Index

ACE2 receptors, 53–55, 85
Acute respiratory distress syndrome (ARDS), 104
Adaptive immune response, 108
Adenovirus vector vaccines, 100–101
Age
 children, prevalence of COVID-19 in, 65–66
 common misconceptions regarding, 119
 effect on severity of COVID-19, 15–16, 64–65
 hospitalization by, 61
 influenza, effect on severity of, 16, 97
 SARS, effect on severity of, 59–60, 85
 Spanish Influenza, effect on severity of, 91
AIDS (Acquired immunodeficiency syndrome) as viral disease, 24
Alphacoronavirus, 25–26
Alpha variant, 70–76
Anaphylaxis, 112
Antibodies
 different types of immune responses, 67–68
 in mild cases, 103
 monoclonal antibodies, 105
 predisposition and, 63–64
 testing, 102–104
Asian Influenza (1959), 93, 95, 116–117
Asymptomatic cases
 prevalence of, 59–60
 of SARS, 84
 severe cases, comparison with, 62–63
 unanswered questions regarding, 115
Attack rate, 9–10, 13
Basic reproduction number (R_0)
 in COVID-19, 10–12
 exponential growth in number of infections and, 12
 in influenza, 11–12
 low R_0, 10
 in measles, 12
 in MERS, 11
 in Spanish Influenza, 11–12
 super spreaders and, 83
Bats
 COVID-19, as suspected origin of, 49–53, 78–79
 MERS, as suspected origin of, 82
 SARS, as suspected origin of, 51–53, 78–79, 81–82
Betacoronavirus
 bats, suspected origin in, 51–53
 classification of, 26
 emergence of, 47
 MERS-CoV as, 26
overview, 26
phylogenetic trees and, 52–54
recombination of, 39–40
SARS-CoV as, 26
SARS-CoV-2 as, 26, 46–48
Beta variant, 70–76
Blood clots, 57, 112
B.1.1.7 variant, 70–76
B.1.351 variant, 70–76
B.1.427 variant, 73–74
B.1.429 variant, 73–74
B.1.526 variant, 74
B.1.617 variant, 72
Breakthrough cases, 110–112
Brenner, Sydney, 34, 100

Camels as suspected origin of MERS, 82
Canada, SARS in, 79
Canine coronavirus, 26
Cardiovascular disease, effect on severity of COVID-19, 64
Case fatality rate
in COVID-19, 12, 57–59
infection fatality rate versus, 12, 57–59
in SARS, 84
in Spanish Influenza, 95
Centers for Disease Control and Prevention, 95
Children
common misconceptions regarding, 119
prevalence of COVID-19 in, 65–66
SARS, prevalence of, 65–66
unanswered questions regarding, 115
China
age, effect on severity of COVID-19 in, 16
Chinese Center for Disease Control and Prevention (CCDC), 1, 16
clinical characteristics of COVID-19 in, 57–58
excess mortality in, 16
outbreak of COVID-19 in, 1, 46, 48, 50
SARS, outbreak of, 79
Clinical characteristics of COVID-19,
56–58
Co-infections, 104
Common cold
as alphacoronavirus, 25–26
incubation period, 9
Common misconceptions regarding COVID-19
age and, 119
children and, 119
containment measures and, 119
extraterrestrial origin theory of viruses and, 119–120
influenza versus, 118
mortality rate and, 118
overview, 2
SARS versus, 118–119
Spanish Influenza versus, 118
Contact tracing, 119
Containment measures
common misconceptions regarding, 119
contact tracing, 119
public gatherings, banning of, 17, 94–95, 98
quarantine, 9, 11, 17, 80, 98
social distancing, 11, 17–19, 98, 119
in Spanish Influenza, 94–95, 98, 119
CoronaVac vaccine, 100–101, 110
Coronaviruses. See also specific coronavirus
alphacoronavirus, 25–26
betacoronavirus (See Betacoronavirus)
canine coronavirus, 26
definition of coronavirus, 24
deltacoronavirus, 26
DNA in, 24–25
entry into cells, 30
feline coronavirus, 26
gammacoronavirus, 26

Coronaviruses (cont.)
hosts, 26
identification of, 24
mutation of (See Mutation of coronaviruses)
non-structural proteins in, 27–28
origins of, 49
overview, 3–4, 23
previous infections protecting against COVID-19, unanswered questions regarding, 116
proofreading system, 36
recombination of (See Recombination of coronaviruses)
release from cells, 32–33
replication of, 30
RNA in, 24–25, 27–30
Spike proteins in, 27, 30, 53
structural proteins in, 27
structure of, 24–25, 27–30
suggested further reading, 122–123
viral genome of, 29–30
COVID-19. See specific topic

Deltacoronavirus, 26
Diabetes, effect on severity of COVID-19, 64
Diagnosis of COVID-19, 100–101
Polymersase Chain Reaction (PCR) testing, 101–102
serology testing, 102–104
Difficulty in controlling COVID-19, 86
Digestive system, effects of COVID-19 on, 57
Diversification. See Mutation of coronaviruses
DNA
in coronaviruses, 24–25
mutation of coronaviruses and, 36–37
Polymersase Chain Reaction (PCR) testing and, 101–102
in viruses, 24

Dobzhansky, Theodosius, 34
Dogs as suspected origin of SARS, 81
Drugs
for Ebola virus, 105
favilavir, 105
for HIV, 106
hydroxychloroquine, 106
for influenza, 97
lopinavir, 106
monoclonal antibodies, 105
overview, 105
remdesivir, 105
ritonavir, 106
for SARS, 105
Dysregulation of immune response, 105–106
Ebola virus
drugs for, 105
emergence of, 117
infection fatality rate, 13
Economic effects of COVID-19, 2
E484K mutation, 73–74
Epidemiology of COVID-19
age, effect on severity, 15–16
attack rate, 9–10, 13
basic reproduction number (R₀), 10–12
case fatality rate, 12
definition of epidemiology, 7
excess mortality, 15, 60–61
exponential growth, 10–11
“flattening the curve,” 18
gender, effect on severity, 16–17
herd immunity, 19–21
incubation period, 8–9
infection fatality rate, 12–13
mortality rate, 12–13
number of confirmed COVID-19 cases, 8
overview, 3, 7–8
suggested further reading, 121–122
unanswered questions regarding, 114
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution</td>
<td>34</td>
</tr>
<tr>
<td>Excess mortality</td>
<td>15, 60–61</td>
</tr>
<tr>
<td>Exponential growth</td>
<td>10–11</td>
</tr>
<tr>
<td>Extraterrestrial origin theory of viruses</td>
<td>119–120</td>
</tr>
<tr>
<td>Face masks</td>
<td>70</td>
</tr>
<tr>
<td>Family clusters, SARS in</td>
<td>79</td>
</tr>
<tr>
<td>Fauci, Anthony</td>
<td>45</td>
</tr>
<tr>
<td>Favilavir</td>
<td>105</td>
</tr>
<tr>
<td>Feline coronavirus</td>
<td>26</td>
</tr>
<tr>
<td>“Flattening the curve,”</td>
<td>17–19</td>
</tr>
<tr>
<td>Foshan (China), outbreak of SARS in</td>
<td>79</td>
</tr>
<tr>
<td>Galen</td>
<td>100</td>
</tr>
<tr>
<td>Gammacoronavirus</td>
<td>26</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>effect on severity of COVID-19, 16–17, 45–65</td>
<td></td>
</tr>
<tr>
<td>influenza, effect on severity, 16–17</td>
<td></td>
</tr>
<tr>
<td>SARS, effect on severity of, 59–60, 85</td>
<td></td>
</tr>
<tr>
<td>Genetic determinants of COVID-19, 61–63</td>
<td></td>
</tr>
<tr>
<td>Genetic markers and COVID-19, unanswered questions regarding</td>
<td>115</td>
</tr>
<tr>
<td>Genomes. See Viral genomes</td>
<td></td>
</tr>
<tr>
<td>Globalization and COVID-19</td>
<td>117</td>
</tr>
<tr>
<td>Global pandemics</td>
<td></td>
</tr>
<tr>
<td>Asian Influenza (1959), 93, 95, 116–117</td>
<td></td>
</tr>
<tr>
<td>COVID-19, declaration of, 1–2, 48</td>
<td></td>
</tr>
<tr>
<td>Hong Kong Influenza (1968), 93, 95, 116–117</td>
<td></td>
</tr>
<tr>
<td>pandemic influenza, 91–95</td>
<td></td>
</tr>
<tr>
<td>Spanish Influenza (See Spanish Influenza (1918))</td>
<td></td>
</tr>
<tr>
<td>2009 influenza pandemic, 93, 95, 116–117</td>
<td></td>
</tr>
<tr>
<td>Guangdong Province (China), outbreak of SARS in, 79, 81</td>
<td></td>
</tr>
<tr>
<td>Guangzhou (China), SARS in, 81</td>
<td></td>
</tr>
<tr>
<td>Health care workers, SARS in, 79</td>
<td></td>
</tr>
<tr>
<td>Health Organization (League of Nations), 99</td>
<td></td>
</tr>
<tr>
<td>Heart, effects of COVID-19 on, 57</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B, 108</td>
<td></td>
</tr>
<tr>
<td>Herd immunity, 20</td>
<td></td>
</tr>
<tr>
<td>definition of herd immunity, 19–21</td>
<td></td>
</tr>
<tr>
<td>likelihood of development, 116–117</td>
<td></td>
</tr>
<tr>
<td>measles and, 19</td>
<td></td>
</tr>
<tr>
<td>unanswered questions regarding, 115</td>
<td></td>
</tr>
<tr>
<td>History of COVID-19. See Epidemiology of COVID-19</td>
<td></td>
</tr>
<tr>
<td>HIV (Human Immunodeficiency Virus)</td>
<td></td>
</tr>
<tr>
<td>AIDS as viral disease, 24</td>
<td></td>
</tr>
<tr>
<td>drugs for, 106</td>
<td></td>
</tr>
<tr>
<td>emergence of, 117</td>
<td></td>
</tr>
<tr>
<td>mutation of viruses and, 38</td>
<td></td>
</tr>
<tr>
<td>overview, 3</td>
<td></td>
</tr>
<tr>
<td>H1N1 influenza</td>
<td></td>
</tr>
<tr>
<td>emergence of, 117</td>
<td></td>
</tr>
<tr>
<td>pandemic associated with (See Spanish Influenza (1918))</td>
<td></td>
</tr>
<tr>
<td>structure of, 89</td>
<td></td>
</tr>
<tr>
<td>Hong Kong, SARS in, 79, 83</td>
<td></td>
</tr>
<tr>
<td>Hong Kong Influenza (1968), 93, 95, 116–117</td>
<td></td>
</tr>
<tr>
<td>Hospitalization by age, 61</td>
<td></td>
</tr>
<tr>
<td>Huanan Seafood Wholesale Market (Wuhan), 1, 46, 50–51</td>
<td></td>
</tr>
<tr>
<td>Hubei Province (China), outbreak of COVID-19 in, 1, 46</td>
<td></td>
</tr>
<tr>
<td>Hydroxychloroquine, 106</td>
<td></td>
</tr>
<tr>
<td>Hypertension, effect on severity of COVID-19, 64</td>
<td></td>
</tr>
<tr>
<td>Iceland, mortality rate in, 59</td>
<td></td>
</tr>
<tr>
<td>Identification of COVID-19, 1</td>
<td></td>
</tr>
<tr>
<td>Immune memory, 67–68</td>
<td></td>
</tr>
<tr>
<td>Immune recognition, 23</td>
<td></td>
</tr>
<tr>
<td>Immune system and COVID-19, adaptive immune response, 108</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Immune system and COVID-19 (cont.)

different types of immune responses, 67–68
dysregulation of immune response, 105–106
immune memory, 67–68
immune recognition, 23
innate immune response, 106–107
modulation of immune response, 105–106
predisposition and, 63–64
recognition of virus, 108–109
unanswered questions regarding, 114

Immunity

herd immunity (See Herd immunity)
unanswered questions regarding, 115

Inactivated virus vaccines, 100–101, 110

Inborn errors, predisposition to COVID-19 and, 63–64

Incubation period

in common cold, 9
in COVID-19, 8–9
in influenza, 9, 97
in rabies, 9
in SARS, 9, 84

Infection fatality rate

case fatality rate versus, 12, 57–59
in COVID-19, 12–13, 57–59
of Ebola virus, 13
mortality rate distinguished, 12–13
in Spanish Influenza, 13, 95

Influenza

age, effect on severity, 16, 97
Asian Influenza (1959), 93, 95, 116–117
basic reproduction number (R_0), 11–12
common misconceptions regarding, 118
COVID-19 compared, 5–6, 88, 97–98
drugs for, 97
efficiency into cells, 88–89
favilavir for, 105
“flattening the curve” and, 17
gender, effect on severity, 16–17
herd immunity and, 19
Hong Kong Influenza (1968), 93, 95, 116–117
hosts, 90
incubation period, 9, 97
mutation of viruses and, 38, 90, 95
1959 pandemic, 93, 95, 116–117
1968 pandemic, 93, 95, 116–117
overview, 5–6, 86–87
pandemic influenza, 91–95
phylogenetic trees and, 43–44
reassortment of viruses, 89–92
replication time, 88–89, 97
respiratory problems in, 97
seasonal influenza, 95–96
Spanish Influenza (See Spanish Influenza (1918))
statistics, 95
suggested further reading, 128–129
symptoms of, 97
transmission of, 96–98
2009 pandemic, 93, 95, 116–117
vaccines for, 97–98, 109
as viral disease, 24

Innate immune response, 106–107

International Committee on Taxonomy of Viruses (ICTV), 46, 85

Iran, outbreak of COVID-19 in, 48

Italy

excess mortality in, 16
mutation of SARS-CoV-2 in, 71–72
outbreak of COVID-19 in, 48

Jacob, Francois, 34

Japan

median age in, 16
outbreak of COVID-19 in, 48

Johnson & Johnson vaccine, 100–101, 110, 112
Kidneys, effects of COVID-19 on, 57
Kierkegaard, Søren, 114
League of Nations, 99
Lederberg, Joshua, 1
Levine, Arnold, 1
Live attenuated virus vaccines, 110
“Long COVID,” 68–69
“Long-haulers,” 68–69, 116
Long-term effects of COVID-19, 68–69, 116
Lopinavir, 106
Magee, Steven, 88
Management of COVID-19, 104
Masks, 70
Measles
 basic reproduction number (R_0), 12
 herd immunity and, 19
 vaccines for, 108
 as viral disease, 24
Mechanisms of COVID-19, unanswered questions regarding, 114
Medawar, Peter, 22
Mental health effects of COVID-19, 69
MERS
 basic reproduction number (R_0), 11
 bats as suspected origin of, 82
 camels as suspected origin of, 82
 hosts, 26
 naming of, 45
 in South Korea, 83
 super spreaders, 83
MERS-CoV
 basic reproduction number (R_0), 11
 bats as suspected origin of, 82
 as betacoronavirus, 26
 camels as suspected origin of, 82
 emergence of, 47, 117
 hosts, 26
 naming of, 45
Middle East respiratory syndrome. See MERS-CoV
Mortality rate
 common misconceptions regarding, 118
 of COVID-19, 59
 excess mortality, estimating, 15, 60–61
 illustration of, 13
 infection fatality rate distinguished, 12–13
 of smallpox, 3
 of Spanish Influenza, 91, 93
 World Health Organization on, 59
Mukherjee, Siddhartha, 78
Mumps, 108
Mutation of coronaviruses
 accumulation of, 72
 definition of mutation, 35
 diversity of species, across, 37–38
 DNA and, 36–37
 E484K mutation, 73–74
 evolution and, 34
 influenza and, 38, 90, 95
 overview, 4–5, 34–35
 phylogenetic trees and, 42–43
 recombination (See Recombination of coronaviruses)
 replication time, 36–38
 RNA and, 35–38
 SARS-CoV-2, 36, 66, 71–72
 “sloppiness,” 4–5, 35, 41
 suggested further reading, 123
 tracking origins of outbreaks using, 41–43
Mutation of coronaviruses (cont.)
unanswered questions regarding, 116
variants generated from, 72
viral genomes and, 36–37

Naming of viruses and diseases
COVID-19, 45–46, 85–86
MERS, 45
MERS-CoV, 45
SARS, 45–46, 85–86
SARS-CoV, 45–46
SARS-CoV-2, 45–46
Spanish Influenza, 91
New York City, Spanish Influenza in, 95
Novavax vaccine, 110
Novel RNA vaccines, 100–101
Nucleic acid vaccines, 109–110
Number of persons infected
unanswered questions regarding, 115
World Health Organization on, 8

Other medical factors, effect on severity of
COVID-19, 64
Oxford–AstraZeneca vaccine, 100–101, 110, 112
Oxygen therapy, 104

Palm civets as suspected origin of SARS, 81
Pandemic influenza, 91–95
PCR (Polymerase Chain Reaction) testing, 101–102
Pfizer–BioNTech vaccine, 100–101, 109–111
Philadelphia (Pennsylvania), Spanish Influenza in, 98
Phylogenetic Assignment of Named Global Outbreak (PANGO), 70–75
Phylogenetic trees, 42–43, 52–54
Polio, 12
Polymerase Chain Reaction (PCR) testing, 101–102
P.1 variant, 73–74
Population growth and COVID-19, 117
Proofreading system, 36
Protein subunit vaccines, 110
Public gatherings, banning of, 17, 94–95, 98
Public health systems, 98–99
Pybus, Oliver, 74
Quarantine, 9, 11, 17, 80, 98

Rabies
incubation period, 9
as viral disease, 24
Rambaut, Andrew, 74
Receptor binding domain (RBD), 55–56
Recombination of coronaviruses
betacoronavirus, 39–40
definition of recombination, 38
exchange of genomic material, 39
overview, 4–5, 35
RNA and, 38
SARS-CoV, 53–54
SARS-CoV-2, 40, 53–54
“sloppiness” compared, 41
Remdesivir, 105
Respiratory problems
acute respiratory distress syndrome (ARDS), 104
in COVID-19, 56–58
effect on severity of COVID-19, 64
in influenza, 97
in SARS, 84
Ritonavir, 106
RNA
in coronaviruses, 24–25, 27–30
mutation of coronaviruses and, 35–38
recombination of coronaviruses and, 38
in viruses, 24
Rotavirus, 3
Rubella, 108
St. Louis (Missouri), Spanish Influenza in, 98
SARS (2002-2003). See also SARS-CoV
age, effect on severity, 59–60, 85
asymptomatic cases, 84
bats as suspected origin of, 51–53, 78–79, 81–82
case fatality rate in, 84
children, prevalence in, 65–66
clinical characteristics of, 84–85
common misconceptions regarding, 118–119
control of, 86
COVID-19 compared, 5, 78–79
dogs as suspected origin of, 81
drugs for, 105
family clusters, 79
gender, effect on severity, 59–60, 85
in health care workers, 79
hosts, 26
incubation period, 9, 84
long-term effects of, 86
mild cases, 84
naming of, 45–46, 85–86
overview, 5, 77–79
palm civets as suspected origin of, 81
pathology of, 84–85
respiratory problems in, 84
species contracting, 24–25
suggested further reading, 126
super spreaders, 83
symptoms of, 84
unreported cases, 84
World Health Organization and, 79, 86
SARS-CoV. See also SARS (2002-2003)
ACE2 receptors and, 53–55, 85
bats as suspected origin of, 51–53, 78–79, 81–82
as betacoronavirus, 26
dogs as suspected origin of, 81
emergence of, 47
entry into cells, 30, 53–55
genetic similarities and differences to
SARS-CoV-2, 85
identification of, 80
naming of, 45–46
overview, 5
palm civets as suspected origin of, 81
phylogenetic trees and, 52–54
receptor binding domain (RBD) and,
55–56
recombination of, 53–54
relation to SARS-CoV-2, 52–54
SARS-CoV-2 compared, 5, 78–80, 85
viral genome of, 30–31, 80
viral shedding of, 86
SARS-CoV-2
ACE2 receptors and, 53–55
bats, suspected origin in, 49–53, 78–79
as betacoronavirus, 26, 46–48
entry into cells, 30, 53–55
genetic similarities and differences to
SARS-CoV, 85
hosts, 26
mutation of, 36, 66, 71–72
naming of, 45–46
overview, 3–5, 45
phylogenetic trees and, 52–54
receptor binding domain (RBD) and,
55–56
recombination of, 40, 53–54
relation to SARS-CoV, 52–54
release from cells, 33
SARS-CoV compared, 5, 78–80, 85
Spike proteins in, 53
spreading of, 55–56
suggested further reading, 123–126, 130
super spreaders, 55–56
variants, 72–77 (See also Variants of
SARS-CoV-2)
viral genome of, 5, 29–30
viral shedding of, 56, 86
where first reported, 46–48
Index

Seasonal influenza, 95–96
Sepsis, 104
Serology testing, 102–104
Severe acute respiratory syndrome coronavirus (SARS-CoV). See SARS-CoV
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). See SARS-CoV-2
Shenzhen (China), SARS in, 81
Shope, Robert, 7
Singapore, SARS in, 79, 83–84
Sinopharm vaccine, 100–101, 110
Skin conditions, 57
“Sloppiness” in coronaviruses, 4–5, 35, 41
Smallpox
 mortality rate, 3
 vaccines for, 108–109
 as viral disease, 24
Smell, loss of, 67–68
Social distancing, 11, 17–19, 98, 119
South Korea
 “flattening the curve” in, 17–19
 MERS in, 83
Spain
 excess mortality in, 15–16
 outbreak of COVID-19 in, 48
Spanish Influenza (1918)
 age, effect on severity, 91
 attack rate, 9–10
 basic reproduction number (R₀), 11–12
 case fatality rate, 95
 common misconceptions regarding,
 118
 containment measures in, 94–95, 98, 119
 COVID-19 compared, 6, 88
 infection fatality rate, 13, 95
 mortality rate, 91, 93
naming of, 91
 narrative description of, 91–94
 overview, 3, 86–87, 116–117
 overwhelming of health care system by, 94
 public health systems and, 98–99
 suggested further reading, 128–129
 waves of, 95, 116
Spike proteins, 27, 30, 53
Spread of COVID-19. See Epidemiology of COVID-19
Sputnik V vaccine, 100–101, 110
Super spreaders
 basic reproduction number (R₀) and, 83
 contributing factors, 83–84
 of COVID-19, 55–56
 defined, 70–71
 of MERS, 83
 prevalence of, 70–71
 of SARS, 83
Surge capacity, 18
Symptoms of COVID-19, 56–58
Taiwan, SARS in, 79
Taste, loss of, 67–68
Testing
 antibody testing, 102–104
 “flattening the curve” and, 17–19
 Polymerase Chain Reaction (PCR) testing, 101–102
 serology testing, 102–104
 suggested further reading, 129–130
Thailand, outbreak of COVID-19 in, 48
Therapies
 for acute respiratory distress syndrome (ARDS), 104
 co-infections and, 104
 drugs (See Drugs)
 increased knowledge and technology, role of, 116
 management, 104
oxygen therapy, 104
for sepsis, 104
suggested further reading, 129–130
testing (See Testing)
treatment, 104
vaccines (See Vaccines)
Thomas, Lewis, 22
Time lag in fatal cases of COVID-19, 59
Treatment of COVID-19, 104

United Nations, 99
United States
mutation of SARS-CoV-2 in, 66, 71–72
Spanish Influenza in, 17
Unreported cases
case fatality rate versus infection
fatality rate, 12, 57–59
of SARS, 84
unanswered questions regarding, 115

USS Theodore Roosevelt, 70

Vaccines
adenovirus vector vaccines, 100–101
breakthrough cases, 110–112
CoronaVac vaccine, 100–101, 110
duration of protection, 112–113
efficacy of, 109, 111
inactivated virus vaccines, 100–101, 110
increased knowledge and technology, role of, 116
for influenza, 97–98
Johnson & Johnson vaccine, 100–101, 110
live attenuated virus vaccines, 110
for measles, 108
mechanisms of, 108–109
Moderna vaccine, 100–101, 109–110
Novavax vaccine, 110
novel RNA vaccines, 100–101
nucleic acid vaccines, 109–110
Oxford–AstraZeneca vaccine, 100–101, 110, 112
Pfizer–BioNTech vaccine, 100–101, 109–111
protein subunit vaccines, 110
secondary effects of, 112
side effects of, 112
Sinopharm vaccine, 100–101, 110
for smallpox, 108–109
Sputnik V vaccine, 100–101, 110
successful development of, 100–101
types of vaccines, 109–111
viral vector vaccines, 110

Variants of SARS-CoV-2, 72–77
Alpha variant, 70–76
Beta variant, 70–76
B.1.1.7 variant, 70–76
B.1.351 variant, 70–76
B.1.427 variant, 73–74
B.1.429 variant, 73–74
B.1.526 variant, 74
B.1.617 variant, 72
E484K mutation, 73–74
mutations, generated from, 72
naming of, 70–75
P.1 variant, 73–74
variants of concern, 73–74, 76–77
variants of interest, 74

Vietnam, SARS in, 79
Viral genomes
of coronaviruses, 29–30
genetic information encoded in, 24
mutation of coronaviruses and, 36–37
reading of, 4
of SARS-CoV, 30–31, 80
of SARS-CoV-2, 5, 29–30

Viral shedding
of SARS-CoV, 86
of SARS-CoV-2, 56, 86

Viral vector vaccines, 110

Viruses. See also specific virus
coronaviruses (See Coronaviruses)
Index

Viruses. (cont.)
defined, 23
diversity of, 24
DNA in, 24
identification of, 24
immune recognition and, 23
overview, 3–4, 22–23
prevalence of, 24–25
RNA in, 24
size of, 23
suggested further reading, 122–123
viral genomes (See Viral genomes)

Waves
of Spanish Influenza, 95, 116
unanswered questions regarding, 116
West Nile virus, 105
World Health Organization (WHO)
daily reports by, 49
global pandemic, declaration of, 1–2,
48

on mortality rate of COVID-19, 59
naming of COVID-19, 46, 85–86
naming of variants and, 77
number of confirmed COVID-19 cases, 8
origins of, 99
SARS and, 79, 86
seasonal influenza and, 96
vaccines and, 101, 109
Wuhan (China)
children, prevalence of COVID-19 in,
65–66
lockdown of, 48
mortality rate in, 59
outbreak of COVID-19 in, 1, 46, 50
Wuhan Institute of Virology, 50
Yunnan Province (China), SARS in, 81
Zhong, N.S., 78
Zika virus, 117