Index

Note:

Material in Figures or Tables is indicated with italic page locators; material in boxes with bold type and references to footnotes carry the suffix ‘n’.

accountability shortcomings, 50, 54, 56–57, 95, 102
accreditation of observers, 89
adaptive learning, 50, 57
Adler, C. E., 81, 164–165, 168
‘affective atmospheres’, 31
afforestation, 153–154, 267
AGGG (Advisory Group on Greenhouse Gases), 15–16
agonistic-antagonistic mode, 171, 176
Agrawala, Shardul, 11, 16, 26, 87, 210
Amazon basin, 220
AMIP (Atmospheric Model Intercomparison Project), 132
Anderson, Benedict, 258
Anderson, Kevin, 56, 145, 202
AOGCMs (Atmosphere-Ocean coupled General Circulation Models), 128
AR1 to AR6. See assessment report(s)
Arctic. See ICC
Arhenius, Svante, 14
artificial intelligence, 103, 155
Asayama, Shinichiro, 230, 249, 251, 271n
biography and chapter contribution, xi, 148–155
assessment cycles
full list of reports produced, 40–41
generating calls for reform, 268
assessment process
more focused alternatives, 270
widening the knowledge base, 121
Assessment Reports, IPCC (generally)
acceptance, adoption and approval, 21, 42, 99, 188–194
criticism of, 2, 23
evolving visuals, 235
full list of reports produced, 40–41
neglect of indigenous knowledge, 116
role of models in, 126
scoping meetings, 42, 54, 63, 169, 189
Assessment Report 1 (AR1, FAR, 1990), xxiii
peer review, 184
Assessment Report 2 (AR2, SAR, 1996), xxiii
as SAR, 40
Chapter-8 debate, 1995, 53, 101, 150
climate change as anthropogenic, 102
introduction of SYRs and SPMs, 199
procedural criticism, 24, 102
statistical value of human life, WGIII, 151, 152
Assessment Report 3 (AR3, TAR, 2001), xxiii
as TAR, 40
‘burning embers’ diagram, 197, 200, 236, 238
guidance on uncertainty, 161, 171
‘hockey-stick’ graph, 151, 239
social science coverage, 110
Assessment Report 4 (AR4, 2007)
guidance on uncertainty, 161, 168
Himalayan glaciers error, 24, 53, 102, 150, 220
modelling sea-level rise, 114, 151, 183, 184
Assessment Report 5 (AR5, 2013/14)
Chapter Scientists and, 78
guidance note on communicating uncertainty, 247
IAM community and, 114, 146
mention of DAI, 45
overhaul of scenario framework, 140
speculative NETs criticism, 202
Synthesis Report case study, 195
WGIII contribution, 138, 194

306
<table>
<thead>
<tr>
<th>Index</th>
<th>307</th>
</tr>
</thead>
<tbody>
<tr>
<td>books about the IPCC, 3</td>
<td></td>
</tr>
<tr>
<td>‘boundary making’, 199</td>
<td></td>
</tr>
<tr>
<td>‘boundary objects’, 225, 272</td>
<td></td>
</tr>
<tr>
<td>as a common language, 229</td>
<td></td>
</tr>
<tr>
<td>desirable futures, 230</td>
<td></td>
</tr>
<tr>
<td>examples, 137, 146, 225, 231</td>
<td></td>
</tr>
<tr>
<td>‘boundary organisations’, 21, 80–81, 86, 148, 201, 272</td>
<td></td>
</tr>
<tr>
<td>‘boundary spaces’, 32, 272</td>
<td></td>
</tr>
<tr>
<td>‘boundary work’, 3, 103, 154, 183, 201, 205, 272</td>
<td></td>
</tr>
<tr>
<td>and anti-boundary work, 170, 176</td>
<td></td>
</tr>
<tr>
<td>Boykoff, M. T., 248, 256</td>
<td></td>
</tr>
<tr>
<td>Brazil, 219–222, 257</td>
<td></td>
</tr>
<tr>
<td>Breakout Groups / rooms, xxiii, 32, 35, 174, 190</td>
<td></td>
</tr>
<tr>
<td>Brodbeck, Rino, 31</td>
<td></td>
</tr>
<tr>
<td>Bromme, John, 110, 190, 193, 195</td>
<td></td>
</tr>
<tr>
<td>Brown, H., 27, 35, 38</td>
<td></td>
</tr>
<tr>
<td>Brown, M. B., 179</td>
<td></td>
</tr>
<tr>
<td>Brown, M. J., 205</td>
<td></td>
</tr>
<tr>
<td>Brysse, K., 204</td>
<td></td>
</tr>
<tr>
<td>buffer function, WGIII, 17</td>
<td></td>
</tr>
<tr>
<td>buildings. See venues</td>
<td></td>
</tr>
<tr>
<td>Bureau, IPCC</td>
<td></td>
</tr>
<tr>
<td>accreditation of observer organisations, 90</td>
<td></td>
</tr>
<tr>
<td>appointment of experts, 21</td>
<td></td>
</tr>
<tr>
<td>governments dependence on, 87</td>
<td></td>
</tr>
<tr>
<td>and Panel overlap, 83</td>
<td></td>
</tr>
<tr>
<td>‘burning embers’ diagram, 197, 200, 236, 238</td>
<td></td>
</tr>
<tr>
<td>Bush, GW Administration, 83</td>
<td></td>
</tr>
<tr>
<td>‘business-as-usual’ scenarios, 111, 145</td>
<td></td>
</tr>
<tr>
<td>calibrated language, 159–160</td>
<td></td>
</tr>
<tr>
<td>history of IPCC use, 162, 164</td>
<td></td>
</tr>
<tr>
<td>Canada, 7, 29, 122, 153, 174, See also ICC</td>
<td></td>
</tr>
<tr>
<td>capacity building, 61–62, 64, 69, 71–72, 267</td>
<td></td>
</tr>
<tr>
<td>capitalist domination, 270</td>
<td></td>
</tr>
<tr>
<td>carbon cycle, 127, 128, 185, 220, See also</td>
<td></td>
</tr>
<tr>
<td>biogeochemical processes</td>
<td></td>
</tr>
<tr>
<td>carbon dioxide, atmospheric, 14</td>
<td></td>
</tr>
<tr>
<td>global distribution, 130</td>
<td></td>
</tr>
<tr>
<td>modelling effects of, 130, 227</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide Capture and Storage (SR, 2005), 40</td>
<td></td>
</tr>
<tr>
<td>See also BECCS</td>
<td></td>
</tr>
<tr>
<td>carbon dioxide removal (CDR) technologies, 57, 103</td>
<td></td>
</tr>
<tr>
<td>carbon sinks, 46, 151, 153, 155, 266</td>
<td></td>
</tr>
<tr>
<td>carbon trading, 228</td>
<td></td>
</tr>
<tr>
<td>Carraro, C., 212–213</td>
<td></td>
</tr>
<tr>
<td>Casado, M., 78</td>
<td></td>
</tr>
<tr>
<td>Castree, Noel, 57, 204, 211, 216</td>
<td></td>
</tr>
<tr>
<td>CBD (Convention on Biological Diversity), United Nations, xxiii, 119</td>
<td></td>
</tr>
<tr>
<td>CDR (carbon dioxide removal) technologies, 57, 103</td>
<td></td>
</tr>
<tr>
<td>Chair, IPCC. See Lee; Pachauri; Watson</td>
<td></td>
</tr>
<tr>
<td>‘chaotic debates’, avoiding, 245, 249</td>
<td></td>
</tr>
<tr>
<td>Chapter Scientist role, 72, 75–77, 77, 182</td>
<td></td>
</tr>
<tr>
<td>Chapter-8 debate, 1995, 53, 101, 150</td>
<td></td>
</tr>
<tr>
<td>Charmey report, 130</td>
<td></td>
</tr>
<tr>
<td>chemical pollution, 4, 267</td>
<td></td>
</tr>
<tr>
<td>China, blocking organisations, 90, 257</td>
<td></td>
</tr>
</tbody>
</table>
civic epistemologies
challenging transnational consensus, 93, 181, 201
chapter on, 217–220
defined, 217–218, 272
of India and Brazil, 219–222
of Russia, 223
CLAs (Coordinating Lead Authors)
Chapter Scientists and, 75–77, 77
collaboration across WGs, 174
role, 63
Climate Action Network International, 91
Climate Action Tracker, 213
climatic activism, 55, 267
Climate Analytics, 213
climate change
controversies around anthropogenic nature, 24, 102, 126
dangerous levels, 45
neglect of regional aspects, 194, 213, 216, 259, 267
now a political problem, 270
polycentric response to, 270
projections from models, 127
reality established, 256
Special Report on Regional Impacts, 40
viewed as an emergency, 254, 256, 258, 260
climate change adaptation
expert knowledge, 111
separate WG from mitigation, 110
Special Report on Managing the Risks of Extreme Events and (2012), 41
climate change litigation, 195
climate change mitigation
reflecting Global North interests, 221
research dependent on IPCC, 112–113
salience post-Paris, 201
separate WG from adaptation, 110
Special Report on Renewable Energy Sources and (2011), 41
climate contrarians, 92, 160, 264, 268, See also climate sceptics
climate emergency, imaginary of, 254, 256, 258, 260
climate events, low-probability, high-risk, 164, 204,
See also extreme weather
climatic forcers, Methodological Report, 41, 42
Climate Interactive, 213
‘climate justice’, 193
climatic models, 126–135, See also MIPs
atmosphere-ocean coupled models, 128, 133, 135
atmospheric circulation models, 127
boundary objects and, 227
centrality within IPCC, 130, 134
climatic sensitivity and, 227
influence of IPCC, 112
machine-learning alternatives, 135
types of model, 128, 135, 139
used in each assessment cycle, 137
climate neutrality, 254, 258, 260
climatic research. See climate science; research
Climate Risk and Sustainable Solutions, meeting on
Integrating Science across the IPCC, 174
climate sceptics, 92, 95, 127, 131, 134, 150, 249, 251, 254, See also climate contrarians
climate science
after World War II, 14
conceived globally, 130
global fact base, 254
IPCC influence on research, 111, 135
neglect of Indigenous knowledge, 117
climate sensitivity
as a boundary object, 226–229, 232
Equilibrium Climate Sensitivity (ECS), 226
IPCC consensus around, 186
IPCC definition, 227
models and, 131
uncertainties, 131
climate solutions space, significant omissions, 56
‘Climategate’ controversy, 2009, 24, 54, 102, 149–150, 224, 267
closure, of the review process, 102, 149, 155, 171, 193, 219
CMIP (Coupled Model Intercomparison Project), 127, 133, 135
‘code red’ assessments, 254, 270
Cointe, Béatrice, xi, 114, 137–146
Collins, Harry, 180
communalism in science, 98
communication
appropriation, 248
criticisms of IPCC approach, 247, 250
IPCC strategy, 246
through reports, 244–251
using visuals, 234–243
Communications Action Team, 246
complexity of the IPCC, 263, 269
computer simulations. See climate models
Conference on the Human Environment (UN, 1972), 15
Conferences of the Parties (COP). See UNFCCC
confidence scale, 159, 162
confidence statements and uncertainty, 161, 165
carbonate, 255
conflict resolution, 266
cognitive conflict, 161
conflicts of interest, 2, 20, 24–25, 93, 114
Conflict of interest policy, 26
consensus
arguments against, 184, 204, 247
arguments in favour, 183
building through meetings, 35, 37
consensus seeking by IPCC, 178, 182–183, 251
epistemic authority, 181
scientific, 13, 178, 180–182
singular and plural views, 191
constitution
IPCC, 22
Working Groups, 19
Index

‘constitutional moments’, 50, 53, 57
contact groups, 32, 85, 193
controversiality of knowledge, 191
controversies
accounting for forest sinks, 153
AR2 Chapter-8 debate, 1995, 53, 101, 150
‘the Bali Box’, 231, 232
‘burning embers’ diagram, 197, 200, 238
causes as political, 154, 206
‘Climategate’, 24, 54, 102, 149–150, 224, 267
defined, 149
ensuring the reflection of, 24
errors in AR4, 24, 53, 102, 267
and IPCC consensus, 183
knowledge / scientific controversies, 148, 202, 264
ontological controversies, 154, 231
political, absorbed by IPCC, 151
political, triggered by IPCC, 151
12 year deadline, 244, 248, 249
types affecting IPCC, 148–151
‘convincing power’, of IPCC and UNEP, 29
co-productions
between authors and users, 234
and boundary objects, 226
co-production of IPCC reports, 264
defined, 254, 272
of knowledge with IK systems, 120, 123
science-driven or policy-driven, 112
2 °C target as, 230
of visuals, 241
COPs (Conferences of the Parties). See UNFCCC
Corbera, E., 62, 64, 66, 70, 82, 85, 143
cosmopolitan climate expertise, 223–224
cosmopolitan knowledge, 218, 224, 251, 272
costs of travel, 37
COVID-19 pandemic, 28, 37, 38, 257
Craggs, R., 27, 32, 38
credibility of IPCC
diversity and, 68
NGO involvement and, 93
procedures and, 20, 33
varying from country to country, 218
‘cross-cutting aspects / issues / themes’, 42, 53, 171
cultural relativism, 184
Cuomo Foundation, 74
DAI (Dangerous Anthropogenic Interference), xxiii, 199, 229–230
dangerous anthropogenic objects, 231
data representation. See visuals
De Pryck, Kari, xi, 65, 81, 101, 165, 170, 246
in key readings, 176, 195
de Wit, S., 248
deadline, 12 year, 244, 248, 249, 251
decarbonisation, 203, 255
decision-making in Latin America, 222
decision-makers’ needs, 55, 114, 132, 239

Declaration on the Rights of Indigenous Peoples (UN),
118
deforestation, 220–221
‘deliberative mini-publics’, 94
democracy, 94, 179, 205, 222, 259, 268
desertification, 4, 267
developed and developing nations
alternative terminology, 6, 70n
asymmetries and chairmanship, 83
climate change as an emergency, 256
climate model development, 128
equitable effort-sharing, 231
human life valuation in,
intergovernmental comparisons, 85
intergovernmental relations, 82
joint TSU chairs, 29
developing nations
dissatisfaction with the AR1 report, 199
participation, 87
support for representatives, 76, 82
discourse, in policy advice, 250–251
Structured Expert Dialogue, 45, 193
disciplines, academic
feedback loops with IPCC, 107, 113, 266
interdisciplinary conversations / work, 169–170, 176
 positivist and interpretative, 114
power asymmetries among, 265
relevance of this book, 5
support for consensus, 251
dissent / disensus, 168, 179, 184–185, 193
diversity, 59, See also gender balance
among thematic bridges, 176
of audiences for IPCC reports, 242
avoiding box ticking, 68, 70
importance and value, 66
through participation of NGOs, 88, 92
Dorough, Dalee Sambo, xii, 116
ducash, Navroz K., xii, xviii
dudman, K., 248
doyle, J., 237
dorough, Dalee Sambo, xii, 116
dubash, Navroz K., xii, xviii
duplicate, Jean-Paul, 159
diversity, 59, See also gender balance
among thematic bridges, 176
of audiences for IPCC reports, 242
avoiding box ticking, 68, 70
importance and value, 66
through participation of NGOs, 88, 92
Dorough, Dalee Sambo, xii, 116
Doyle, J., 237
Dudman, K., 248
Dubash, Navroz K., xii, xviii
Dupuy, Jean-Paul, 159
Earth Negotiations Bulletin (ENB), 166
economic growth
assumptions, 141, 203, 248
decoupling from energy demand, 214
to and technological solutions, 56, 145
economics
dominance among social sciences, 110, 203
dominance, with science, 113
post-carbon economy / future, 255, 259
valuation of future damage, 251
valuation of human life, 152
ECRs (Early Career Researchers), 6, 7, 71–78, 265, See also Chapter Scientist role; Scholarship Programme
benefits of involving, 73, 76, 78
defined, 72

© in this web service Cambridge University Press & Assessment
www.cambridge.org
Index

ECS (Equilibrium Climate Sensitivity), 226
Edenhofer, Ottmar, 55, 202, 205, 211
Edmonds, Jae, 143
Edwards, Paul N., 53, 92, 102, 127, 130–131, 135, 150, 182, 255
biography and chapter contribution, xii, 96–104
eLAMs (electronic Lead Author Meetings), 37, 38
electrical utilities, 214, 259
Elzinga, A., 182
email leak, University of East Anglia. See Climategate
EMIC (Earth System Models of Intermediate Complexity), 128
‘emission equivalents’, 226
emission scenarios
as ‘boundary objects’, 137
in each assessment cycle, 139
evaluation, 1995, 140
IPCC role as catalyst, 138, 140
RCPs (Representative Concentration Pathways), 139, 141, 144, 145
emissions inventories. See NDCs
emulators, 128
ergy transitions, 165, 214, 259
English language standard, 35, 103
environmental assessments, 12, 17, 44, See also GEAs
EPA (Environmental Protection Agency), US, 139
‘epistemic chaos’, 153
epistemic community model, 80, 87, 180, 273
epistemic consensus / disagreements, 150, 179, 181
epistemic geographies, 222
epistemic pluralism, 151, 180
‘epistemic selectivity’, 194
epistemic sovereignty, 219, 222–223
‘epistemic things’, 228, 230, 273
epistemic uncertainty, 160, 183
epistemological hierarchies, 108, 108, 110, 114, 265
equitable effort-sharing, 231
equitable engagement with IK systems, 119–123
errors
in AR4, 24, 53, 102, 220, 267
factual, and knowledge controversies, 150
on the side of least drama, 204
ESMs (Earth System Models), 128, 128
‘human systems’ and, 135
ethics and the valuation of human life, 152, 154
European Union
adoption of 2 °C target, 229
Green New Deal, 55
supporting a climate-neutral future, 254
experience, prior, with IPCC, 63
Expert Meetings
Assessing Climate Information for Regions, 2018, 175
on Communication, 2016, 241
expert review stage, 99, 121
expertise
call for cosmopolitan knowledge, 218, 224, 251, 272
evaluation, 50, 63
non-peer reviewed, 113, 116
experts. See also authors; Lead Authors
disciplinary backgrounds, 6, 107
expert elicitation, 186, 273
‘fast-track procedures’, 25
NGO nomination, 91, 93
in peer review, 97
private sector and civil society, 92
selection criteria, 14, 21, 63, 97
Extinction Rebellion, 249
extreme weather events
attribution studies, 108, 134
images, 241
Special Report on Managing the Risks of (2012), 41, 177n
Ezrahi, Yaron, 259
‘facts’, scientific and diplomatic, 188
FAQs (frequently asked questions), 237
FAR. See Assessment Report 1
‘fast-track procedures’, 25
feedback loops
academic disciplines with IPCC, 107, 113
research institutions with IPCC, 266
FGD (Final Government Distribution), xxiii, 101
Field, Chris B., 183, 187
Final Government Distribution (FGD), 101
financial support
ECRs from developing nations, 75
IPCC from member governments, 80
IPCC influence on research funding, 111
Flottum, K. et al., 172, 241
flux adjustments, 131, 135
focal points. See national focal points
FODs (First Order Drafts), 42, 99, 103
Fogel, C., 42, 44, 81, 153, 194
forest sinks. See carbon sinks
fossil fuel industry, 210, 254. See also oil
fossil fuels, xiii, xx, 153, 189, 253, 254, 259, 265
framework conventions. See also UNFCCC
on tobacco and emerging diseases, 257
framing of climate change
approval process and, 194, 199
global framing, 70, 245, 254, 258
as a model, 257, 263
as model-based, 146, 265
‘Northern’ framing, 220, 222
for public and media, 243
as science and economics-based, 86, 131, 248
Franz, W. E., 92–93, 95, 194
Fridays for Future movement, 55
Friends World Committee for Consultation, 91
Fry, I., 153
functionalist approach to participation, 92
Index

Goeminne, G., 182
governments. See member governments
Green New Deal (EU), 55
greenhouse effect, 14, 256. See also GHG
greenhouse gas indices, 110
greenhouse gases. See GHG
Greenpeace, 92
‘grey literature’, 24, 98, 116
Griesemer, J. R., 226, 229, 272
The Guardian newspaper, 83, 249
guidance notes
 on communicating risk, 247
 on communicating uncertainties, 163, 168, 171
Guidelines on National Greenhouse Gas Inventories, 40
Guillemot, Hélène, xii, 128

Haas, Peter M., 12, 17, 43, 180, 194, 211, 273
handshakes, 175. See also integration
Hansson, A., 103
Harald, Jordan, xiii, 234–243
Hartz, Friederike, xiii, 27
Havstad, J. C., 198, 205
Hermansen, E. A. T., 189, 212
Heymann, Matthias, 132
Himalayan glaciers, AR4 error, 24, 53, 150, 220
Hirsch Hadorn, G., 81, 164, 168
A History of the Science and Politics of Climate Change: The Role of the Intergovernmental Panel on Climate Change, by Bolin, 3

‘hockey-stick’ graph, AR3, 151, 239
Ho-Lern, C, 64, 73, 82, 87, 255
Hoppe, I., 247, 251
Hoppe, R., 71, 81
Houghton, Sir John, 102, 178, 184, 188
Hughes, Hannah, xiii, 70, 79–87, 195
Hulme, Mike, xix, 70, 148–155, 178–186, 262–271
key readings, 26, 186, 251
human life, valuation, 151, 152
human rights law, 123
humanities, engagement with the IPCC, 3, 110, 113, 170, 176
hybrid events, 38
hybrid organisations, IPCC as, 50, 199
IAC (InterAcademy Council) review of IPCC
 procedures, 2010, 24, 26, 50, 54, 57, 102–103, 150, 161, 172, 250
IAM (Integrated Assessment Model[ing]), 127
debated influence, 55, 144, 161
and IPCC WGs, 113
producing scenarios, 137
prominence and shortcomings, 137, 144, 203
publications and the IPCC report cycle, 114, 143, 146

funding. See financial support
futures research, 111, 138, 230
Garard, J., 89, 94–95
GARP (Global Atmospheric Research Programme), 15
gatekeeping function of peer review, 98
Gay-Antaki, Miriam, 64, 69–70
GCMs (General Circulation Models), 127, 128, 132, 135
GCMs (Global Climate Models), 14, 128, 138, 146, 147a
GEAs (global environmental assessments)
call for openly political GEAs, 204, 216
diversity in, 70
intergovernmental model, 80, 267
other than IPCC, 1. 13, 267
solutions-oriented assessments, 202, 211
stakeholder role, 88, 94
Geden, Oliver, 202, 251
gender balance, 21, 61, 63
Gender Task Force, IPCC, 69
generative events, 149, 154, 273
Geneva, 28, 31, 152, 172
GEO (Global Environment Outlook), 2
gene engineering technologies, 114, 174
geographical bias, 73. See also Global North and South
Germany, 55, 85, 90, 166, 200, 222, 224
preference for consensus, 219
GHG (greenhouse gases)
emissions by country-income groups, 194
 evolution scenarios, 137
 Global Warming Potentials and, 228
 National Greenhouse Gas Inventories, 29, 40
 social costs of emissions, 131
 supporting reduction, 253, 258
Gierryn, T. P., 28, 32, 38, 154, 201, 272–273
Gilbert, M., 180
glacier melting, AR4 error, 24, 53, 150, 220. See also ice sheet melting
Global Climate Coalition (GCC), 24, 92, 95
Global Environmental Outlook (UNEP), 95, 195
global framing of climate change, 70, 245
‘global health risks’, 257
‘global kinds of knowledge’, 3, 5, 131, 255
Global North and South
developed and developing nations and, 6, 70m, 199
distribution of knowledge production, 265
Global North bias
 author selection, 7, 69, 73
 hosting meetings, 29, 38
 NGO dominance, 94
global social order, 215, 260
Global South. See also Brazil; India
 public participation in science, 218
underrepresentation, 62, 64, 218, 268
Global Stocktake, 174, 213, 268
Global Warming Policy Foundation, 251
global warming potential (GWP), 131, 228
globalisation of knowledge-making, 255–256

© in this web service Cambridge University Press & Assessment
www.cambridge.org
IAM (Integrated Assessment Model(ling)) (cont.)
transparency, 56, 144
IAMC (Integrated Assessment Modelling Consortium), 140, 143–144
ICC (Inuit Circumpolar Council), xii, xxiv, 116, 118, 120–122
Inuit Tapiriit Kanatami, 120
synthesis report, 124
ice sheet / icecap melting, 109, 164, 183, 185, See also glacier melting
ICSU (International Council for Science, previously International Council of Scientific Unions), 15
IGY (International Geophysical Year, 1957–58), 14
IIASA (International Institute for Applied Systems Analysis), 139, 144, 147n
IPPFCC (International Indigenous Peoples Forum on Climate Change), xxiv, 119, 124
IISD (International Institute for Sustainable Development), xxiv
IMAGE (Integrated Model for Assessing the Greenhouse Effect), xiv, 139, 143
Imagined Communities, by Benedict Anderson, 258
Imagined Democracies, by Yaron Ezrahi, 259
INC (Intergovernmental Negotiating Committee), 11, 17, 43, 199
incommensurability, 171, 176, 263
‘inconvenient truths’, 270
India, 24, 64, 166, 219–222
Indigenous knowledge (IK), 116–124
equitable and ethical engagement, 119–123
expert review stage, 121
Indigenous knowledge holders, 92
key readings on, 124
limits to integration, 171, 176
neglect by assessment process, 116, 120, 151, 265, 268
possible definition, 118
Indigenous Peoples (IP)
incommensurable forms of knowledge, 176
indigenous academics, 124
land stewardship, 117
self organisation and rights, 123
UNPFII (UN Permanent Forum on Indigenous Issues), xxv, 124
inequalities, and acceptance of IPCC reports, 135, 223
influence of the IPCC, 3, 84, 232
integration of risk management, 169–176
integration, interdisciplinary. See also thematic bridges emphasis in AR6, 169, 174, 176
previously lacking, 110
risk assessment framework, 175
integrative-synthesis mode, 170, 175
interdisciplinarity, 110, 170, 176
intergovernmental cooperation, 14
intergovernmental status
constraining IPCC development, 270
distinction from international, 13, 16
government involvement, 11, 79–82
as non-prescriptive, 68
promoted by US, 16
International Conference on Climate Risk Management, 2017, 174
international institutions, 35, See also IPBES; UNEP; UNFCCC; WMO
Internet
access and participation, 37
pre-print servers, 97
scenarios published, 140
interventions
number and length in plenary sessions, 85
by observer organisations, 90
Inuit Tapiriit Kanatami, 120, 124
IP. See Indigenous Peoples
IP caucus. See IPPFCC
IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services)
comparisons with IPCC, 25, 68, 94, 191, 195, 260, 267
comparisons with IPCC, 257
Fellowship programme, 77
as a GEA, 2, 4, 35, 80
joint workshop with IPCC, 270
Rules of procedure for the plenary of the platform, 25
SPM approval process, 191, 195
IPCC (Intergovernmental Panel on Climate Change)
dearth of critical assessments, 3
intergovernmental status, 11, 16
as a knowledge institution, 1, 4
major events in history of, 3, 19, 262
origins, 1, 11, 14–16, 18, 87
‘IPCC space’, 32
‘IPCC studies’, 3, 19, 262
IPOs (Indigenous Peoples’ Organisations), xxiv, 122, See also ICC
‘irreducible vagueness’, 228
IS92 Emission Scenarios, 40, 139, 143, 145
IS92a scenario, 145
IUCN (International Union for the Conservation of Nature), xxiv, 119
Jannat, Raihanatul, 90n
Janzwood, S., 167, 247
Jasanoff, Sheila
coinage of civic epistemology, 201, 218, 221, 272
coinage of co-production, 254, 260, 272
coinage of constitutional moments, 50
coinage of cosmopolitan knowledge, 224, 272
coinage of knowledge ways, 2, 273
key readings, 18, 224, 260
on sociotechnical imaginaries, 258
Jaspal, R., 241
journals, peer review, 96
judgement uncertainty, 160

© in this web service Cambridge University Press & Assessment
www.cambridge.org
meetings. (cont.)
socialising, 35
venues, 27–32, 173
virtual meetings, 27–38, 38
member governments. See also plenary sessions
approval process, 187–195
delegations including indigenous peoples, 122
eligibility and numbers, 79
ownership of endorsed reports, 187
preventing discussion, 189
review of SODs, 100, 189
methodological scepticism, 96, 98
methodology decisions not deemed legitimate, 56
Methodology Reports
full list, 40–41
Overview Section, 42
Miguel, Jean Carlos Hochsprung, xiv, 217–220
Miller, Clark A., 14, 130, 180–181, 245, 251, 271
biography and chapter contribution, xv, 253–260
key readings, 224, 260
minority reports, 184–186
MIPs (Model Intercomparison Projects), xxiv, 112, 126
modelling, mathematical. See climate models; earth
system models; IAM
Monteiro, Marko, 217–220
Morseletto, P., 229
mortality risk, 152
Moss, R. H., 2, 139, 141, 161, 171
multimedia use, 237
multi-model ensembles, 133
nation states and environmental governance, 223
classification of SODs, xxiv, 63
categorisation of SODs, 83
importance of location, 86
proposing, 21, 83
National Greenhouse Gas Inventories
Guidelines, 40
Task Force (TFI), 29
the national turn, 212–213
NDCs (Nationally Determined Contributions), 44, 189,
201, 212, 269
Nerlich, N., 241
Net Zero Watch, 251
NETs (Negative Emission Technologies), xxiv, 56,
144, 170, 202, 211, 214, 232. See also BECCS
network organisation, IPCC as, 27, 172
neutral arbiter role, 233
New York City Panel on Climate Change, 270
NGOs (non-governmental organisations), 88–95
ICC as an example, xii
ICSU as an example, 15
initiatives from, 213
nomination of experts, 91, 93
positions on carbon sinks, 153
types of NGO observer, 90
Nightengale, A. J., 170, 248
Nobel Peace Prize, 2007, xiii, 3, 53, 73
Nocke, T., 237
nuclear power, 212, 214
observer organisations, 29, 63, 88–95
categories, 89
NGO types, 90
observer status, 122
Ocean and Cryosphere, Special Report on (SROCC,
2019), 41, 121–122
Ocean circulation models, 128
OECD (Organisation for Economic Cooperation and
Development), 89
oil companies / oil-producing states, 93, 102, 189, 265
O’Neill, B. C. et al., 139, 141, 145, 200, 203, 205
O’Neill, S. J. et al., 81, 111, 114, 240, 251
online meetings, 27
ontological disputes, 151
Oomen, J., 144, 203
Oppenheimer, M., 12, 23, 99, 113, 179, 183, 199, 204
O’Reilly, Jessica, 114, 164, 183, 186
as boundary objects, 230
focus of SR15, 212, 214–215
314
post-carbon economy / future, 255, 259
post-Paris context
challenges to IPCC mandate, 56, 216, 267
expectation of solutions, 8, 49, 202, 209, 232, 267
polycentric governance regime, 49, 58, 202, 213
'post-truth politics’, 58, 257
power asymmetries, 93, 135, 176, 265, 269
Prince Albert II of Monaco Foundation, 74
Principles governing IPCC work (1998–), 20–21, 63
probability. See also confidence; uncertainties
assessment, 162
low-probability, high-risk events, 164, 204
probability distributions, 162, 183
procedural irregularities, 120, 150
procedural rules
hampering ethical engagement with IK systems,
120
IPBES, 25
as a model, 25
no guarantee of objectivity, 264
reports review process, 99
as a response to criticism, 23
revisions, 53
status, 20, 263
procedural rules review. See IAC
'products’ of the IPCC. See also reports
assessment products, 92, 182, 199
key products identified, 254
knowledge products, 81, 86, 243
Protocol for Addressing Possible Errors…, 25
PRSQs (policy-relevant scientific questions), 199
public attitude shifts, 254, 256–257
public health risks from discoveries, 15
public participation. See participation
quality control work, 75–76
radiative forcing
climatic sensitivity and, 227, 232n
RCP scenarios and, 141, 142
Special Report on, 40
RCPs (Representative Concentration Pathways), 139,
141, 144, 230
RCP2.6, 141, 147n
RCP8.5, 145
'Reasons for Concern’ framework, 230, 238
reflexive learning / reflexive turn, 50, 55, 58, 250, 260,
268
regional aspects, neglect of, 55, 135, 175, 194, 213,
216, 237, 259
Regional Impacts of Climate Change, Special Report
(1997), 40
Regions, Expert Meeting on Assessing Climate
Information for, 175

RCPs, 139, 141, 144, 145, 147n
SSPs, 141, 142, 145, 230
PBL (Netherlands Environmental Assessment
Agency), 143
Pearce, D., 152
Pearce, Warren, 68, 149, 182, 184, 186, 223, 245, 250
biography and chapter contribution, 244–251
Pearman, O., 248, 256
peer review, 96–103
and consensus, 179
ECRs in, 78
gatekeeping function, 98
IPCC’s embracing, 155, 184
limitations, 97
non-peer-reviewed sources, 24, 98, 116
'performativity’ of forecasts, 202
permafrost, 185
Petersen, Arthur C., 105, 168, 191
Petrasek MacDonald, Joanna, 116–124
philosophers (of science), 110, 132, 159, 179, 195
place, influence of. See venues
placeholer avatars, 66
plenary sessions
analysis of interventions, 85
attendance at first, 82
frequency, 29, 79
locations, 29
and organisational learning, 51
Unesco, 190
virtual, 32
Polar Regions Cross-chapter Paper, 122
policy advice
climatic sensitivity and, 226–227, 232
formulation in SR15, 211
whether appropriate, 209, 216
Policy and Process for Admitting Observer
Organisations, 20, 92
policy context of reports, 43
'policy-follower’ states, 223
policy-prescriptiveness
avoiding, 197, 201, 205, 209, 216, 251
government disagreements over, 200
SR15 and, 211
policy-neutral stance of IPCC, 4, 191, 205, 213,
270
policy relevance and, 197, 209
policy relevance, pursuit of, 199, 204, 216
political influence
charges of, 17, 245
as inescapable, 264
a new global politics, 254
process and outcome distinguished, 210
rise of post-truth politics, 58, 257
Polk, M., 113, 164
polycentric climate action, 49, 55, 58, 88, 202, 213,
259
‘possibility space’, 137, 144

© in this web service Cambridge University Press & Assessment www.cambridge.org
Index

reports, IPCC. See also Assessment Reports; Special Reports
acceptance, approval and adoption, 21, 187 accessibility, 241 changing policy context, 43 detachment form their authors, 249 expressing uncertainties, 159 full list for each assessment cycle, 40–41 inclusion of SPMs and TSs, 42 possibility of minority reports, 185–186 production process, 42–43 review process, 96, 99, 99–102 scenarios as ubiquitous, 137 schematic of preparation, 22 scoping meetings, 42, 54, 93, 169, 174, 189 types of consensus statement, 182 types of report, 41 use of calibrated language, 160–165 use of visuals, 243 Representative Concentration Pathways. See RCPs Rescher, N., 180, 185 research. See also climate research institutions’ support for IPCC, 266 stimulated by IPCC, 108, 111, 132 Response Strategies Working Group, 138 Review Editors role, 24, 63, 102, 150 review process for reports, 42, 78, 91, 99–102, See also peer review closure, 149, 155, 171, 193, 219 effects of time pressure, 100 Rheinberger, Hans-Jorg, 228, 273 rights-based approaches, 118 Ripert, Jean, 11 Ripple, W. J., 254 risk management, 169–176 attempts to globalise, 257 guidance note on communicating, 247 integration in AR6, 169 International Conference on Climate Risk Management, 2017, 174 low-probability, high-risk events, 164, 204 and political culture, 182 risk and nuclear power, 214 risk assessment framework, 175, 205 Robertson, S., 58, 144 Roulet, Jacques, 31 Rowe, Elena, 223 Rudd, Kevin, 179 Rummukainen, M., 45, 81, 200, 211, 230 Russia, xii, 7, 85, 119, 195, 223 SA90 scenario, 139, 145 Sanford, M., 248, 254 Santer, Ben, 102 SAR, See Assessment Report 2 satellites, meteorological use, 15 Saudi Arabia, 85, 102, 166, 194 SBSTA (Subsidiary Body for Science and Technology Advice), 44, 193 scenario matrix, 139, 141, 145 scenarios, 137–146, See also pathways baseline scenarios, 145 as boundary objects, 146 business-as-usual, 111 IS92 and IS92a, 40, 143, 145 SA90, 139, 145 ubiquity in IPCC reports, 137 Schäfer, S., 113, 144, 146 Schipper, E. L. F., 170–171, 176 Schneider, Stephen H., 53, 82, 92, 102, 150, 155, 161, 171, 182 Scholarship Programme, 72–75, 77 Trust Fund, 73–75 Schulte-Uebbing, L., 78 science. See also climate science balancing with politics, 20–23, 51 communication model, 245 contrasting framings, 222 dominance in IPCC discussions, 92, 151 epistemic authority, 178 epistemic disagreements, 150 importance of peer review, 96 separation from politics, 12, 17, 264 solutions-focused, for policymakers, 95, 170, 176 usefulness of controversies, 149 Science Board, Scholarship Trust Fund, 74 science-policy contexts / interactions / interfaces. See also boundary objects consensus-seeking and, 179 decision-making and, 18, 114 defined, 273 diversity and, 66, 89 following the Paris agreement, 56, 210 before IPCC establishment, 12, 14–15 IPCC as model, 4 IPCC strategic goals, 231, 246 member state endorsement and, 195 scientific assessments, 12 scientific form of governance, 53 scientists, expert authors not confined to, 6 SCOPE 29 (Scientific Committee on Problems of the Environment), 15 scoping meetings, IPCC reports, 42, 54, 63, 93, 169, 174, 189 sea-level rise (SLR) extremes excluded, 204 ice cap melting and, 109, 114, 179, 185 influence of modelling, 108, 110, 114 risk management, 165 search for consensus, 179, 183, 184 Secretariat, IPCC, location, 27 SED (Structured Expert Dialogue), 45, 193 Seitz, Frederick, 102 self-censorship, 176, 190
Index

self-fulfilling prophecies, 202
self-interest, national, 84, 198
service-subordination mode, 170, 176
sex ratios. See gender balance
Shackley, S, 2, 112, 131, 135, 182, 186, 228
Shaw, A., 199, 204
Shaw, C., 229
'ship on the ocean' metaphor, 266
Siebenhüner, Bernd, 49–58
Silberthau, R. et al., 184
Skodvin, Tora, 3, 18n, 43, 47n, 81
biography and chapter contribution, 273
small island states, 45, 265
smog, 18n
SOAs. See solution-oriented assessments
social media, 240, 242, 250, 256
social sciences
 criticisms of IPCC communications, 247
 need for better integration, 216
 transformative societal change, 51, 55, 169, 214
social scientists
 engagement with the IPCC, 110, 113, 212
 IPCC influence on research, 112
 studying the IPCC, 2
social-ecological systems theory, 171
societal interest in IPCC communications, 240, 243
societal transformations, 51, 56, 169, 214
socio-cultural regions, 119
socio-economic assumptions, 137, 141, 145
socio-technical controversies / imaginaries / visions,
111, 201, 258, 260
SODs (Second Order Drafts), 42, 100, 103
'solution space', 203, 205
solution-oriented assessments (SOAs)
 following the Paris agreement, 55, 199, 209
 GEAs movement toward, 202, 211
 solution-oriented framings, 169, 205, 225, 231
 'solution-oriented' turn, 8
 in environmental assessments, 44, 199
 solutions-oriented knowledge / science, 95, 176, 225
SRs (Special Reports, generally). See also individual reports
 full list, 40–41
 increasing regularity, 199
 as venue for integration, 177n
SPM (Summaries for Policymakers)
of AR5 SYN, 45
and controversy, 114, 150
drafting, 99
line-by-line approval, 43, 86, 99, 165, 190–191, 195
minority reports, 182
perceived as binding, 187
visuals in, 235, 242
SR15 (Special Report on Global Warming of 1.5 °C (2018))
co-production of visuals, 241

collaboration between WGs, 177
contribution of Chapter Scientists, 76
production as a case study, 45–46
as solution-oriented, 211
transformative changes, 147n, 213
12 year deadline controversy, 244, 248, 249, 251
US reaction, 195
on viability of BECCS, 103
SRCCI (Special Report on Climate Change and Land (2019)), 41, 241, 248
SRES (Special Report on Emission Scenarios (2000)),
40, 138–140, J39, 145, 147n
SREX (Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (2012)),
145, 177n
SRLULUCF (Special Report on Land Use, Land Use Change and Forestry (2000)), 40, 44, 46, 151, 154, 156, 266
SROCC (Special Report on the Ocean and Cryosphere in a Changing Climate (2019)), 41, 78, 121–122, 234
SSE (Special Report on Emission Scenarios (2000)),
40, 44, 46, 151, 154, 156, 266
Succesion planning, 72
Sundqvist, Göran, 20, 43, 80, 188, 193, 225, 229, 231
biography and chapter contribution, 273
key readings, 216, 232
Sunrise Movement, 249
sustainability / sustainable development, 111, 171, 205, 214, 216, 224, 258
UNEP and, 29
Sustainability, Schools of, 113
Sustainable Solutions, meeting on Integrating Science across the IPCC on Climate Risk and,
174
Swart, R. et al., 161
'Swiss army knife' metaphor, 268
Switzerland, 29, 31, 85, 152, 172

© in this web service Cambridge University Press & Assessment
Synthesis Reports (SYRs)
‘adopted’ status, 43
AR3 Synthesis Report, 237
AR4 Synthesis Report, 179
AR5 Synthesis Report, 45, 193, 195, 238
examples, 40–41, 124
from ICC, 124
introduction after AR2, 42, 199
‘system of meetings’, IPCC as, 27, 32, 35, 38
Tábara, J. D. et al., 250
Taddei, Renzo Romano, 217–220
Taiwan, Industrial Technology Research Institute, 90
TAR. See Assessment Report 3
targets, global warming. See temperature targets
Task Force Bureau, 20–21, 24
Task Force on Gender, 69
Task Force on National Greenhouse Gas Inventories (TFI), 29
Task Groups, 25, 91, 94, 172
Technical Papers, IPCC, 47n
technological solutions, preference, 56, 194, 215, 265, 267
techno-optimistic assumptions, 57, 103, 144, 203, 211, 214, 267
temperature control, WMO Building, 32
temperature rise, global
and impacts, 200
visualisation, 235, 235
temperature targets. See also SR15
as boundary objects, 226, 229
favoured above behavioural change, 55
IAM scenarios and, 144
1.5 °C objective, 44
as SR15 solutions, 211
transformations required, 213
2 °C objective, 229–230
terminology used in the book, 6
TFI (Task Force on National Greenhouse Gas Inventories), 29
TG-Data (Task Group on Data Support for Climate Change Assessments), xxv, 174
TGICA (Task Group on Data and Scenario Support for Impacts and Climate Analysis), 172
thematic bridges, 124, 172, 174, 176
time-horizon, GWPs, 232
time zones, 37
Touzé-Peiffer, L., 133–134, 135
transformative societal change, 51, 55, 169, 214
transparency
and dissent, 184
and IPCC visuals, 239
NGO participation and, 93, 95
and peer review, 98
perhaps discouraging participation, 26
of scenarios and IAMs, 56, 58, 144
shortcomings identified by the IAC, 54, 57, 102
a ‘travelling village’, IPCC as, 27, 29
‘tribalism’, accusation, 23
Trust Funds
Scholarship Programme Trust Fund, 73–75
supporting developing country representatives, 82
‘truth spots’, 28, 38, 273
TSs (Technical Summaries), xxv, 42–43, 167, 234
TSU (Technical Support Unit, for a Working Group), 172
FOD comment period, 100
hosting, 29, 85
role in author selection, 63, 69
virtual meetings, 37
12 year deadline (SR15), 244, 248, 249, 251
‘UN ecosystem’, Geneva, as, 28
uncertainties
epistemic uncertainty, 160, 183
expressing in IPCC reports, 168, 239
guidance note and concept paper, 163, 168, 171, 247
IAC recommendations on addressing, 24
IPCC workshop on, 161
model and socially-derived uncertainties, 161
scenario and climate response uncertainties, 239, 247
usefulness and misuse, 160, 167
uncertainty calibration. See calibrated language
UNEP (UN Environment Programme)
convening power, of IPCC and, 29
Global Environmental Outlook, 95, 195
supporting developing country representatives, 82
UNFCCC (UN Framework Convention on Climate Change)
COP1 (1995, Berlin), 227
COP6 (2000, The Hague), 153
COP7 (2001, Maarakesh), 153
COP13 (2007, Bali), 179
COP15 (2009, Copenhagen), 179
COP21 (2015, Paris), 249
COP26 (2021, Glasgow), 37, 195, 254
dealing with indigenous peoples, 119
formation, 210
INC as precursor, 43, 199
IPCC reports and, 45, 188–189, 195, 209
and IPCC role, 246, 253
role, 45
SBSTA (Subsidiary Body for Science and Technology Advice), 44, 193
Structured Expert Dialogue (SED), 45, 193
United Kingdom, 29, 85, 200, 219, 222
United States
adversarial approach to science, 219
attitudes to climate change, 250
Biden Administration, 55
Bush, GW Administration, 83
concerns over policy prescriptiveness, 200

© in this web service Cambridge University Press & Assessment www.cambridge.org
debates over climate models, 131
delaying tactics, 194–195
rise of post-truth politics, 257
role in establishment of the IPCC, 16, 250
Trump Administration, 195
UNPFII (UN Permanent Forum on Indigenous Issues), xxv, 124
user involvement, 240, 251

vaccination, 12
Vadrot, A. B. M., 82, 189, 191, 195, 273
value-free stance of IPCC, 4
van Bavel, Bianca, 116–124
van Beek, L., 111–112, 138, 146, 243
van der Shuijs, J. P. et al., 131, 186, 227–228, 232
Vardy, Mark, 169–176, 188
Vasileiadou, E., 112, 114
Venereau, K., 44, 170
Wanneau, K., 238, 243
Watson, Robert, 83, 244
WCRP (World Climate Research Programme), 130, 132–133
weather forecasting, 14, 128
‘weighting’ of terminology, 189
Western perspectives. See Global North

Index

WGI – the Physical Science Basis
AR2 Chapter-8 debate, 1995, 53, 101, 150
AR4, modelling sea-level rise, 114, 151
AR6 reference scenarios, 141
diversity problems, 66
use of emulators, 128
WGII – Impacts, Adaptation, and Vulnerability
Himalayan glaciers error, 53, 150, 220
WGIII – Mitigation of Climate Change
approach to uncertainty, 162
diversity in, 68, 70
‘mapmaker strategy’ and IAMs, 55, 143
post-Paris debates, 202
statistical value of human life, AR2, 152
US influence, 17
virtual meetings, 27
Whatmore, S. J., 149–150, 154–155, 273
WHO (World Health Organisation), xxvi, 257
Whyte, K., 120, 124
WikiLeaks, 83
Wimsatt, W. K., 249
WMO (World Meteorological Organisation)
ICSU cooperation, 15
origins of the IPCC, 1, 15, 20, 82
WMO Building, 31
women, representation, 64, 69–70, See also gender balance
Working Groups. See also WGI to WGIII
assessment reports and synthesis reports, 42
biases, 114
Chapter Scientist recruitment, 77
constitution, 19
epistemological hierarchies, 110
integration between, 169, 175
reorganisation, 43
scenario-based integration, 146
status of Chairmen, 83
structure reflected in published research, 111
suggested need for a fourth, 114
World Climate Conference / Programme, 249
World Economic Forum, 249
Wynne, B., 50, 56, 112, 131, 135, 186
Yamineva, Yulia, 82, 88–95
ZODs (Zero Order Drafts), xxvi, 99
Zommers, Z, 238