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Calculus in Locally Convex Spaces

1.1 Introduction

It is well known that ‘multidimensional calculus’, aka ‘Fréchet calculus’, car-

ries over to the realm of Banach spaces and Banach manifolds (see e.g. Lang,

1999). As we have seen in the Preface, Banach spaces are often not sufficient

for our purposes. To generalise derivatives we will, as a minimum, need vector

spaces with an amenable topology (which need not be induced by a norm).

1.1 Definition Consider a vector space E. A topology T on E making ad-

dition + : E × E → E and scalar multiplication · : R × E → E continuous is

called a vector topology (where R carries the usual norm topology). We then

say that (E,T ) (or E for short) is a topological vector space (or TVS for short).

1.2 Example (a) Every normed space and, in particular, every finite-dimen-

sional vector space is a topological vector space.

(b) For a more interesting example, fix 0 < p < 1. Two measurable functions

γ,η : [0,1] → R are equivalent γ ∼ η if and only if
∫ 1

0
|γ(s) − η(s) |ds =

0. Denote by Lp[0,1] the vector space of all equivalence classes [γ] of

functions such that
∫ 1

0
|γ(s) |pds < ∞. Topologise Lp[0,1] via the metric

topology induced by

d([γ], [η]) ≔

∫ 1

0

|γ(s) − η(s) |pds.

In a metric space, we can test continuity of the vector space operations

using sequences. For this, pick λn → λ ∈ R and [γn] → [γ], [ηn] → [η]

(with respect to d) and use the triangle inequality to obtain:
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2 Calculus in Locally Convex Spaces

d(λn[γn] + [ηn], λ[γ] + [η])

≤ |λn − λ |
pd([γn], [0]) + |λ |pd([γn], [γ]) + d([ηn], [η]).

This shows that the vector space operations are continuous, that is, Lp[0,1]

is a TVS.

In topological vector spaces, differentiable curves can be defined as

follows:

1.3 Definition Let E be a topological vector space. A continuous mapping

γ : I → E from a non-degenerate interval1 I ⊆ R is called a C0-curve. A

C0-curve is called a C1-curve if the limit

γ′(s) ≔ lim
t→0

1

t
(γ(s + t) − γ(s))

exists for all s ∈ I◦ (interior of I) and extends to a continuous map d
dt
γ ≔

γ′ : I → E, s �→ γ′(s). Recursively for k ∈ N, we call γ a Ck -curve if γ

is a Ck−1-curve and dk−1

dtk−1 γ is a C1-curve. Then dk

dtk
γ ≔

(

dk−1

dtk−1 γ
) ′

. If γ is a

Ck -curve for every k ∈ N0, we also say that γ is smooth or of

class C∞.

Unfortunately, calculus on topological vector spaces is, in general, ill be-

haved. The next exercise shows that derivatives may fail to give us meaningful

information.

Exercises

1.1.1 Given 0 < p < 1 we let Lp[0,1] be the topological vector space from

Example 1.2(b). Recall that the topology on Lp[0,1] is induced by the

metric d([γ], [η]) ≔
∫ 1

0
|γ(s) − η(s) |pds. For a set A ⊆ [0,1] write

1A for the characteristic function and define

β : [0,1]→ Lp[0,1], β(t) := [1[0, t[].

Show that β is an injective C1-curve with β′(t) = 0, for all t ∈ [0,1].

Obviously we would like to avoid this defect, and so we have to strengthen

the assumptions on our vector spaces.

1 That is, I has more than one point. In the following, we will always assume this when talking
about intervals.
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1.2 Curves in Locally Convex Spaces 3

1.2 Curves in Locally Convex Spaces

Calculus in topological vector spaces exhibits pathologies that can be avoided

by strengthening the requirements on the underlying space. This leads to

locally convex spaces, whose topology is induced by so-called seminorms. See

also Appendix A for more information on locally convex spaces.

1.4 Definition Let E be a vector space. A map p : E → [0,∞[ is called a

seminorm if it satisfies the following:

(a) p(λx) = |λ |p(x),∀λ ∈ R, x ∈ E,

(b) p(x + y) ≤ p(x) + p(y).

Note that, in contrast with the definition of a norm, we did not require that

p(x) = 0 if and only if x = 0. The next definition uses the notion of an initial

topology, which we recall for the reader’s convenience in Appendix B.

1.5 Definition A topological vector space (E,T ) is called a locally convex

space if there is a family {pi : E → [0,∞[| i ∈ I} of continuous seminorms for

some index set I such that

(a) T is the initial topology with respect to the canonical projections

{qi : E → E/p−1
i

(0)}i∈I onto the normed spaces E/p−1
i

(0).

(b) If x ∈ E with pi (x) = 0 for all i ∈ I, then x = 0. Thus the seminorms

separate the points, that is, T has the Hausdorff property.2

We then say that the topology T is generated by the family of seminorms

{pi }i∈I and call this family a generating family of seminorms. Usually we sup-

press T and write (E, {pi }i∈I ) or simply E instead of (E,T ).

Alternative to (a) We will see in Appendix A that equivalent to (a), we can de-

fine T to be the unique vector topology determined by the basis of 0-neighbour-

hoods given by (finite) intersections of the balls Bi,ε (0) = {x ∈ E | pi (x) < ε},

where pi runs through a generating family of seminorms. These balls are all

convex, thus justifying the name locally convex space.

A locally convex space (E, {pi }i∈N) with a countable system of seminorms

is metrisable (i.e. its topology is induced by a metric; see Exercise 1.2.1) and

if E is complete, it is called Fréchet space.

1.6 Example (a) Every normed space (E, ‖·‖) is a locally convex space,

where the family of seminorms consists only of the norm ‖·‖.

2 Some authors do not require separation of points, whence our locally convex spaces are
Hausdorff locally convex spaces in their terminology.
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4 Calculus in Locally Convex Spaces

(b) Consider the space C∞([0,1],R) of all smooth functions from the interval

[0,1] to R (with pointwise addition and scalar multiplication). This space

is not naturally a normed space.3 We define a family of seminorms on it

via

‖ f ‖n ≔ sup
0≤k≤n

�����

dk

dtk
f
�����∞
= sup

0≤k≤n

sup
t ∈[0,1]

�����

dk

dtk
f (t)

�����
,n ∈ N0.

The topology generated by the seminorms is called the compact-open C∞-

topology and turns C∞([0,1],R) into a locally convex space, which is even

a Fréchet space (Exercise 1.2.2).

Locally convex spaces have many good properties, for example, they admit

enough continuous linear functions to separate the points, that is, the following

holds.

1.7 Theorem (Hahn–Banach (Meise and Vogt, 1997, Proposition 22.12)) For

a locally convex space E the continuous linear functionals separate the points,

that is, for each pair x, y ∈ E there exists a continuous linear λ : E → R such

that λ(x) � λ(y).

1.8 Definition Let E be a locally convex space, then we denote by E ′ =

L(E,R) the continuous linear maps from E to R. The space E ′ is the so-called

dual space of E. There are several ways to turn E ′ into a locally convex space

(Rudin, 1991, p. 63f) but, in general, we will not need a topology beyond the

special case if E is a Banach space and E ′ carries the operator norm topology.

With the help of the Hahn–Banach theorem, we can avoid the pathologies

observed for topological vector spaces. To this end, we need the notion of a

weak integral.

1.9 Definition Let γ : I → E be a C0-curve in a locally convex space E and

a,b ∈ I. If there exists z ∈ E such that

λ(z) =

∫ b

a

λ(γ(t))dt, ∀λ ∈ E ′,

then z ∈ E is called the weak integral of γ from a to b and denoted
∫ b

a
γ(t)dt ≔ z.

Note that weak integrals (if they exist) are uniquely determined due to the

Hahn–Banach theorem.

3 For any normed topology, the differential operator D : C∞ ([0, 1], R) → C∞ ([0, 1], R),
D( f ) = f ′ must be discontinuous (which is certainly undesirable). To see this, recall that a
continuous linear map on a normed space has bounded spectrum, but D has arbitrarily large
eigenvalues (consider fn (t ) ≔ exp(nt ), n ∈ N).
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1.2 Curves in Locally Convex Spaces 5

1.10 Proposition (First part of the fundamental theorem of calculus) Let

γ : I → E be a C1-curve in a locally convex space E and a,b ∈ I, then

γ(b) − γ(a) =

∫ b

a

γ′(t)dt.

Proof Let λ ∈ E ′. It is easy to see that λ ◦ γ : I → R is a C1-curve with

(λ ◦ γ)′ = λ ◦ (γ′). The standard fundamental theorem of calculus yields

λ(γ(b) − γ(a)) = λ(γ(b)) − λ(γ(a)) =

∫ b

a

(λ ◦ γ)′(s)ds =

∫ b

a

λ(γ′(s))ds.

Hence z = γ(b) − γ(a) satisfies the defining property of the weak integral. �

Note that Proposition 1.10 implies that Lp[0,1] cannot be a locally convex

space for 0 < p < 1; see Rudin (1991, 1.47) for an elementary proof of this

fact.

1.11 Remark Also the second part of the fundamental theorem of calculus is

true in our setting. Thus if γ : I → E is a C0-curve, a ∈ I and the weak integral

η(t) ≔

∫ t

a

γ(s)ds

exists for all t ∈ I. Then η : I → E is a C1-curve in E, and η ′ = γ.

The proof, however, needs more techniques based on convex sets which we

do not wish to go into (see Glöckner and Neeb, forthcoming).

The reader may wonder now, when do weak integrals of curves exist? One

can prove that weak integrals of continuous curves always exist in the comple-

tion of a locally convex space. The key point is that the integrals can be defined

using Riemann sums, but these do not necessarily converge in the space itself

(Kriegl and Michor, 1997, Lemma 2.5). Thus weak integrals exist for suitably

complete spaces. To avoid getting bogged down with the discussion of com-

pleteness properties, we define the following:

1.12 Definition A locally convex space E is Mackey complete if for each

smooth curve γ : [0,1] → E there exists a smooth curve η : [0,1] → E with

η ′ = γ.

Due to the fundamental theorem of calculus this implies that η(s) − η(0) =
∫ s

0
γ(t)dt. Thus the weak integral of smooth curves exists in Mackey complete

spaces.

1.13 Remark Mackey completeness is a very weak completeness condi-

tion, in particular, sequential completeness (i.e. Cauchy sequences converge

in the space) implies Mackey completeness. This is evident from the
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6 Calculus in Locally Convex Spaces

alternative characterisation of Mackey completeness using sequences; see Def-

inition A.1. Note, however, that it is not entirely trivial to find examples of

Mackey complete but not sequentially complete spaces. We mention here that

the space K (E,F) of compact operators between two (infinite-dimensional)

Banach spaces E,F with the strong operator topology is not sequentially com-

plete but Mackey complete (see Voigt, 1992).

However, in metrisable locally convex spaces (e.g. in normed spaces) Mackey

completeness is equivalent to completeness; see Jarchow (1981, 10.1.4). We

refer to Kriegl and Michor (1997, I.2) for more information on Mackey com-

pleteness. In particular, Kriegl and Michor (1997, Theorem 2.14) show that

integrals exist for C1-curves in Mackey complete spaces.

So far we have defined differentiable curves with values in locally convex

spaces. The next step is to consider differentiable mappings between locally

convex spaces. Here a different notion of calculus is needed. It turns out that

(even on Fréchet spaces) there are many generalisations of Fréchet calculus

(see Keller, 1974) without a uniquely preferable choice. In the next section, we

present a simple and versatile notion called Bastiani calculus. Another popular

approach to calculus in locally convex spaces, the so-called convenient calcu-

lus, is discussed in Appendix A.7.

Exercises

1.2.1 Let (E, {pn }n∈N) be a locally convex space whose topology is gener-

ated by a countable set of seminorms. Prove that

d(x, y) :=
∑

n∈N

2−n
pn (x−y)

pn (x−y)+1

is a metric on E and the metric topology coincides with the locally

convex topology.

1.2.2 Consider C∞([0,1],R) with the compact open C∞-topology (see

Example 1.6).

(a) Show that a sequence ( fk )k ∈N converges to f in this topology

if and only if for all ℓ ∈ N0

(

dℓ

dt ℓ
fk
)

k
converges uniformly to

dℓ

dt ℓ
f .

Hint: The uniform limit of a sequence of continuous functions

is continuous. If a function sequence and the sequence of (first)

derivatives converges, the limit of the sequence is differentiable.

(b) Deduce that every Cauchy sequence in the compact open C∞-

topology converges to a smooth function. As C∞([0,1],R) is
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1.3 Bastiani Calculus 7

a metric space by Exercise 1.2.1, this implies that the space is

complete, that is, a Fréchet space.

(c) Show that the differential operator

D : C∞([0,1],R) → C∞([0,1],R), f �→ f ′

is continuous linear. Hint: Lemma A.5.

1.2.3 Let (E, {pi }I ) be a locally convex space whose topology is generated

by a finite set of seminorms. Show that p(x) = maxi∈I pi (x) defines

a norm on E, which induces the same topology as the family {pi }. In

this case we call E normable.

1.2.4 Establish the following properties of weak integrals:

(a) If the weak integrals of γ,η : [a,b] → E from a to b exist and

s ∈ R, then also the weak integral of γ+ sη exists and
∫ b

a
(γ(t)+

sη(t))dt =
∫ b

a
γ(t)dt + s

∫ b

a
η(t)dt .

(b) If γ : [a,b]→ E is constant, γ(t) ≡ K , then
∫ b

a
γ(t)dt exists and

equals (b − a)K .

(c)
∫ c

a
γ(t)dt =

∫ b

a
γ(t)dt +

∫ c

b
γ(t)dt (if the integrals exist).

1.2.5 Let γ : I → E be a Ck -curve (k ∈ N) and λ : E → F be continu-

ous linear for E,F locally convex. Show that λ ◦ γ is Ck such that
dℓ

dt ℓ
(λ ◦ γ) = λ ◦

(

dℓ

dt ℓ
γ
)

, 1 ≤ ℓ ≤ k.

1.2.6 Endow a vector space E with a topology T generated by seminorms

as in Definition 1.5. Show that (E,T ) is a topological vector space

(and so requiring that locally convex spaces are topological vector

spaces was superfluous).

1.3 Bastiani Calculus

Bastiani calculus (also called Keller’s Ck
c -theory; Keller, 1974), introduced in

Bastiani (1964), builds a calculus around directional derivatives and their con-

tinuity. It is the basis of our investigation as this calculus works in locally

convex spaces beyond the Banach setting.

1.14 Definition Let E,F be locally convex spaces,U ⊆◦ E, f : U → F a map

and r ∈ N0 ∪ {∞}. If it exists, we define for (x,h) ∈ U × E the directional

derivative

d f (x; h) ≔ Dh f (x) ≔ lim
R\{0}∋t→0

t−1 ( f (x + th) − f (x)
)

.
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8 Calculus in Locally Convex Spaces

We say that f is Cr if the iterated directional derivatives

dk f (x; y1, . . . , yk ) ≔ (DykDyk−1
· · · Dy1

f )(x)

exist for all k ∈ N0 such that k ≤ r , x ∈ U and y1, . . . , yk ∈ E and define

continuous maps dk f : U×Ek → F (where d0 f ≔ f ). If f isCk for all k ∈ N0

we say that f is smooth or C∞. Note that df = d1 f and for curves c : I → E

we have c′(t) = dc(t; 1).

1.15 Remark Note that the iterated directional derivatives are only taken

with respect to the first variable (i.e. of the map x �→ df (x; v), where v is sup-

posed to be fixed). One can alternatively define iterated differentials to derivate

with respect to all variables, but this leads to the same differentiability concept

(see Glöckner, 2002 for a detailed explanation). The following observations

are easily proved from the definitions:

(a) d2 f (x; v,w) = limt→0 t
−1(df (x + tw; v) − df (x; v)).

(b) dk f (x; v1, . . . ,vk ) = d
dt

���t=0
dk−1 f (x + tvk ; v1, . . . ,vk−1).

(c) f is Ck if and only if f is Ck−1 and dk−1 f is C1. Then dk f = d(dk−1 f ).

Finally, there is a version of the Schwarz theorem which states that the order

of directions v1, . . . ,vk in dk f (x; v1, . . . ,vk ) is irrelevant (see Exercise 1.3.3).

1.16 Example Let A : E → F be a continuous linear map between locally

convex spaces. Then A is C1, as we can exploit

dA(x; v) = lim
t→0

t−1(A(x + tv) − A(x)) = lim
t→0

A(v) = A(v).

In particular, since A is continuous, so is the first derivative and we see that A

is a C1-map. Computing the second derivative, we use that the first derivative

is constant in x (but not in v!) to obtain

d2A(x; v,w) =Dw (dA(x; v)) = lim
t→0

t−1(dA(x + tw; v) − dA(x; v))

= lim
t→0

t−1(A(v) − A(v)) = 0.

In conclusion A is a C2-map (obviously even a C∞-map) whose higher deriva-

tives vanish.

1.17 Lemma Let f : E ⊇ U → F be a C1-map. Then df (x; ·) is homoge-

neous, that is, d f (x; sv) = sd f (x; v) for all x ∈ U,v ∈ E and s ∈ R.

Proof As df (x; 0v) = df (x; 0) = 0 = 0df (x; v), we may assume that s � 0

and thus df (x; sv) = lim
t→0

t−1( f (x + tsv) − f (x)) = s lim
t→0

(st)−1( f (x + tsv) −

f (x)) = sd f (x; v). �
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1.3 Bastiani Calculus 9

1.18 Proposition (Mean value theorem on locally convex spaces) Let E,F

be locally convex spaces and f : U → F a C1-map on U ⊆◦ E. Then

f (y) − f (x) =

∫ 1

0

df (x + t(y − x); y − x)dt (1.1)

for all x, y ∈ U such that U contains the line segment xy := {t x + (1− t)y | t ∈

[0,1]}.

Proof Note that the curve γ : [0,1] → F, γ(t) ≔ f (x + t(y − x)) is differen-

tiable at each t ∈ [0,1]. Its derivative is

γ′(t) = lim
s→0

s−1(γ(t + s) − γ(t)) = df (x + t(y − x), y − x),

whence γ′ is continuous (as df is) and thus a C1-curve. Apply now the Funda-

mental theorem 1.10 to γ′ to obtain (1.1). �

On a locally convex space, every point has arbitrarily small convex neigh-

bourhoods. Convex neighbourhoods contain all line segments between points

in the neighbourhood, whence Proposition 1.18 is available on these neigh-

bourhoods. As a consequence we obtain the following.

1.19 Corollary If f : U → F is a C1-map with d f ≡ 0, then f is locally

constant.

Proof For x ∈ U choose a convex neighbourhood x ∈ V ⊆ U (see Ap-

pendix A). For each y ∈ V the line segment connecting x and y is contained in

V , and so the vanishing of the derivative with (1.1) implies f (x) = f (y) and f

is constant on V . �

1.20 Proposition (Rule on partial differentials) Let E1,E2,F be locally con-

vex spaces, U ⊆◦ E1 × E2 and let f : U → F be continuous. Then f is C1 if and

only if the limits

d1 f (x, y; v1) ≔ lim
t→0

t−1( f (x + tv1, y) − f (x, y)),

d2 f (x, y; v2) ≔ lim
t→0

t−1( f (x, y + tv2) − f (x, y))

exist for all (x, y) ∈ U and (v1,v2) ∈ E1 × E2 and extend to continuous map-

pings di f : U × Ei → F, i = 1,2. In this case,

d f (x, y; v1,v2) = d1 f (x, y; v1) + d2 f (x, y; v2), ∀(x, y) ∈U, (v1,v2) ∈ E1 × E2.

(1.2)

Proof If f is C1 the mappings di f clearly exist and are continuous. Con-

versely, let us assume that the mappings di f exist and are continuous. For
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10 Calculus in Locally Convex Spaces

(x, y) ∈ U , (v1,v2) ∈ E × F, we fix ε > 0 such that (x, y) + t(v1,v2) ∈ U

whenever |t | < ε. Now if we fix the ith component of f we obtain a C1-

mapping (by hypothesis, the derivative is di f ). Therefore Proposition 1.18

with Lemma 1.17 yields

f ((x, y) + t(v1,v2)) − f (x, y)

t

=
f (x + tv1, y + tv2) − f (x + tv1, y)

t
+
f (x + tv1, y) − f (x, y)

t

=

∫ 1

0

d2 f (x + tv1, y + stv2; v2)ds +

∫ 1

0

d1 f (x + stv1, y; v1)ds. (1.3)

The integrals (1.3) make sense also for t = 0, whence they define maps

Ii : ]−ε,ε[→ H . Due to continuous dependence on the parameter t,4 the right-

hand side of (1.3) converges for t → 0. We deduce that the limit df exists and

satisfies (1.2) which is continuous, whence f is C1. �

The following alternative characterisation of C1-maps will turn the proof of

the chain rule into a triviality. However, we shall only sketch the proof to avoid

discussing convergence issues of the weak integral involved.

1.21 Lemma A map f : E ⊇ U → F is of class C1 if and only if there exists

a continuous mapping, the difference quotient map,

f [1] : U [1]
≔ {(x,v, s) ∈ U × E × R | x + sv ∈ U } → F

such that f (x + sv) − f (x) = s f [1](x,v, s) for all (x,v, s) ∈ U [1].

Proof Let us assume first that f [1] exists and is continuous. Note that U [1] ⊆◦

U × E × R. Then df (x; v) = f [1](x,v,0) exists and is continuous as a partial

map of f [1]. So f is C1. Conversely, if f is C1, the map

f [1](x,v, s) ≔
⎧⎪⎨
⎪
⎩

s−1( f (x + sv) − f (x)), (x,v, s) ∈ U [1], s � 0,

df (x; v), (x,v, s) ∈ U [1], s = 0

is continuous on the open set U [1] \ {(x,v, s) ∈U [1] | s = 0}. That f [1] extends

to a continuous map on all of U [1] follows from continuity of parameter-

dependent weak integrals; see Bertram et al. (2004, Proposition 7.4) for

details. �

1.22 Lemma If f : E ⊇ U → F is C1, then d f (x; ·) : E → F is a continuous

linear map for each x ∈ U.

4 We are cheating here; the continuous dependence of weak integrals on parameters has not
been established in this book. See Hamilton (1982, I Theorem 2.1.5) for a proof that carries
over to our setting.
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