable to anyone who has taken a Python programming course. After reading this book, we expect that the reader will have the necessary foundation to immediately begin building real-world, practical natural language processing systems, and to expand their knowledge by reading research publications on these topics.