Index

active sensors, 36, 288
opportunities for greater use, 309
adaptive management framework, 8, 9, 101
chimpanzees, 99
aerial photography, 27, 276, 277
Aichi targets, 6, 11, 164, 305
cost of, 7
airborne sensors, 18
analysis ready data (ARD), 305
anthropogenic lights, 35
ARSET, 290, 309
atmospheric window, 31
AVISO, 258
backscatter, 37, see radar
benefits of integrating remote sensing into conservation, 303
big data handling, 251
biodiversity
definition, 1
extinction crisis, 1, 301
Biodiversity and Protected Areas
Management programme, 139
biologically realistic predictions, 254
bits [grey-scale], 44, 45
blue whale
Argos satellite tracking, 233
conservation status, 231
distribution, 233
distribution mapping, 234
ecology, 235
estimating kernel home ranges, 236
populations, 231
shipping lanes, 237, 238
telemetry, 233, 234, 251
burned area. see fire
canopy structure measurement, 288
capacity, 275, 287
development, 85, 156, 157, 221, 289, 290, 309
eyearly image processing, 10
lack of in the conservation community, 14
lack of processing power, 16
limited use of remote sensing data, 277
retention of trained individuals in conservation, 291
Central Africa Regional Program for the Environment, 84
centralised database structure, 217
change in attitude to remote sensing data, 275
chimpanzee
community conservation strategies, 99
distribution, 88
future land-use, 100
habitat association, 94, 95, 97, 105
habitat loss, 87, 90, 92, 93
monitoring, 86
multi-scale planning, 101
ongoing monitoring from remote sensing, 97
chimpanzee conservation lessons learnt, 106
chlorophyll, 283
chlorophyll-a, 236, 239, 243
climate change, 54, 71, 84, 260, 281
effects on ecosystem function, 187
effects on protected areas, 165
increased rate, 5
potential drought, 169
predicted drought, 181
threat to biodiversity, 3
cloud computing, 16, 72, 83, 100, 108, 276, 283, 293
CMEMS, 241, 258
collaboration
benefits to conservation, 67
conservation and remote sensing communities, 19, 58, 100, 293
decision support tool design, 107, 156, 186
design of MODIS sensor, 283
multi-organisation, 156
need for, 303–304
scientist and conservation communities, 315
scientists and conservationists, 138
scientists and local resource managers, 96, 107, 144, 147, 166, 216
user buy-in, 248
workshops to disseminate results, 218
Committee on Earth Observation Satellites, 28, 29, 46, 50, 52, 305
communication of results, 67
confidence intervals, 262
conservation biology, 5
definition, 7
conservation impact, 65, 66, 68, 100, 106, 119, 149, 176, 182, 198, 215, 233, 244, 285, 289
problems measuring, 73
Conservation International, 10, 22, 274
aerial survey programme, 279
conservation organisations foundation of, 5
conservation remote sensing, 11, 48
conservation needs, 13, 19
increase in publications, 11
conservation science, 5
conservationist–space agency interaction, 304
Convention on Biological Diversity, 1, 164, 165, 188, 305
Convention on International Trade in Endangered Species, 6
Convention on Migratory Species, 70
Copernicus, 15, 283, 287
Marine and Environment Monitoring Service, 243
Coral Reef Watch, 302
correlations between MODIS covariates on mule deer survival, 210
COST, 47
Critical Ecosystem Partnership Fund, 280, 281
cross-calibration of sensors, 50
current and future planned Earth-observation missions, 29
data accessibility
cost, 289
data consistency, 253
data continuity, 253, 258, 283
data distribution
internet access, 159
data processing levels and products, 46–48, 287, 305
data processing power, 289
data portals, 125
decision support tools, 87, 100, 104, 120, 139, 140, 159, 166, 176, 195, 214, 217, 221, 244, 245, 251, 310
longevity, 257
democratisation of data and tools for monitoring, 294
digital numbers, 47
DigitalGlobe, 104
Doñana National Park, 166, 167
appropriate remote sensing data, 170
area, 167
climate, 167
habitats, 167
land-use, 168
pressures and threats, 168
wildlife, 167
drones, 18, 27
Durrell Wildlife Conservation Fund, 285
carely use of remote sensing data in conservation, 277
East Asian–Australasian Flyway, 57, 68
East Asian–Australasian Flyway Partnership, 66
ecological resilience, 165, 172, 179
ecosystem services, 54, 280
eddy kinetic energy, 239
Ekman upwelling, 239
El Niño, 261, 282
ecosystem services, 27, 30, 31, 32, 37, 121, 206
empowerment of local communities to use remote sensing data, 294
end-user engagement, 303, 315
Enhanced Vegetation Index [EVI], 170, 172, 144
ERDDAP data server, 243, 253
ESA, 304
eStation, 49, 120, 138, 139
evapotranspiration, 170, 183
effects of clear-cutting trees, 183
evapotranspiration rates, 169
extinction
indicator species, 4
rates, 2
extreme drought events, 166
fire, 49
active, 121, 125
burned area, 119, 121, 122, 125
burned-area detection
variation between vegetation
 types, 123
contribution to climate change, 119
dedicated sensors, 124
detection, 119, 121, 124
ecological role, 132, 137, 149
effects on ecosystems, 133
estimate of accuracy of burned-area
detection, 119, 121, 124
fronts, 121
history of monitoring from remote
sensing, 124
lessons learnt in monitoring, 156
management fires in West Africa, 150
management plans, 149
modification of natural regime, 133
monitoring products, 125
objectives of monitoring tool data
use, 151
protected-area management, 119
regime, 133
role in ecology, 120
severity, 133
type, 133
use as a tool by humans, 136
fire-activity variables, 120
Fire Alert System, 285
fire causes, 119
fire detection
omission and commission
errors, 122
Fire Monitoring Tool, 120, 139
example, 154
fire radiative power, 122
FIRMS, 49, 125, 141, 284
forest-cover monitoring, 280
forest loss, 82, 86, 285
forest-loss alerts, 110
FORMA, 285
fractional snow cover, 209
functional analysis, 208
future remote sensing missions of interest to
conservation, 295, 313
GEDI, 38
generalised additive mixed model, 243
geographical bias in case studies, 302
geometric correction, 48
Global Conservation Fund, 280
global forest change, 49, 84, 86, 87
Global Forest Watch, 49, 85, 110, 275, 285
Global Land Cover Facility, 286
Global Surface Water Explorer, 49
Global Tiger Initiative, 86
Google Earth Engine, 84, 86, 276, 288, 290
Great Apes Survival Partnership, 101
habitat loss, 99, 194, 280, 306
number of species threatened, 3
history and milestones of remote sensing,
26–30
holistic ecosystem monitoring and
forecasting, 292
hunting
real-time population prediction for
harvest setting, 197
hyperspectral image data, 40
Idaho Department of Fish and Game, 198, 216
identification of areas with a heightened
response to drought, 181
IKONOS, 106
image bandwidth, 40
image classification, 277
image ortho-rectification, 47
importance of technology advancement, 314
important bird and biodiversity areas, 86
in situ data, 110, 203, 204, 218, 254, 277
Integrated Ocean Observing System Animal
Telemetry Network, 252
integrated population model, 197, 204, 211
integrating in situ and Earth observations, 17,
311–312
Intergovernmental Panel on Climate
Change, 293
Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem
Services, 305
International Union for the Conservation of
Nature (IUCN), 6, 56
intertidal zone, 58, 59
IUCN Red List Index, 2
IUCN Red List of Ecosystems, 3, 71
IUCN Red List of Species, 2, 69, 86, 87, 264, 280
categories, 2
informed by remote sensing data, 16
Jane Goodall Institute, 99
key satellite products and tools for biodiversity conservation management, 48–49
keystone species, 4
krill, 235, 239
Landsat
forest loss, 16, 281
global forest change, 16
history, 9, 28, 29, 83, 276
in chimpanzee species distribution model, 97
in peer-reviewed biodiversity research, 11
monitoring chimpanzee habitat loss, 90
spatial resolution, 15, 41, 61, 83
temporal resolution, 45, 61
use by case studies, 306
utility for land-cover mapping, 277
Landsat Archive, 15, 28, 62, 72, 74, 83, 105, 290
lessons learnt
Doñana National Park, 186
mule deer, 215
WhaleWatch, 246
lidar, 37, 289, 304
limited budgets, 289
Living Planet Index, 2
mark–recapture models, 254
mean–variance plots, 176, 178
metadata, 47, 61, 217
methods to map the waterline, 59
migratory shorebird declines, 56
MODIS
blue whale distribution, 258
fire products, 141
land surface temperature, 171
monitoring Doñana National Park, 172
monitoring fires on protected areas, 141–143
mule deer population models, 206–211
mule deer population size, 212
spatial resolution, 41
use by case studies, 306
vegetation index, 171
monitoring of ecosystem dynamics, 208, 282
Montana Cooperative Wildlife Research Unit, 219
mule deer, 198
annual life-history and management cycle, 201
body mass, 210
ecology, 200
hunting, 202
life-history, 201
management units, 198, 206, 209, 212, 218
overwinter fawn survival, 197, 209
population management, 197
populations, 200, 203, 212
setting harvests, 202, 214
study area, 199
survival model, 210
multispectral image data, 40
nanosatellites, 295
NASA's Earth Exchange, 276
near real-time data, 246
monitoring, 284
prediction, 253
need for intuitive monitoring metrics, 186
Normalised Difference Vegetation Index [NDVI], 33, 46, 49, 145, 206, 208, 282, 285
normalised difference water index, 61
observatory of ecosystem function, 166
observing the Earth, 8–18
Ocean Biogeographic Information System [OBIS]–SEAMAP, 252
open-source software, 108, 288, 290
Google Earth, 288
GRASS, 288
Python, 62
Q-GIS, 16, 288
R, 16, 63, 171, 208, 288
Open Standards for the Practice of Conservation, 101
322 INDEX

orbits, 44
equatorial, 35
geostationary, 34
polar, 34
Pacific Decadal Oscillation, 253
passive or active sensors, 36
passive sensors, 35
advantage of long time series, 308
community familiarity, 308
popularity in case studies, 307
pixels, 38
PopR, 214, 221, 222
protected-area management
assessing management effectiveness, 164
protected areas, 15, 18, 87, 107, 147, 164
coastal, 68
Doñana National Park, 166
drawing boundaries, 279
effectiveness, 185
fire management, 137, 139, 144
data needs, 164
fires, 119
Park W, 147
use of remote sensing data, 165
radar, 37, 132, 288
radiance, 47
radiometric and atmospheric correction, 47
Ramsar Convention on Wetlands, 6
Random Forests regression, 96
random walk model, 238
REDD, 20, 85, 281, 286, 291, 297, 298
reporting, 281
reflectance, 47
remote sensing
conservation challenges, 289
first use of term, 27
in ecology and conservation, 15
to inform conservation priority setting, 279
resilience of xerophytic shrubland, 182
resolution
radiometric, 44
spatial, 38, 39, 41, 97, 104, 170, 249, 284
spatial in fire detection, 123, 131, 143
spatial scale mismatch, 314
spectral, 40, 121, 170
temporal, 44, 110, 120, 170, 249, 284
temporal in burned-area detection, 131
temporal in deer management, 197
temporal in fire detection, 122, 123, 125, 143
temporal resolution benefits, 306
temporal vs. spatial, 305
resolutions and their trade-offs, 38–46
satellite and sensor characteristics, 34
satellite images
cost of, 9
data distribution, 138
data portals, 49, 53
distributed free data, 15, 40, 72, 83, 108, 140, 171, 244, 253, 287, 290
processing, 9
satellite sensor calibration, 50
science policy interface, 176, 198, 215, 282
science to applications, 166, 248
sea surface height, 258
anomaly, 239, 243
sea surface temperature, 235, 239, 243, 247, 283
sea-level rise, 54
Selous Game Reserve, 144, 146
fire in management, 145
Sentinel-2
temporal resolution, 46
SilvaCarbon, 291
snow cover, 49, 206, 208
spatial resolution of management, 106
species distribution model, 18, 94, 109, 232, 239, 243
accuracy, 261
temporal consistency, 261
uncertainty in the predictions, 250
validity, 254
spectral signature, 32, 43
stability metrics, 176
state-space model, 236
sustainability and life span of remote sensing systems, 50–51
sustainable development goal, 293
swath width, 40
SWFSC, 249, 254
technical barriers to use of satellite images, 287
INDEX 323

technical capacity, 289
technology constraints, 159
thermal anomaly, 121
thermal infrared sensor, 35
threatened species
 population recovery, 196
tidal flats, 54–56
 loss, 54, 59, 63, 68, 72, 73,
 74, 306
 mapping, 58, 63
 migrant shorebirds, 65
 threats, 54
tide heights, 59
time lag for data uptake, 313
TurtleWatch, 235, 247
TVDI, 170
umbrella species, 87
ungulates, 197
 hunting, 194
 key species in ecosystems, 194
 population management, 195
 scientific basis for harvest size, 195
 setting harvest quotas, 196
use of remote sensing data to explain
 ecological dynamics, 206
uses of near-real-time information of fire
 occurrence, 143
validation, 256
vegetation dynamics, 169
VIIRS
 blue whale distribution, 258
 visualisation tools, 310
Wealth Accounting and the Valuation of
 Ecosystem Services, 280
whales
 causes of mortality, 229
 field monitoring, 234
 protection in USA, 232
 ship-strike mortality, 230
WhaleWatch
 continuity, 252
 goal, 235
 wind speed, 239
World Fire Atlas, 124
Yellow Sea, 56, 57, 63