Neuroscience of Attention

Attention is critical to our daily lives, from simple acts of listening to a conversation or reading, to the more demanding situations of trying to concentrate in a noisy environment or driving on a busy roadway. This book offers a concise introduction to the science of attention, featuring real-world examples and fascinating studies of clinical disorders and brain injuries. It introduces cognitive neuroscience methods and covers the different types and core processes of attention. The links between attention, perception, and action are explained, along with exciting new insights into the brain mechanisms of attention revealed by cutting-edge research. Learning tools – including an extensive glossary, chapter reviews, and suggestions for further reading – highlight key points and provide a scaffolding for use in courses. This book is ideally suited for graduate or advanced undergraduate students as well as for anyone interested in the role attention plays in our lives.

Joseph B. Hopfinger is a Professor of Psychology and Neuroscience at the University of North Carolina at Chapel Hill and co-Editor-in-Chief of the journal *Cognitive Neuroscience*. He has also received the *Brain Research* Young Investigator Award.

Cambridge Fundamentals of Neuroscience in Psychology

Developed in response to a growing need to make neuroscience accessible to students and other nonspecialist readers, the *Cambridge Fundamentals of Neuroscience in Psychology* series provides brief introductions to key areas of neuroscience research across major domains of psychology. Written by experts in cognitive, social, affective, developmental, clinical, and applied neuroscience, these books will serve as ideal primers for students and other readers seeking an entry point to the challenging world of neuroscience.

Books in the Series

The Neuroscience of Expertise, by Merim Bilalić The Neuroscience of Adolescence, by Adriana Galván The Neuroscience of Suicidal Behavior, by Kees van Heeringen The Neuroscience of Creativity, by Anna Abraham The Neuroscience of Addiction, by Francesca Mapua Filbey The Neuroscience of Sleep and Dreams, 2e, by Patrick McNamara The Neuroscience of Intelligence, 2e, by Richard J. Haier The Cognitive Neuroscience of Bilingualism, by John W. Schwieter and Julia Festman Fundamentals of Developmental Cognitive Neuroscience, by Heather Bortfeld and Silvia A. Bunge Neuroscience of Attention, by Joseph B. Hopfinger Cognitive Neuroscience of Memory, 2e, by Scott D. Slotnick Cognitive and Social Neuroscience of Aging, 2e, by Angela Gutchess Introduction to Human Neuroimaging, 2e, by Hans Op de Beeck and Chie Nakatani

Neuroscience of Attention

Joseph B. Hopfinger

University of North Carolina at Chapel Hill

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781316513293

DOI: 10.1017/9781009072434

© Joseph B. Hopfinger 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009072434

First published 2025

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-316-51329-3 Hardback ISBN 978-1-009-07338-7 Paperback

Additional resources for this publication at www.cambridge.org/Hopfinger

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For EU product safety concerns, contact us at Calle de José Abascal, 56, 1°, 28003 Madrid, Spain, or email eugpsr@cambridge.org.

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

То

William, Michael, and Jenni

Thank you for all your support and for helping my attention always return to what matters most.

Contents

List of Figures		<i>page</i> xii		
P	Preface			
1	What Is Attention?	1		
	1.1 "Everyone Knows What Attention Is"	1		
	1.2 Prehistory of Attention Research: Philosophy and Psychology Precursors	2		
	1.3 The Cognitive Revolution (1950s)	6		
	1.4 The Cocktail Party	10		
	1.5 The Eyes and Attention	15		
	1.6 The "Spotlight" of Attention	18		
	1.7 The "Glue" of Attention	23		
	1.8 Attention as "Cognitive Control"	26		
2	Attention in Everyday Life	32		
	2.1 Distracted Driving	32		
	2.2 Reading (and Rereading!)	36		
	2.3 Studying and Remembering	37		
	2.4 Airport Security Screening	41		
	2.5 Radar and Sonar Monitors	44		
	2.6 Video Games and "Brain Training"	45		
	2.6.1 Training to Multitask	48		
	2.7 "Joint Attention"	50 51		
	2.8 Magic	51		
3	Investigating the Brain: Methods of Cognitive Neuroscience	58		
	3.1 A Brief History of Localizing Cognitive Functions	58		
	3.2 Neuropsychology	61		
	3.2.1 "Case Studies" versus "Group Studies" in Neuropsychology	61		
	3.2.2 Single versus Double Dissociations in Neuropsychology	62		
	3.3 Neuroimaging	63		
	3.3.1 Structural Neuroimaging: CT, MRI, DTI, and DWI	64		
	3.3.1.1 CT	64		
	3.3.1.2 MRI	65		

vii

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

viii Contents

		3.3.1.3 DTI and DWI	67
		3.3.2 Functional Neuroimaging: PET, fMRI, and fNIRS	67
		3.3.2.1 PET	68
		3.3.2.2 fMRI	69
		3.3.2.3 fNIRS	71
	3.4	Electroencephalography and Magnetoencephalography	73
		3.4.1 EEG and the ERP	73
		3.4.2 MEG and the ERF	79
	3.5	Neurostimulation	81
		3.5.1 Magnetic Stimulation	81
		3.5.2 Electrical Stimulation	84
	3.6	Nonhuman Animal Studies	86
		3.6.1 Cellular Recording	86
		3.6.2 Lesions	87
		3.6.3 Stimulation Studies	87
	3.7	Comparing Methods	88
4	Defi	icits in Attention	91
	4.1	Deficits in Attention Following Brain Injury	92
		4.1.1 Hemispatial Neglect Syndrome	92
		4.1.1.1 Lateralization of Attention Processes in Neglect	94
		4.1.1.2 Subtypes of Neglect (Space-Based versus Object-Based)	95
		4.1.1.3 Cortical and Subcortical Connections Underlying Neglect	97
		4.1.2 Simultanagnosia	98
		4.1.3 Progressive Supranuclear Palsy	101
		4.1.4 Focal Lesions to Subcortical Structures (Superior Colliculus	
		and Thalamus)	102
	4.2	Deficits in Attention in Developmental Disorders	103
		4.2.1 Attention Deficit Hyperactivity Disorder	104
		4.2.2 Autism	108
		4.2.3 Dyslexia	112
	4.3	Deficits in Attention in Clinical Disorders	114
		4.3.1 Anxiety Disorders	114
		4.3.2 Schizophrenia	117
5	The	Effects of Attention on Neural Processing	123
	5.1	The Focus and Distribution of Attention: Theory and Models	123
	5.2	The "Sites" of Spatial Attention Effects	126
		When Attention Affects Processing: The Timing of Spatial Attention	
		Effects	128
		5.3.1 ERP Studies of Visual-Spatial Attention	130
		5.3.2 Dissociating Early ERP Attention Effects	132

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

Contents ix

		5.3.3 Attention Effects on "Late" Components	133
	5.4	Where Attention Acts in the Brain	135
		5.4.1 Neuroimaging Studies of Spatial Attention Effects	136
		5.4.2 Combining Methods for an Enhanced Spatiotemporal Localization	
		of Attention Effects	140
		5.4.3 Single-Unit Recordings	142
	5.5	Advanced Questions on the Mechanisms of Visual-Spatial Attention	145
		5.5.1 Splitting the Spotlight: Can Attention Be Divided Across Spatial	
		Locations?	145
		5.5.2 Does the Spotlight Have an Inhibitory Surround?	147
		5.5.3 An Inhibitory "Surround" for Feature Attention?	149
		5.5.4 Is Attention All-or-None?	150
	5.6	Nonspatial Visual Attention	152
		5.6.1 Feature-Based Visual Attention	152
		5.6.2 Object-Based Visual Attention	156
	5.7	Neural Effects of Auditory Attention	158
		5.7.1 Localizing Auditory Attention Effects with fMRI	159
		5.7.2 Auditory Attention Effects in "What" versus "Where" Regions	160
		5.7.3 Remapping of Auditory Cortex by Attention	162
		5.7.4 Subcortical Auditory Attention Effects and the Cocktail Party	
		Revisited	162
	5.8	Attention Effects Across Sensory Modalities	164
6	Volu	untary versus Involuntary Attention	167
	6.1	Voluntary versus Involuntary Attention	167
		6.1.1 Behavioral Effects of Exogenous versus Endogenous Attention	168
		6.1.2 Neural Effects of Exogenous versus Endogenous Attention	171
		6.1.3 Interactions of Exogenous and Endogenous Attention	176
	6.2	Automatic Capture versus Contingent Capture	178
	6.3	Visual Search, Orienting, and the "Suppression Hypothesis"	182
	6.4	Salience, Emotions, and Social Influences on Attentional Capture	186
		6.4.1 Faces and Social Gaze	187
		6.4.2 Interactions of Emotions, Faces, and Gaze	190
		6.4.3 Special Status of "New Objects"	193
	6.5	Memory and Attention	196
		6.5.1 Working Memory = Working Attention?	197
		6.5.2 Short-Term, Implicit Memory Effects on Attention	200
		6.5.3 Long-Term Memory Effects on Attention	201
		6.5.4 Reward-Driven Attentional Biasing	205
	6.6	Selection History	209

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

x Contents

7	The	Control of Attention: Neural Systems and Mechanisms	213
	7.1	Sources of Attentional Control	213
	7.2	The Dorsal Attention Network	214
		7.2.1 Neuroimaging Evidence of Parietal and Frontal Control Regions	215
		7.2.1.1 The "Free Will" of Attentional Control	218
		7.2.1.2 Endogenous versus Exogenous Control within the DAN	222
		7.2.1.3 Feature- and Object-Based Attentional Control	224
		7.2.2 Neurostimulation Studies of the DAN	225
		7.2.3 ERP Indices of Attentional Control	229
		7.2.3.1 EEG Studies of Internally Generated Attentional Control	231
		7.2.4 Single-Unit and Multiunit Studies of Attentional Control	232
		7.2.4.1 Macaque Studies of Feature versus Spatial Attention	234
	7.3	The Ventral Attention Network	236
		7.3.1 Neuropsychological Evidence for the Roles of VAN Areas	237
		7.3.2 ERP Studies of Disengaging Attention Following Attentional	
		Capture	238
		7.3.3 Neurostimulation Studies of the VAN	239
	7.4	Subcortical Attentional Control Regions	242
		7.4.1 Superior Colliculus	242
		7.4.2 Reticular Nucleus of the Thalamus	243
		7.4.3 Pulvinar Nucleus of the Thalamus	243
	7.5	Executive Control: Processes, Regions, and Networks	244
		7.5.1 "Supervisory Attention" and the Anterior Cingulate Cortex	245
		7.5.2 ERP Indices of Error Monitoring and Feedback Processing	247
		7.5.3 Cognitive Flexibility, Inhibition, and the Frontal Lobes	251
		7.5.4 Functional Connectivity and the Networks of Executive Control	253
	7.6	Plasticity and the Training of Attentional Control Networks	256
		7.6.1 Meditation and Mindfulness Training	260
		7.6.1.1 Neuroscience Studies of Meditation	261
		7.6.2 Video Games and "Brain Training"	265
8	Tem	poral Attention: Timing and Rhythms of Brain Mechanisms	273
	8.1	Attention and Time	273
	8.2	When Attention "Blinks"	274
		8.2.1 Neural Mechanisms of the AB	276
		8.2.2 Neural Sites of Conscious and Unconscious Perception in the AB	280
		8.2.3 Neurostimulation and Causal Studies of the AB	283
	8.3	Attending to a Moment	287
		8.3.1 Neural Systems Controlling Attention to Time	288
		8.3.2 Different Types of "Time" and Their Influences on Attention	289
		8.3.2.1 Hazard Rate Functions	289
		8.3.2.2 Rhythms	292

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

Contents xi

		8.3.2.3 Implicitly Learned Complex Temporal Sequences	293
		8.3.3 Interactions between Types of Spatial and Temporal Attention	294
	8.4	The Holding of Attention	295
		8.4.1 Memory Holds Attention	296
		8.4.2 Special Classes of Stimuli Hold Attention	297
	8.5	The Rhythmic Theory of Attention	301
		8.5.1 Behavioral Evidence for Rhythmic Attention	303
		8.5.2 Human Neuroscience Studies of Attentional Rhythms	307
		8.5.3 Nonhuman Electrophysiology Studies of Attentional Rhythms	310
9	Pred	dictive Coding Models of Attention: Turning Perception on Its Head	315
	9.1	Classic Model: Bottom-Up Processing Drives Perception	315
	9.2	Illusions Illustrate Powerful Top-Down Influences on Perception	317
	9.3	"Feedback" Connections in the Visual System	319
	9.4	Efficiency in Coding and Transmission	321
	9.5	Processing "Prediction Errors" in the Brain	323
	9.6	Benefits of Top-Down Predictions	326
	9.7	Balancing Top-Down versus Bottom-Up Influences	327
		9.7.1 The Role of Context in Adjusting the Balance	328
		9.7.2 Comparing Top-Down and Bottom-Up Processing at <i>Every</i> Level	328
		9.7.3 Where "Top-Down" Predictions Come From	333
		9.7.4 Laminar Microcircuitry and Neural Oscillations	335
		Active Inference	337
	9.9	Predictive Coding and Attention	339
		9.9.1 Brain Mechanisms of Attention versus Expectation	340
		9.9.2 The Role of Conscious Awareness	343
		9.9.3 Saliency Maps and Attention	344
		9.9.4 Object-Based Attention and Feature Binding	346
		9.9.5 Automatic versus Contingent Capture of Attention	346
	lossa	•	349
R	efere	nces	357
Ir	ıdex		410

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

Figures

1.1	William James.	page 2
1.2	Picture of writing with a quill pen.	3
1.3	Computer, circa 1954.	8
1.4	Cocktail party.	11
1.5	Ophthalmoscope.	16
1.6	Spotlight of attention analogy and the "zoom-lens" model.	19
1.7	Posner cuing task.	20
1.8	Attention as glue?	24
1.9	Attention network task.	29
2.1	Distracted driving.	33
2.2	Students studying at a library.	38
2.3	Long lines at an airport security screening checkpoint.	42
2.4	Airport security X-ray screening image of a carry-on bag.	43
2.5	Air traffic controller and displays.	44
2.6	Kids playing video games.	46
2.7	Joint attention.	51
2.8	Sequence of events for the disappearing coin trick.	54
3.1	Earliest known written reference to the "brain."	59
3.2	Illustration of the ventricular doctrine, circa 1512.	60
3.3	CT/PET scanner.	65
3.4	MRI machine and structural brain image.	66
3.5	fMRI image and overlay of active regions on a 3D brain surface.	69
3.6	Functional near-infrared spectroscopy (fNIRS).	72
3.7	Original EEG recording from Berger (1929).	74
3.8	Creation of ERPs from an EEG waveform.	75
3.9	MEG machine, helmet of sensors, and recordings.	80
3.10	TMS method and area of induced current.	82
	Equipment and setup for tDCS studies.	85
3.12	Comparison of methods used in human cognitive neuroscience studies.	88
	Results from the clock-drawing task in patients with neglect syndrome.	93
4.2	Results from copying task, illustrating space-based versus object-based	
	neglect.	96
	Cortical brain regions implicated in hemispatial neglect.	97
	Lesion locations of a patient with Bálint's syndrome.	99
4.5	Model of attention network connectivity in ASD.	111

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

List of Figures xiii

4.6	Dot-probe task with threatening versus neutral stimuli.	115
	Task used during fMRI to assess possible attention deficits in schizophrenia.	118
	ERP results from a go/no-go task in individuals with schizophrenia or	
	ADHD.	120
5.1	Object-based attention task.	125
	Predictions of different attention models on stages of information processing.	127
	Predicted ERP results from levels-of-processing filter models.	129
	ERP effects of spatial attention.	131
	Visual processing regions.	136
5.6	Attention effects in V3/VP.	138
5.7	Attention effects in the LGN.	140
5.8	Single-unit recording during a spatial attention task.	143
5.9	MEG investigation of an inhibitory surround.	149
5.10	Feature attention and the SN.	153
5.11	Object-based attention effects in early visual areas.	157
5.12	Areas of auditory cortex sensitive to location versus feature attention.	161
6.1	Effects of exogenous cues on target reaction times.	169
6.2	ERP effects of exogenous capture of attention on target processing.	172
6.3	ERP effects of concurrent endogenous and exogenous attention.	177
6.4	Contingent capture paradigm.	179
6.5	ERP components associated with visual search, orienting, and suppression.	183
6.6	Example of a social gaze-orienting paradigm.	189
6.7	ERP study showing unique activity evoked by a new object.	195
6.8	Effects of memory on overt attention.	204
6.9	Effects of reward-biased attention in visual processing regions.	206
	Attentional control areas of the cortex.	216
	Self-initiated shifts of attention.	221
	Endogenous versus exogenous attention control in the DAN.	223
7.4	Feature-based versus location-based attentional control activity assessed with	
	fMRI.	225
	Results from a tACS study of attentional disengagement.	228
	ERP indices of attentional control processes.	230
	Single-unit recordings during spatial attentional orienting.	233
	Multiunit recordings of space-based versus feature-based attentional control.	235
	TMS study of inferior parietal involvement in attentional control.	241
7.10	Major subdivisions of the cingulate cortex displayed on a 3D rendering of the	
	brain.	246
	Error-related negativity.	248
	Feedback-related negativity.	251
	Wisconsin Card Sorting Test.	252
7.14	Functional connectivity across attentional control regions differentiates	
	subgroups.	256
7.15	ERP effects of mindfulness training on the P3 component.	263

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter <u>More Information</u>

xiv List of Figures

7.16	EEG effects of video game training.	269
8.1	Trial sequence for an AB task.	275
8.2	ERP studies of the AB.	277
8.3	MEG study of the AB.	283
8.4	Correlating neural activity and performance during hazard function	
	expectancies.	291
8.5	ERP study of spatial and temporal attention.	294
8.6	Trial sequence of a task designed to measure the holding of attention.	299
8.7	Patterns of fMRI activity related to distractibility and disengaging attention.	300
8.8	Accuracy of target responses across time in a study of spatial and object	
	attention.	305
8.9	Coordinated rhythmic activity across frontal and parietal attention control	
	regions.	311
9.1	The hollow mask illusion.	318
9.2	Color constancy.	319
9.3	Classic model of perception versus predictive coding accounts of early visual	
	processing.	320
9.4	Efficient coding of visual scenes.	322
9.5	fMRI study of expectation-evoked activity in V1.	325
9.6	Single-unit recordings reveal the influence of multiple higher-level	
	predictions.	332
9.7	Neural activity in area V1 to prediction errors.	334
9.8	Inputs and outputs across cortical layers.	336
9.9	ERP study of attention and expectation interactions.	342
9.10	ERPs to T2 stimuli in an attentional blink task.	344

Preface

Attention has been discussed for millennia, but only in the last few decades have the methods of cognitive neuroscience been able to probe into the human brain to reveal the neural mechanisms underlying this critical mental process. Current topics in the popular press, such as stories of distracted driving, the effects of video games on students' concentration, and the frustratingly long lines at airport security checkpoints, highlight a few real-world examples of the importance of attention. New industries have arisen over the past few years promising to enhance our attention through a variety of "brain training" techniques. Between the implementation of distracted driving laws, the treatment options for attention disorders, and the push to enhance our brains, understanding the brain mechanisms of attention is more important than ever.

This book is intended for audiences including graduate students, advanced undergraduate students, and laypeople or scientists interested in the history and current research into the neural mechanisms of attention. It starts with the historical background of early theories of attention, presents seminal cognitive neuroscience studies that have revealed core processes of attention, and discusses future directions of research into the brain mechanisms of attention that have real-world implications. This book is aimed to fill a gap between the broad but brief coverage of attention in most undergraduate cognitive psychology textbooks and the in-depth but narrow focus of research articles and books that address only a select aspect of attention.

How to Use This Book

The first few chapters of this book provide a foundation for understanding current research on attention by explaining the history of attention research and the strengths and limitations of the many cognitive neuroscience methods that are used in the attempts to uncover the neural mechanisms of attention processes. The subsequent chapters are organized around major themes in attention research, such as voluntary versus involuntary influences on attention, the distinct process of controlling attention versus the effects of that control, and the role of neural rhythms in the allocation of attention across time. The different deficits and disorders of attention are compared, and research into the plasticity and training of attention systems is discussed, along with the presentation of new models of perception and attention. Each chapter can be read as a standalone account of an area of attention research, but the chapters also contain cross-references to related material in other chapters, thus serving to extend and reinforce each other in an integrated way.

Since many different techniques and types of equipment are used to probe into the brain basis of attention, a full chapter is dedicated to explaining the various methods of cognitive

Cambridge University Press & Assessment 978-1-316-51329-3 — Neuroscience of Attention Joseph B. Hopfinger Frontmatter More Information

xvi Preface

neuroscience. As will become clear, there is no single perfect method, as each has strengths as well as critical limitations. Thus, an understanding of neural mechanisms can only come by integrating findings from across these varied methods. A critical goal of this book is to help readers understand how each method works, so that experimental findings can be evaluated in terms of what each result can or cannot tell us about the processes of attention.

Each chapter starts out with a list of learning objectives and ends with a summary of key points and review questions. Boxes within each chapter highlight controversies or recent trends in the research being done on the topic of that chapter, and a short list of suggested "Further Readings" is provided for readers wanting to dive deeper into seminal papers or in-depth reviews of the topic. A Glossary is also included to provide quick access to definitions and explanations of important terms. The chapters are written to be accessible to those without expert knowledge, but they also present some of the most critical research findings on each topic and provide extensive citations. Even in a book dedicated just to attention there is not room to describe all the exciting research being done, but the citations and suggested readings provide recommendations for where interested readers can obtain further knowledge of specific areas of research. Thus, this book could be used as a standalone textbook in upper-level undergraduate courses, as part of advanced graduate seminars focused on attention or cognitive neuroscience, or simply as a means for anyone interested in this topic to gain a deep understanding of how the brain enables the multifaceted processes of attention.