Cognitive Science

FOURTH EDITION

The fourth edition of this popular text has been significantly rewritten to make it more accessible to students and easier for instructors to use. It remains distinctive in presenting a unified narrative of cognitive science as a field of inquiry in its own right. Thematically organized, *Cognitive Science* underscores the problems and solutions of cognitive science as an interdisciplinary enterprise rather than more narrowly examining individually the subjects that contribute to it—psychology, neuroscience, linguistics, and so on. The generous use of examples, illustrations, and applications demonstrates how theory and experiment can be applied to unlock the mysteries of the human mind. Drawing upon cutting-edge research, the text has been updated and enhanced with a new chapter on emotions and the emerging field of affective science. An extensive online set of resources is available to aid both instructors and students.

José Luis Bermúdez's research interests are interdisciplinary in nature at the intersection of philosophy, psychology, and neuroscience. His many books include *The Paradox of Self-Consciousness* (MIT Press, 1998), which analyzes the nature of self-awareness; *Thinking without Words* (Oxford University Press, 2003), which offers a model for thinking about the cognitive achievements and abilities of prelinguistic infants and nonlinguistic humans; and *Decision Theory and Rationality* (Oxford University Press, 2009), which explores tensions in how the concept of rationality is defined and formalized in different academic disciplines. Recent books include *Understanding "I": Language and Thought* (Oxford University Press, 2017) and *The Bodily Self: Selected Essays* (MIT Press, 2018). His most recent book, *The Power of Frames* (Cambridge University Press, 2020), was supported by an American Council of Learned Societies (ACLS) fellowship for 2018–2019 and a National Endowment for the Humanities (NEH) Summer Stipend for 2018. A target article with peer commentary based on *The Power of Frames* appeared in *Behavioral and Brain Sciences* (2022).

Cognitive Science

An Introduction to the Science of the Mind

FOURTH EDITION

José Luis Bermúdez Texas A&M University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316513378

DOI: 10.1017/9781009064880

First and second editions © José Luis Bermúdez 2010, 2014 Third edition © Cambridge University Press 2020 Fourth edition © José Luis Bermúdez 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2010 Second edition published 2014 Third edition published 2020 3rd printing 2021 Fourth edition published 2023

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-51337-8 Hardback ISBN 978-1-009-07367-7 Paperback

Additional resources for this publication at www.cambridge.org/bermudez4e

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter <u>More Information</u>

Brief Contents

	List of Figures	page xiii
	List of Tables	xvii
	List of Boxes	xviii
	Preface	xix
	Acknowledgments	xxiii
	INTRODUCTION: The Challenge of Cognitive Science	1
	PART I HISTORICAL LANDMARKS	
1	The Prehistory of Cognitive Science	11
2	The Discipline Matures: Three Milestones	29
3	The Turn to the Brain	50
	PART II MODELS AND TOOLS	
4	Physical Symbol Systems and the Language of Thought	77
5	Neural Networks and Distributed Information Processing	95
6	Applying Dynamical Systems Theory to Model the Mind	114
7	Bayesianism in Cognitive Science	130
8	Modules and Architectures	152
9	Strategies for Brain Mapping	171
	PART III APPLICATIONS	
10	Models of Language Learning	197
11	Object Perception and Folk Physics	215
12	Machine Learning: From Expert Systems to Deep Learning	231
13	Exploring Mindreading	251
14	Robotics: From GOFAI to Situated Cognition and Behavior-Based Robotics	273
15	The Cognitive Science of Consciousness	295
16	The Emotions: From Cognitive Science to Affective Science	316
17	Looking Ahead: Challenges and Opportunities	341
	Glossary	347
	Bibliography	356
	Index	378

Contents

	List of Figures List of Tables List of Boxes Preface Acknowledgments	<i>page</i> xiii xvii xviii xix xix xxiii
	INTRODUCTION: The Challenge of Cognitive Science	1
	Overview	1
	Cognitive Science: An Interdisciplinary Endeavor	1
	Levels of Explanation: The Contrast between Psychology and Neuroscience	3
	How Psychology Is Organized	3
	How Neuroscience Is Organized	4
	The Challenge of Cognitive Science	6
	Three Dimensions of Variation	7
	The Space of Cognitive Science	7
	PART I HISTORICAL LANDMARKS	
1	The Prehistory of Cognitive Science	11
	Overview	11
	1.1 The Reaction against Behaviorism in Psychology	12
	Learning without Reinforcement: Tolman and Honzik, "'Insight' in Rats" (1930)	13
	Cognitive Maps in Rats? Tolman et al., "Studies in Spatial Learning" (1946)	15
	Plans and Complex Behaviors: Lashley, "The Problem of Serial Order in Behavior" (1951)	16
	1.2 The Theory of Computation and the Idea of an Algorithm	17
	Algorithms and Turing Machines: Turing, "On Computable Numbers, with an Application	
	to the Decision Problem" (1936-1937)	17
	1.3 Linguistics and the Formal Analysis of Language	20
	The Structure of Language: Chomsky's Syntactic Structures (1957)	20
	1.4 Information-Processing Models in Psychology	22
	How Much Information Can We Handle? George Miller's "The Magical Number Seven,	
	Plus or Minus Two" (1956)	22
	The Flow of Information: Donald Broadbent's "The Role of Auditory Localization in	
	Attention and Memory Span" (1954) and Perception and Communication (1958)	24
	1.5 Connections and Points of Contact	25
	Summary	26
	Checklists	26
2	The Discipline Matures: Three Milestones	29
	Overview	29
	2.1 Language and Micro-Worlds	30
	Natural Language Processing: Winograd, Understanding Natural Language (1972)	30
	SHRDLU in Action	32

viii

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter <u>More Information</u>

CONTENTS

	2.2 How Do Mental Images Represent?	36
	Mental Rotation: Shepard and Metzler, "Mental Rotation of Three-Dimensional Objects" (1971)	37
	Information Processing in Mental Imagery	39
	2.3 An Interdisciplinary Model of Vision	41
	Levels of Explanation: Marr's Vision (1982)	41
	Applying Top-Down Analysis to the Visual System	42
	Summary	47
	Checklists	47
3	The Turn to the Brain	50
	Overview	50
	3.1 Cognitive Systems as Functional Systems?	51
	3.2 The Anatomy of the Brain and the Primary Visual Pathway	53
	The Two-Visual-Systems Hypothesis: Ungerleider and Mishkin, "Two Cortical Visual	
	Systems" (1982)	54
	3.3 Extending Computational Modeling to the Brain	59
	A New Set of Algorithms: Rumelhart et al., Parallel Distributed Processing: Explorations in the	50
	Microstructure of Cognition (1986)	59
	Pattern Recognition in Neural Networks: Gorman and Sejnowski, "Analysis of Hidden Units	(0
	2.4 Manning the Stages of Lexical Processing	60
	Functional Neuroimaging with DET	62
	Petersen et al. "Positron Emission Tomographic Studies of the Cortical Anatomy of Single-Word	02
	Processing" (1988)	63
	3.5 Studying Memory for Visual Events	65
	Functional Neuroimaging with fMRI	65
	Brewer et al., "Making Memories: Brain Activity That Predicts How Well Visual Experience Will Be	00
	Remembered" (1998)	67
	3.6 The Neural Correlates of the BOLD Signal	69
	Logothetis, "The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal" (2001) 71
	Summary	71
	Checklists	72
	PART II MODELS AND TOOLS	
4	Physical Symbol Systems and the Language of Thought	77
1	Overview	77
	4.1 The Physical Symbol System Hypothesis	78
	Symbols and Symbol Systems	78
	Transforming Symbol Structures	79
	Intelligent Action and the Physical Symbol System	82
	4.2 From Physical Symbol Systems to the Language of Thought	82
	Intentional Realism and Causation by Content	84
	The Language of Thought and the Relation between Syntax and Semantics	86
	4.3 The Russian Room Argument and the Turing Test	88
	Responding to the Russian Room Argument	91
	Summary	92
	Checklists	93
5	Neural Networks and Distributed Information Processing	95
	Overview	95
	5.1 Neurally Inspired Models of Information Processing	96
	Neurons and Network Units	96

CONTENTS

ix

	5.2	Single-Layer Networks and Boolean Functions	99
		Learning in Single-Layer Networks: The Perceptron-Convergence Rule	102
		Linear Separability and the Limits of Perceptron Convergence	103
	5.3	Training Multilayer Networks	106
		The Backpropagation Algorithm	107
		How Biologically Plausible Are Neural Networks?	108
	5.4	Information Processing in Neural Networks: Key Features	109
		Distributed Representations	109
		No Clear Distinction between Information Storage and Information Processing	109
		The Ability to Learn from "Experience"	110
	Sum	imary	111
	Che	cklists	111
6	Арр	lying Dynamical Systems Theory to Model the Mind	114
	Over	rview	114
	6.1	Cognitive Science and Dynamical Systems	114
		What Are Dynamical Systems?	115
		The Dynamical Systems Hypothesis: Cognitive Science without Representations?	117
	6.2	Applying Dynamical Systems: Two Examples from Child Development	121
		Two Ways of Thinking about Motor Control	121
		Dynamical Systems and the A-Not-B Error	123
		Assessing the Dynamical Systems Approach	127
	Sum	imary	128
	Che	cklists	128
7	Baye	esianism in Cognitive Science	130
	Over	rview	130
	7.1	Bayesianism: A Primer	131
		Degrees of Belief and Subjective Probability	131
		Conditional Probability	132
		Bayes's Rule (the Short Version)	134
	7.2	Perception as a Bayesian Problem	136
		The Predictive Challenge of Perception	136
		Case Study: Binocular Rivalry	138
	7.3	Neuroeconomics: Bayes in the Brain	141
		What Is Expected Utility?	141
		Case Study: Neurons That Code for Expected Utility	143
	Sum	imary	149
	Che	cklists	149
8	Mod	lules and Architectures	152
	Over	rview	152
	8.1	Architectures for Artificial Agents	153
		Three Agent Architectures	153
	8.2	Fodor on the Modularity of Mind	156
		Modular and Nonmodular Processing	156
	8.3	The Massive Modularity Hypothesis	158
		The Cheater-Detection Module	158
		The Evolution of Cooperation	160
		Two Arguments	162
		Evaluating the Arguments for Massive Modularity	164

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter <u>More Information</u>

x	CONTENTS
~	CONTENTS

	8.4	Hybrid Architectures: The Example of ACT-R	164
		The ACT-R Architecture	165
		ACT-R as a Hybrid Architecture	167
	Sum	mary	168
	Che	cklists	169
9	Strat	tegies for Brain Mapping	171
	Over	view	171
	9.1	Structure and Function in the Brain	172
		Exploring Anatomical Connectivity	174
	9.2	Studying Cognitive Functioning: Techniques from Neuroscience	178
		Mapping the Brain's Electrical Activity: EEG and MEG	178
		Mapping the Brain's Blood Flow and Blood Oxygen Levels: PET and fMRI	180
	9.3	Combining Resources I: The Locus-of-Selection Problem	181
		Combining ERPs and Single-Unit Recordings	182
	9.4	Combining Resources II: Networks for Attention	185
		Two Hypotheses about Visuospatial Attention	186
	9.5	From Data to Maps: Problems and Pitfalls	188
		From Blood Flow to Cognition?	188
		Noise in the System?	189
		Functional Connectivity versus Effective Connectivity	189
	Sum	mary	190
	Che	cklists	191
	PAR	T III APPLICATIONS	
10	Mod	els of Language Learning	197
	Over	view	197
	10.1	Language and Rules	198
		Understanding a Language and Learning a Language	198
	10.2	Language Learning and the Language of Thought: Fodor's Argument	199
	10.3	Language Learning in Neural Networks	201
		The Challenge of Tense Learning	202
		Connectionist Models of Tense Learning	204
	10.4	Bayesian Language Learning	207
		Probabilities in Word and Phrase Segmentation	208
		Understanding Pronouns	209
		Learning Linguistic Categories	211
	Sum	mary	213
	Che	cklists	213
11	Obje	ect Perception and Folk Physics	215
	Over	view	215
	11.1	Object Permanence and Physical Reasoning in Infancy	216
		Infant Cognition and the Dishabituation Paradigm	216
		How Should the Dishabituation Experiments Be Interpreted?	220
	11.2	Neural Network Models of Children's Physical Reasoning	221
		Modeling Object Permanence	223
		Modeling the Balance-Beam Problem	224
	11.3	Conclusion: The Question of Levels	226
	Sum	mary	229
	Che	cklists	229

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter <u>More Information</u>

		CONTENTS	xi
12	Machine Learning: From Expert Systems to Deep Learning		231
	Overview		231
	12.1 Expert Systems and Machine Learning		232
	Expert Systems and Decision Trees		232
	ID3: An Algorithm for Machine Learning		234
	12.2 Representation Learning and Deep Learning		237
	Deep Learning and the Visual Cortex		239
	12.3 The Machinery of Deep Learning		242
	Autoencoders		242
	Convolutional Neural Networks		243
	12.4 Deep-kennorcement Learning		240
	Checklists		240
	Checkists		249
13	Exploring Mindreading		251
	Overview		251
	13.1 Pretend Play and Metarepresentation		252
	Leslie on Pretend Play and Metarepresentation		252
	13.2 Metarepresentation, Autism, and Theory of Mind		254
	Using the False-Beller Task to Study Mindreading		254
	Interpreting the Results		253
	13.3 The Mindreading System		258
	First Steps in Mindreading		250
	From Dvadic to Triadic Interactions: Joint Visual Attention		260
	TESS and TOMM		260
	13.4 Mindreading as Simulation		261
	Standard Simulationism		261
	Radical Simulationism		262
	13.5 The Cognitive Neuroscience of Mindreading		263
	Neuroimaging Evidence for a Dedicated Theory-of-Mind System?		263
	Neuroscientific Evidence for Simulation in Low-Level Mindreading?		266
	Neuroscientific Evidence for Simulation in High-Level Mindreading?		268
	Summary		269
	Checklists		270
14	Robotics: From GOFAI to Situated Cognition and Behavior-Based Robotics		273
	Overview		273
	14.1 GOFAI Robotics: SHAKEY		274
	SHAKEY's Software I: Low-Level Activities and Intermediate-Level Actions		275
	SHAKEY's Software II: Logic Programming in STRIPS and PLANEX		277
	14.2 Situated Cognition and Biorobotics		278
	The Challenge of Building a Situated Agent		278
	Situated Cognition and Knowledge Representation		280
	BIORODOTICS: INSECTS and MORPHOLOGICAL Computation		281
	14.5 From Subsumption Architectures: The Example of Allen		285
	Behavior-Based Robotics: TOTO		200 289
	Multiagent Programming. The Nerd Herd		200 290
	Summary		290
	Checklists		292

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter <u>More Information</u>

> xii **CONTENTS** 15 The Cognitive Science of Consciousness Overview 15.1 Information Processing without Conscious Awareness: Some Basic Data Consciousness and Priming Nonconscious Processing in Blindsight and Unilateral Spatial Neglect 15.2 So What Is Consciousness For? What Is Missing in Blindsight and Spatial Neglect Milner and Goodale: Vision for Action and Vision for Perception What Is Missing in Masked Priming 15.3 Two Types of Consciousness and the Hard Problem 15.4 Theories of Consciousness Higher-Order Theories The Global Workspace Theory The Global Neuronal Workspace Theory 15.5 Conclusion Summary Checklists 16 The Emotions: From Cognitive Science to Affective Science Coauthored with Dong An Overview 16.1 Early Theories Physical Symbol Systems and the Emotions Ekman and Basic Emotions 16.2 Affective Space and the Affective Scientist's Toolkit Elements of an Emotional Episode Genetic Tools in Affective Science Lesion Studies 16.3 Fear: A Multilevel and Multidisciplinary Case Study Fear Conditioning and Fear Responses in Rodents Fear and Amygdala Damage in Humans Neuroimaging of Fear in Humans Summary Checklists

17 Looking Ahead: Challenges and Opportunities 341 Overview 341 17.1 Exploring the Connectivity of the Brain: The Human Connectome Project and Beyond 342 17.2 Understanding What the Brain Is Doing When It Appears Not to Be Doing Anything 343 17.3 Neural Prosthetics 343 17.4 Cognitive Science and the Law 344 17.5 Autonomous Vehicles: Combining Deep Learning and Intuitive Knowledge 345 Glossary 347 Bibliography 356 Index 378

295

295

296

296

298

301

301

301

304

304

306

306

308

308

311

312

312

316

316

317

317

318

321

325

326 327

328

328

330

333

338

338

Figures

0.1	Connections among the cognitive sciences,		2.9	E
	as depicted in the Sloan Foundation's			0
	1978 report <i>p</i>	age 2		t
0.2	Some of the principal branches of			S
	scientific psychology	4	2.10	Т
0.3	Levels of organization and levels of		2.11	Т
	explanation in the nervous system	5		fi
0.4	The spatial and temporal resolution of			t
	different tools and techniques in		2.12	A
	neuroscience	6	2.13	A
0.5	The "space" of contemporary			h
	cognitive science	7		С
1.1	A rat in a Skinner box	13	2.14	Т
1.2	A fourteen-unit T-Alley maze (measurements			v
	in inches)	14	2.15	A
1.3	A cross-maze, as used by Tolman			0
	et al. (1946)	15		v
1.4	Schematic representation of a			f
	Turing machine	19		iı
1.5	A sample phrase-structure tree for the		3.1	Т
	sentence "John has hit the ball."	21		S
1.6	Donald Broadbent's (1958) model of			t
	selective attention	23	3.2	A
2.1	A question for SHRDLU about its virtual			t
	micro-world	32	3.3	Т
2.2	An algorithm for determining whether a			iı
	given input is a sentence or not	33	3.4	Т
2.3	Algorithms for identifying noun phrases		3.5	I
	and verb phrases	34		(1
2.4	Procedure for applying the			S
	command CLEARTOP	35	3.6	Γ
2.5	SHRDLU acting on the initial command to			Ν
	pick up a big red block	35		S
2.6	SHRDLU completing instruction 3 in the		3.7	A
	dialog: "Find a block that is taller than			n
	the one you are holding and put it in			n
	the box."	36	3.8	C
2.7	Examples of the three-dimensional figures			d
	used in Shepard and Metzler's (1971) studies		3.9	I
	of mental rotation	37		а
2.8	Results of Shepard and Metzler's (1971)			d
	studies of mental rotation	38		e

	2.9	Examples of vertically and horizontally	
		oriented objects that subjects were asked	
2		to visualize in Kosslyn's (1973)	
		scanning study	40
4	2.10	Two images of a bucket	43
	2.11	Two examples of Marr's primal sketch, the	
5		first computational stage in his analysis of	
		the early visual system	44
	2.12	An example of part of the 2.5D sketch	45
6	2.13	An illustration of Marr's 3D sketch, showing	
		how the individual components are	
7		constructed	45
3	2.14	The place of the implementational level	
		within Marr's overall theory	46
4	2.15	An illustration of the hierarchical	
		organization of the visual system, including	
5		which parts of the brain are likely responsible	
0		for processing different types of visual	
9		information	47
	3 1	The large-scale anatomy of the brain	17
1	5.1	showing the forebrain, the midbrain, and	
T		the hindhrain	53
3	2.2	A vertical slice of the human brain, showing	55
5	J.Z	the corebrum	51
2	2.2	The division of the left corebral homisphere	34
Z	5.5	inte labor	E E
2	2.4	The primery viewel pathway	55
3	3.4	The primary visual pathway	30
4	3.5	Image showing ventral (<i>orange</i>) and dorsal	
4		(rea) pathways in the human visual	
_	2.4	system	5/
5	3.6	Design and results of Ungerleider and	
_		Mishkin's cross-lesion disconnection	
5		studies	58
	3.7	A generic three-layer connectionist	
		network (also known as an artificial neural	
		network)	60
6	3.8	Gorman and Sejnowski's mine-/rock-	
		detector network	62
	3.9	Images showing the different areas of	
7		activation (as measured by blood flow)	
		during the four different stages in Petersen	
8		et al.'s (1988) lexical access studies	65

xiv

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter <u>More Information</u>

LIST OF FIGURES

3.10	A flowchart relating areas of activation in Petersen et al.'s (1988) study to different		7.1
2.11	levels of lexical processing	66	7.0
3.11	Neural areas showing activity when subjects looked at pictures	68	1.2
3.12	Neural areas where activation is correlated		
	with levels of memory performance	69	
3.13	A microelectrode making an		
	extracellular recording	70	
3.14	Simultaneous microelectrode and fMRI		7.3
	recordings from a cortical site showing the		
	neural response to a pulse stimulus of		7.4
	twenty-four seconds	71	
4.1	A typical traveling salesperson problem	80	7.5
4.2	The structure of Fodor's argument for the		
	language-of-thought hypothesis	89	
4.3	Inside and outside the Russian room	90	7.6
5.1	Schematic illustration of a typical neuron	97	
5.2	An artificial neuron	97	7.7
5.3	Four different activation functions	98	
5.4	Illustration of a mapping function	99	7.8
5.5	A single-layer network representing the		
	Boolean function AND	101	7.9
5.6	A single-layer network representing the		
	Boolean function NOT	101	
5.7	The starting configuration for a single-layer		
	network being trained to function as a		7.10
	NOT gate through the perceptron-		
	convergence rule	103	
5.8	Graphical representations of the AND and		
	XOR (exclusive-OR) functions, showing the		8.1
	linear separability of AND	104	8.2
5.9	A multilayer network representing the XOR		8.3
	(exclusive-OR) function	105	8.4
5.10	The computational operation performed by		8.5
	a unit in a connectionist model	106	
6.1	The trajectory through the state space of a		8.6
	swinging pendulum	116	
6.2	The state space of a swinging pendulum in		8.7
	a three-dimensional state space	116	9.1
6.3	Illustration of the Watt governor, together		
	with a schematic representation of how		9.2
	it works	119	
6.4	An example of the computational approach		9.3
	to motor control	122	
6.5	The stage IV search task, which typically		9.4
	gives rise to the A-not-B error in infants at		
_	around the age of nine months	124	9.5
6.6	An infant sitting for an A trial (<i>left</i>) and		
	standing for a B trial (<i>right</i>)	125	
67			_
0.7	Applying the dynamic field model to the	4.6.5	9.6

	7.1	An illustration purporting to be of Thomas	
6		life insurance	131
0	7.2	A diagram showing (a) the proportion of the	101
8		probability space in which A is true, (b) the	
		proportion of the probability space in which	
9		B is true, and (c) the intersection of A and	
		B (which is the region where A and B are	
С		both true)	134
	7.3	Four of the seven Gestalt principles of	
		grouping, illustrated and explained	137
	7.4	Two examples of stimuli used to elicit	
1		binocular rivalry	138
)	7.5	Two well-known ambiguous figures:	
		(a) Rubin's vase and (b) the duck-rabbit	
9		illusion	139
C	7.6	The principal pathways for	
7		saccade production	144
7	7.7	Platt and Glimcher's probabilistic	
8		cued-saccade task	145
9	7.8	Activity of an LIP neuron during the	
		probability experiment	146
1	7.9	Platt and Glimcher's cued-saccade	
		experiment, with stimulus and response	
1		held constant and the quantity of	
		reward varied	147
	7.10	Activity of an LIP neuron while a monkey	
		makes its own choice compared to a	
3		behaviorally derived estimate of the value	
		of the movement to the monkey	148
	8.1	The architecture of a simple reflex agent	154
4	8.2	The architecture of a goal-based agent	155
	8.3	The architecture of a learning agent	155
5	8.4	A version of the Wason selection task	159
	8.5	A version of Griggs and Cox's deontic	
6		selection task	160
	8.6	The evolutionary biologist W. D. Hamilton	
6		(1936–2000)	163
	8.7	The ACT-R cognitive architecture	166
6	9.1	Luria's (1970) diagram of the functional	
		organization of the brain	173
	9.2	Map of the anatomy of the brain showing	
9		the four lobes and the Brodmann areas	175
	9.3	A connectivity matrix for the visual system	
2		of the macaque monkey	176
	9.4	An anatomical wiring diagram of the visual	
		system of the macaque monkey	177
4	9.5	The results of single-neuron recordings of a	
		mirror neuron in area F5 of the macaque	
5		inferior frontal cortex	179
	9.6	Typical patterns of EEG waves, together with	
6		where/when they are typically found	180

LIST OF FIGURES

xv

9.7a	Common experimental design for		11.6
	neurophysiological studies of attention	183	
9.7b	Example of the occipital ERPs recorded in		11.7
	a paradigm of this nature	183	11.8
9.7c	Single-unit responses from area V4 in a		
	similar paradigm	184	
9.7d	Single-unit responses from area V1 showing		12.1
	no effect of attention	184	
9.8	Frontoparietal cortical network during		12.2
	peripheral visual attention	186	
9.9	An illustration of a typical delayed saccade	107	12.3
0.10		18/	10.4
9.10	Peripheral attention versus spatial working		12.4
	memory versus saccadic eye movement	100	
10.1	across studies	188	12.5
10.1	in English proposed by Storen Dinker and		12.5
	In English proposed by Steven Pinker and	204	12.6
10.2	Aldii Pillice	204	12.0
10.2	Rumemant and McClenand's model of	205	127
10.2	Past-tense acquisition	203	12.7
10.5	McClelland's model of past tense		
	learning	206	12.8
10.4	The network developed by Plunkett and	200	12.0
10.4	Marchman to model children's learning of		13 1
	the past tense	206	13.7
10.5	A comparison of the errors made by Adam.	200	13.2
10.0	a child studied by the psychologist Gary		13.3
	Marcus, and the Plunkett-Marchman neural		1313
	network model of tense learning	207	
10.6	A hierarchical cluster of similarity judgments,		13.4
	with nodes corresponding to clusters of		
	stimuli more similar on average to each other	•	
	than to objects in the nearest cluster	212	13.5
11.1	Schematic representation of the habituation		
	and test conditions in Baillargeon's		13.6
	drawbridge experiments	217	
11.2	Schematic representation of an experiment		13.7
	used to test infants' understanding of object		
	boundaries and sensitivity to Spelke's		
	principle of cohesion (that surfaces lie on		13.8
	a single object if they are in contact)	218	
11.3	Schematic representation of an experiment		
	testing infants' understanding of the principl	e	
	of contact (that only surfaces in contact can		14.1
	move together)	219	
11.4	Schematic depiction of events that accord		14.2
	with, or violate, the continuity or solidity		14.3
	constraints	220	
11.5	A series of inputs to the network as a barrier		14.4
	moves in front of a ball and then back to its		14.5
	original location	223	14.6

11.6	Recurrent network for learning to anticipate	
	the future position of objects	224
11.7	A balance beam	225
11.8	The architecture of the McClelland and	
	Jenkins network for the balance-beam	
	problem	226
12.1	A decision tree illustrating a mortgage	
	expert system	233
12.2	The first node on the decision tree for the	
	tennis problem	236
12.3	The complete decision tree generated by	
	the ID3 algorithm	236
12.4	A sample completed questionnaire used as	
	input to an ID3-based expert system for	
	diagnosing diseases in soybean crops	237
12.5	Different ways of distinguishing two	
	groups in a database of examples	238
12.6	An illustration of hierarchical	
	visual processing	241
12.7	Illustration of how an autoencoder	
	compresses and then decompresses	0.40
12.0	a signal	243
12.8	A move in the Google DeepMind challenge	0.47
12.1	An example of metaropresentation	247
12.1	The general outlines of Leolie's model of	233
13.2	protond play	254
12.2	The task used by Paren Cohen et al. to test	234
12.2	for childron's understanding of folso	
	belief	256
13 /	Illustration of the connection between	230
13.4	pretend play and success on the false-belief	
	task	257
13.5	Baron-Cohen's model of the	237
15.5	mindreading system	259
13.6	A schematic version of	207
15.0	standard simulationism	262
13.7	Schematic representation of brain regions	
	associated with the attribution of	
	mental states	264
13.8	Schematic overview of the frontoparietal	
	mirror-neuron system (MNS) (<i>pink</i>) and its	
	main visual input (<i>yellow</i>) in the	
	human brain	268
14.1	A map of SHAKEY's	
	physical environment	274
14.2	A photograph of SHAKEY the robot	275
14.3	The organizing principles of biorobotics—a	
	highly interdisciplinary enterprise	281
14.4	The cricket's ears are on its front legs	282
14.5	A robot fish called WANDA	283
14.6	WANDA swimming upward	284

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter <u>More Information</u>

xvi LIST OF FIGURES

14.7	7 Another example of morphological	
	computation: the robot hand designed by	
	Hiroshi Yokoi	284
14.8	The Yokoi hand grasping two very	
	different objects	284
14.9	Rodney Brooks's robot Allen, his first	
	subsumption-architecture robot	
14.10	14.10 The layers of Allen's	
	subsumption architecture	287
14.11	.11 The Nerd Herd, together with the pucks	
	that they can pick up with their grippers	290
15.1	A typical priming experiment	296
15.2	Examples of deficits found in patients with	
	left spatial neglect (damage to the right	
	hemisphere of the brain)	299
15.3	D.B.'s responses to pictures of animals	
	presented in his blind field	300
15.4	An illustration of the two houses presented	
	to P.S.	301
15.5	5 In this experiment, subjects were asked	
	either to "post" a card into a slot or to	
	rotate another handheld card to match the	
	orientation of the slot	302
15.6	In the Ebbinghaus illusion, two circles are	
	illusorily seen as differently sized, depending	
	on what surrounds them	303
15.7	In the Norman and Shallice 1980 model	
	(top left), conscious processing is involved in	
	the supervisory attentional regulation. by	
	the prefrontal cortices, of lower-level	
	sensorimotor chains	309
	Sensormiotor enums	002

15.8	The neural substrates of the global	
	workspace	310
16.1	Facial expressions made by the subjects	
	from New Guinea	320
16.2	The distinct physiological responses	
	correlated with each basic emotion	321
16.3	The circumplex model of affect	323
16.4	Schematic representation of an emotional	
	episode	325
16.5	Anatomical connections from the amygdala	
	to brain areas directly involved in	
	characteristic behavioral and physiological	
	fear responses	331
16.6	The subjective experience of fear in S.M.,	
	as measured using standard self-report	
	tools, in comparison with normal	
	subjects	332
16.7	T2-weighted coronal images of the five	
	subjects with UWD, with age in parentheses	
	and cross-hairs indicating the location of	
	the brain damage	333
16.8	Innate threat model and fear hypervigilance	
	in UWD	334
16.9	The neural regions widely held to be	
	implicated in the human fear network	335
16.10	Participants in the MRI scanner bed with	
	the compartments	336
16.11	Two results from the Mobbs et al. (2010)	
	neuroimaging study	336
16.12	Brain activity for the retreat-versus-approach	
	contrast in Mobbs et al. (2010)	337

Tables

2.1	The three different levels that Marr identified	
	for explaining information-	
	processing systems	page 42
4.1	Syntax and semantics in the	
	predicate calculus	88
8.1	Comparing the symbolic and subsymbolic	
	dimensions of knowledge representation i	n
	the hybrid ACT-R architecture	168
9.1	Comparing techniques for studying	
	connectivity in the brain	181
10.1	The stages of past-tense learning according	5
	to verb type	203
14.1	SHAKEY's five levels	276
14.2	SHAKEY's intermediate-level routines	277

14.3	The five basis behaviors programmed into	
	Matarić's Nerd Herd robots	291
16.1	Results of facial expression recognition in	
	New Guinea adult subjects	319
16.2	Classifying different affective phenomena	
	by typical duration and role	322
16.3	The dimensionality of emotion according	
	to an influential version of cognitive-	
	appraisal theory	324
16.4	Tools for studying different components	
	of an emotional episode	326
16.5	Measures of fear in animal studies	
	compared to the DSM criteria for	
	generalized anxiety	329

Boxes

- 2.1 A Conversation with ELIZA
- 3.1 What Does Each Lobe Do?
- **3.2** Brain Vocabulary
- **4.1** Defining Sentences in Propositional Logic

page 31

55

56

79

6.1	Basins of Attraction in State Space	120
7.1	Basics of the Probability Calculus	133
7.2	Deriving Bayes's Rule	136
8.1	The Prisoner's Dilemma	161

Preface

ABOUT THIS BOOK

Few things are more fascinating than the human mind—and few are more difficult to understand. Cognitive science is the enterprise of trying to make sense of this most complex and baffling natural phenomenon.

The very things that make cognitive science so fascinating make it very difficult to study and to teach. Many different disciplines study the mind. Neuroscientists study the mind's biological machinery. Psychologists directly study mental processes, such as perception and decision-making. Computer scientists explore how those processes can be simulated and modeled in computers. Evolutionary biologists and anthropologists speculate about how the mind evolved. In fact, very few academic areas are not relevant to the study of the mind in some way. The job of cognitive science is to provide a framework for bringing all these different perspectives together.

The enormous range of information out there about the mind can be overwhelming, both for students and for instructors. Different textbooks have approached this challenge in different ways.

Some textbooks have concentrated on being as comprehensive as possible, with a chapter covering key ideas in each of the relevant disciplines—a chapter on psychology, a chapter on neuroscience, and so on. These books are often written by committees—with each chapter written by an expert in the relevant field. These books can be very valuable, but they really give an introduction to the cognitive sciences (in the plural) rather than to cognitive science as an interdisciplinary enterprise.

Other textbook writers take a much more selective approach, introducing cognitive science from the perspective of the disciplines that they know best—from the perspective of philosophy, for example, or of computer science. Again, I have learned much from these books, and they can be very helpful. But I am convinced that students and instructors need something more general.

This book aims for a balance between these two extremes. Cognitive science has its own problems and its own theories. The book is organized around these. They are all ways of working out the fundamental idea at the heart of cognitive science—which is that the mind is an information processor. What makes cognitive science so rich is that this single basic idea can be (and has been) worked out in many different ways. In presenting these different models of the mind as an information processor, I have tried to select as wide a range of examples as possible to give students a sense of cognitive science's breadth and range.

ABOUT THE FOURTH EDITION

This fourth edition of *Cognitive Science: An Introduction to the Science of the Mind* has been significantly revised in response to suggestions from users of the three previous editions and other experts commissioned by Cambridge University Press.

The major addition is Chapter 16, coauthored with Dong An, formerly a PhD student at Texas A&M and now on the faculty at Zhejiang University in China. This new chapter introduces the

xx

Cambridge University Press & Assessment 978-1-316-51337-8 — Cognitive Science José Luis Bermúdez Frontmatter More Information

PREFACE

emerging area of affective science. Affective science studies the emotions and other affective states. It uses some of the techniques and tools discussed in Part II, but it has also provided fertile ground for applying new techniques, particularly in the realm of genetics. Chapter 16 on affective science complements Chapter 15 on consciousness: both chapters explore aspects of the mind that traditional cognitive science has neglected. Chapter 15 has itself been reorganized for this edition. I have, at the instigation of David Rosenthal, introduced discussion of the higher-order theory of consciousness.

I have consolidated what previously, in the third edition, was two separate chapters on mindreading ("Exploring Mindreading" and "Mindreading: Advanced Topics") into what is now Chapter 13. Most of the main points from the early chapters have been preserved, but the presentation is now smoother, and some of the intricacies have gone.

Every chapter has been reviewed for concision and readability, and all the annotated bibliographies have been updated to incorporate significant new publications through 2021. The end result is a book that is slightly shorter than its predecessor, which I anticipate will allow Cambridge University Press to continue to offer competitive pricing.

HOW THE BOOK IS ORGANIZED

This book is organized into three parts.

Part I: Historical Landmarks

Cognitive science has evolved considerably in its short life. Priorities have changed as new methods have emerged—and some fundamental theoretical assumptions have changed with them. The three chapters in Part I introduce students to some of the highlights in the history of cognitive science. Each chapter is organized around key discoveries and/or theoretical advances.

Part II: Models and Tools

Part II sets out the main models and tools that cognitive scientists can bring to bear to understand cognition and the mind.

The first model, discussed in Chapter 4, is associated with the physical symbol system hypothesis originally developed by computer scientists Allen Newell and Herbert Simon. According to the physical symbol system hypothesis, all information processing involves the manipulation of physical structures that function as symbols. For the first decades of cognitive science, the physical symbol systems hypothesis was, as the late Jerry Fodor famously put it, the "only game in town." In the 1980s and 1990s, connectionist and neural network modelers developed an alternative, derived from models of artificial neurons in computational neuroscience and connectionist artificial intelligence. Chapter 5 explores the motivation for this approach and introduces some of the key concepts.

Another set of models and tools that can be used to study the mind derives from dynamical systems theory and is introduced and discussed in Chapter 6. Bayesian approaches to modeling the mind have also gained currency. As explained in Chapter 7, these approaches treat the mind as a predictive, hypothesis-testing machine and have been used both to study the mind as a whole and to model the activity of individual brain areas and populations of neurons.

One of the key ideas of cognitive science is that the mind is modular (that some, or all, information processing is carried out by specialized modules). Chapter 8 explores different ways of developing this basic idea, including the radical claim, proposed by evolutionary psychologists, that the mind is simply a collection of specialized modules, with no nonspecialized processing at all. Theoretical discussions of modularity are complemented by experimental techniques for

CAMBRIDGE

xxi

studying the organization of the mind. Chapter 9 surveys the cognitive scientist's toolkit in this regard, focusing in particular on different types of brain mapping.

Part III: Applications

The eight chapters in this part are more applied than those in Part II. They explore different ways in which the models and tools introduced in Part II can be used to give accounts of particular cognitive phenomena.

Chapter 10 considers language learning. Many cognitive scientists have thought that language learning is a process of learning explicit rules with a significant innate component. But we explore both neural network and Bayesian models that illustrate alternative ways of thinking about how children can learn languages. In Chapter 11, we turn to models of how children learn about the basic structure of the physical world (how they acquire what is often called a *folk physics*). Here, too, we see the power of neural network models.

One of the most significant recent developments of neural network models has been the explosive growth of deep-learning algorithms, which have made possible impressive advances in areas long thought to be major challenges for artificial intelligence, such as image recognition, machine translation, and games of strategy, such as Go. These are covered in Chapter 12.

Chapters 13 and 14 illustrate how theoretical, methodological, and experimental issues can come together. Chapter 13 works through an issue that has received much attention in contemporary cognitive science—the issue of whether there is a dedicated cognitive-system response for our understanding of other people (the so-called *mindreading system*). Chapter 14 explores the situated cognition movement and related developments in robotics, particularly behavior-based robotics and biologically inspired robotics.

In Chapter 15, we look at recent developments in the cognitive science of consciousness—a fastmoving and exciting area that raises fundamental questions about possible limits to what can be understood through the tools and techniques of cognitive science. And then finally, in Chapter 16, we examine the emerging area of affective science, which uses multiple techniques to study emotions and other affective states in human and nonhuman animals. The book ends with Chapter 17, which briefly sketches out a selection of exciting new directions in cognitive science.

USING THIS BOOK IN COURSES

This book has been designed to serve as a self-contained text for a single-semester (twelve to fifteen weeks) introductory course on cognitive science. Students taking this course may have taken introductory courses in psychology and/or philosophy, but no particular prerequisites are assumed. All the necessary background is provided for a course at the freshman or sophomore level (first or second year). The book could also be used for a more advanced introductory course at the junior or senior level (third or fourth year). In this case, the instructor would most likely want to supplement the book with additional readings. There are suggestions on the instructor website (see "Course Website" section).

TEXT FEATURES

I have tried to make this book as user-friendly as possible. Key text features include the following:

- **Chapter overviews.** Each chapter begins with an overview to orient the reader.
- **Exercises.** These have been inserted at various points within each chapter. They are placed in the flow of the text to encourage the reader to take a break from reading and engage with

xxii

PREFACE

the material. They are typically straightforward, but for a few, I have placed suggested solutions on the instructor website (see "Course Website" section).

- **Boxes.** Boxes have been included to provide further information about the theories and research discussed in the text. Readers are encouraged to work through these, but the material is not essential to the flow of the text.
- **Summaries, checklists, and further reading.** These can be found at the end of each chapter. The summary provides a short overview of the chapter. The checklists allow students to review the key points of the chapter and also serve as a reference point for instructors. Suggestions of additional books and articles are provided to guide students' further reading on the topics covered in the chapter.

COURSE WEBSITE

A course website accompanies the book. It can be found at www.cambridge.org/bermudez4e. The **publicly accessible section of the website** contains the following:

- Discussion questions for each chapter that students can use to check their understanding
- Sample syllabi for courses of different lengths and different levels
- Links to useful learning resources, videos, and experimental demonstrations
- Links to online versions of relevant papers and online discussions for each chapter

Instructors and other authorized users can access a **password-protected section of the website**. This contains the following:

- PowerPoint slides for each chapter
- Electronic versions of figures from the text
- Suggested solutions for the more challenging exercises and problems
- Student review questions
- A bank of questions that instructors can use for assessment (the questions are formatted to be uploaded into Respondus 4.0 for compatibility with many learning management systems or imported directly into Blackboard)

The website is a work in progress. Students and instructors are welcome to contact me with suggestions, revisions, and comments. Contact details are on the website.

Acknowledgments

ACKNOWLEDGMENTS FOR THE FIRST EDITION

Many friends and colleagues associated with the Philosophy–Neuroscience–Psychology program at Washington University in St. Louis have commented on sections of this book. I would particularly like to thank Maurizio Corbetta, Frederick Eberhardt, David Kaplan, Clare Palmer, Gualtiero Piccinnini, Marc Raichle, Philip Robbins, David Van Essen, and Jeff Zacks. Josef Perner kindly read a draft of Chapter 12.

I have benefited from the comments of many referees while working on this project. Most remain anonymous, but some have revealed their identity. My thanks to Kirsten Andrews, Gary Bradshaw, Rob Goldstone, Paul Humphreys, and Michael Spivey.

Drafts of this textbook have been used four times to teach PNP 200 Introduction to Cognitive Science here at Washington University in St. Louis—twice by me and once each by David Kaplan and Jake Beck. Feedback from students both inside and outside the classroom was extremely useful. I hope that other instructors who use this text have equally motivated and enthusiastic classes. I would like to record my thanks to the teaching assistants who have worked with me on this course: Juan Montaña, Tim Oakberg, Adam Shriver, and Isaac Wiegman. And also to Kimberly Mount, the PNP administrative assistant, whose help with the figures and preparing the manuscript is greatly appreciated.

A number of students from my spring 2009 PNP 200 class contributed to the Glossary. It was a pleasure to work with Olivia Frosch, Katie Lewis, Juan Manfredi, Eric Potter, and Katie Sadow.

Work on this book has been made much easier by the efforts of the psychology textbook team at Cambridge University Press—Raihanah Begum, Catherine Flack, Hetty Reid, Sarah Wightman, and Rachel Willsher (as well as to Andy Peart, who signed this book up but has since moved on). They have been very patient and very helpful. My thanks also to Anna Oxbury for her editing and to Liz Davey for coordinating the production process.

ACKNOWLEDGMENTS FOR THE SECOND EDITION

I am very grateful to my colleagues in the Office of the Dean of Liberal Arts at Texas A&M University, particularly my administrative assistant Connie Davenport, for helping me to carve out time to work on the second edition of the textbook. T. J. Kasperbauer has been an excellent research assistant, providing numerous improvements to the text and supporting resources and helping me greatly with his deep knowledge of cognitive science. It has been a pleasure to work once again with Hetty Marx and Carrie Parkinson at Cambridge University Press. I particularly appreciate their work in gathering feedback on the first edition. Thanks again to Anna Oxbury for her copyediting skills.

xxiv

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS FOR THE THIRD EDITION

Part of the work on the third edition was carried out during a period of leave in the 2018–2019 academic year. I am grateful to the Department of Philosophy at Texas A&M University for allowing me to take a year off from teaching and administrative duties. At Cambridge University Press, I worked initially with Janka Romero and then subsequently with Stephen Acerra and Lisa Pinto, all of whom were very supportive and worked hard to get me helpful feedback on earlier editions. I am particularly grateful to the many reviewers who gave detailed comments and suggestions for improvement. Finally, I'd like to record my thanks to Dong An for her help with the online resources.

ACKNOWLEDGMENTS FOR THE FOURTH EDITION

It has been a pleasure to work with Stephen Acerra, Stefanie Seaton, and the team at Cambridge University Press, who obtained much valuable feedback on the third edition and helped steer the new edition into production. I am particularly grateful to the nearly thirty reviewers who sent in comments on the third edition. The book has been enormously improved as a result.

As I was completing work on the new edition, I found myself unexpectedly taking on heavy administrative duties at Texas A&M. I am very grateful to provost Tim Scott for providing funding for a graduate research assistant to keep the project on track. Dong Yu (David) Yang greatly assisted me in updating the annotated bibliographies and online resources.

Finally, I am delighted that Dong An, who assisted me with the third edition while still a PhD student at A&M, signed up as a coauthor for the new Chapter 16 on emotions. Dong is now on the faculty at Zhejiang University, one of the leading universities in China, and I am grateful for her expert guidance on a topic that she knows much better than I do.

Image credits: Part I: © SciePro / iStock / Getty Images Plus; Part II: © Andrzej Wojcicki / Science Photo Library / Getty Images; Part III © Paper Boat Creative / DigitalVision / Getty Images.