Essentials of Hydraulics

Written for a one-semester course in hydraulics, this concise textbook is rooted in the fundamental principles of fluid mechanics and aims to promote sound hydraulic engineering practice. Basic methods are presented to underline the theory and engineering applications, and examples and problems build in complexity as students work their way through the textbook. Abundant worked examples and calculations, real-world case studies and revision exercises, as well as precisely crafted end-of-chapter exercises, ensure students learn exactly what they need in order to consolidate their knowledge and progress in their career. Students learn to solve pipe networks, optimize pumping systems, design pumps and turbines, solve differential equations for gradually varied flow and unsteady flow, and gain knowledge of hydraulic structures such as spillways, gates, valves, and culverts. An essential textbook for intermediate to advanced undergraduate and graduate students in civil and environmental engineering.

Pierre Y. Julien is Professor of Civil and Environmental Engineering at Colorado State University. He has 40 years of experience in the fields of hydraulics, sedimentation, and river engineering. He has authored over 600 scientific contributions including two textbooks, 35 book chapters and manuals, 195 refereed articles, and over 250 conference papers and presentations. He has delivered 25 keynote addresses world-wide, taught 20 short courses, and has guided 40 Ph.D. and over 100 Master's students to graduation. His other two textbooks are *Erosion and Sedimentation* (second edition, 2010, Cambridge University Press) and *River Mechanics* (second edition, 2018, Cambridge University Press).

> "I was lucky to be Pierre's Ph.D. student at Colorado State University many years ago. I took several courses from him and was deeply influenced by his teaching style and methods. I am more than happy to see the publication of his *Essentials of Hydraulics* so that the rest of the world of civil engineering students have a chance to learn from this great teacher and scholar." *Junke Guo, University of Nebraska–Lincoln*

> *"Essential of Hydraulics* by Professor P. Y. Julien is an excellent and well-needed addition to the literature on hydraulic engineering. The textbook encompasses all subject areas of hydraulics with clarity, and provides an in-depth understanding of the theoretical aspects by using detailed step-by-step worked examples. In addition, the plethora of exercises and problems provide a solid pedagogical tool for mastering the material. The textbook is suitable for undergraduate and graduate students, but also for engineers practicing in the general area of hydraulics. Based on my 30 years of academic experience in hydraulic engineering, I fully appreciate and unequivocally endorse this textbook."

Panagiotis (Pete) D. Scarlatos, Florida Atlantic University

"This handily focused and lucidly written textbook presents the indispensable information needed for a course on civil engineering hydraulics. The textbook's author writes from his extensive experience teaching hydraulics, and draws on his considerable insights into the practical hydraulics issues often faced by civil engineers."

Robert Ettema, Colorado State University

"An excellent reference for a course in hydraulics covering fundamental principles in pipe flow, pumps, and open channel flow. With numerous examples, this textbook will support learning very effectively in an undergraduate course, or serve as review of hydraulics for a graduate course with exposure to more advanced topics."

Paola Passalacqua, University of Texas at Austin

"This is an excellent textbook for learning and teaching the fundamentals of hydraulics and their applications in the fields of civil and environmental engineering. The topics covered in the book are comprehensive. The examples of numerical calculation help undergraduate and graduate students to better understand the fundamental concepts, and the problems are well designed with different levels of challenge and importance."

Ming Ye, Florida State University

Essentials of Hydraulics

Pierre Y. Julien

Colorado State University

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781316513095 DOI: 10.1017/9781108907446

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall, 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-316-51309-5 Hardback ISBN 978-1-108-81630-4 Paperback

Additional resources for this publication at www.cambridge.org/julien-hydraulics

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my father Guy, and to all engineers working in developing countries

Contents

	Preface	page xv
	Notation	xvii
1	Hydrostatics	1
	1.1 Units and Water Properties	1
	1.1.1 Dimensions and Units	1
	1.1.2 Properties of Water	1
	1.1.3 Fluid Density	5
	1.2 Hydrostatic Pressure	6
	1.2.1 Atmospheric Pressure	6
	1.2.2 Hydrostatic Pressure	6
	1.2.3 Relative and Absolute Pressure	7
	1.2.4 Hydraulic Grade Line	8
	1.2.5 Absolute Vapor Pressure	9
	1.2.6 Relative Vapor Pressure	10
	1.3 Hydrostatic Force	11
	1.3.1 Area Moment of Inertia	11
	1.3.2 Force Magnitude on a Plate	12
	1.3.3 Center of Pressure	13
	1.4 Forces on Dams	14
	1.4.1 Dam Stability Concepts	14
	1.4.2 Gravity Dams	17
	1.4.3 Rock and Earth-Fill Dams	18
	Exercises	18
	Searching the Web	19
	Problems	20
h	Flow in Dines	22
Z	Flow in Pipes	23
	2.1 Friction Losses in Pipes	23
	2.1.1 Pipe Properties	23
	2.1.2 Energy Grade Line	24
	2.1.3 Friction Losses in a Fipe	25
	2.2 Minor Losses in Fipes	27
	2.2.1 Valves	28
	2.2.2 Fipe Couplings	29
	2.2.3 Minor Losses and Equivalent Length	29
	2.2.4 Negative Pressure and Cavitation	32
	2.3 Fipe Branches and Networks	33
	2.3.1 Continuity or Conservation of Mass	33
	2.3.2 Pipe Branches	35

viii

Cambridge University Press & Assessment 978-1-316-51309-5 — Essentials of Hydraulics Pierre Y. Julien Frontmatter <u>More Information</u>

Contents

	2.3.3 Pipe Networks	37
	2.3.4 Hazen-Williams Approach	39
	2.3.5 High-Pressure Valves	40
	Additional Resources	42
	Exercises	42
	Searching the Web	43
	Problems	43
3	Hydrodynamics	47
	3.1 Hydrodynamic Force on a Plate	47
	3.1.1 Hydrodynamic Force on a Stationary Plate	48
	3.1.2 Force and Power on a Moving Plate	49
	3.2 Hydrodynamic Force on a Pipe Bend	51
	3.3 Flow Meters	54
	3.3.1 Venturi Meters	54
	3.3.2 Flow Nozzles and Orifices	56
	3.3.3 Pressure Gauges and Other Flow Meters	58
	Additional Resources	59
	Exercises	61
	Searching the Web	62
	Problems	62
4	Pumps	65
	4.1 Pump Types	65
	4.1.1 Pump Head and Power	65
	4.1.2 Specific Speed of Pumps	67
	4.1.3 Pump Types	69
	4.2 Pump Performance	72
	4.2.1 Energy Losses	72
	4.2.2 Pump Performance Curves	72
	4.2.3 System Curve and Operating Point	74
	4.2.4 Pump System Optimization and Design	76
	4.3 Pump Cavitation	77
	4.3.1 Cavitation	77
	4.3.2 Net Positive Suction Head	78
	4.3.3 Pumps in Series and in Parallel	79
	Exercises	81
	Searching the Web	82
	Problems	82
5	Turbines	86
	5.1 Hydropower	86
	5.1.1 Hydropower Production	86
	5.1.2 Minimizing Hydraulic Losses	87
	5.2 Turbine Types	89
	5.2.1 Turbine Classification	89

Cambridge University Press & Assessment 978-1-316-51309-5 — Essentials of Hydraulics Pierre Y. Julien Frontmatter <u>More Information</u>

	5.2.2 Pelton Wheels or Impulse Turbines	91
	5.2.3 Francis Turbines	95
	5.2.4 Kaplan Turbines	100
	5.2.5 Bulb Turbines	102
	5.3 Turbine Cavitation	104
	Exercises	106
	Searching the Web	106
	Problems	106
6	Water Hammer	109
	6.1 Water Compressibility	109
	6.2 Wave Celerity	110
	6.2.1 Celerity in an Infinitely Rigid Pipe	110
	6.2.2 Celerity in Elastic Pipes	111
	6.2.3 Wave Celerity Reduction with Air	113
	6.3 Hydraulic Transients	114
	6.3.1 Sudden Valve Closure	114
	6.3.2 Gradual Valve Closure	116
	6.3.3 Valve Opening	118
	6.3.4 Emptying Large Tanks	120
	6.4.1 Surge Tanks	121
	6.4.2 Pressure Reduction	121
	Additional Resources	123
	Fxercises	123
	Searching the Web	125
	Problems	125
7	Pine Flow Oscillations	107
/	7.1. Oscillations without Friction	127
	7.1 Spring_Mass Oscillations	127
	7.1.2 Flow Oscillations without Friction	127
	7.2 Oscillations for Laminar Flow	120
	7.2.1 Damped Spring-Mass Oscillations	130
	7.2.2 Damped Flow Oscillations in Capillary Tubes	132
	7.3 Oscillations for Turbulent Flow	134
	7.4 Oscillations between Reservoirs	137
	Additional Resources	139
	Exercises	140
	Problems	140
8	Steady Uniform Flow	141
-	8.1 Open-Channel Geometry	141
	8.2 Resistance to Flow	143
	8.3 Normal Depth	150
	8.4 Shear Stress	151

Contents

ix

Cambridge University Press & Assessment 978-1-316-51309-5 — Essentials of Hydraulics Pierre Y. Julien Frontmatter <u>More Information</u>

x Contents

	Additional Resources	153
	Exercises	153
	Problems	154
9	Rapidly Varied Flow	156
	9.1 Energy in Open Channels	156
	9.1.1 Specific Energy	156
	9.1.2 Critical Depth	157
	9.1.3 Alternate Depths	160
	9.1.4 Choking	162
	9.2 Momentum	163
	9.2.1 Centroid Position for Open-Channel Flow	163
	9.2.2 Specific Momentum	166
	9.2.3 Conjugate Depths	167
	9.3 Hydraulic Controls	170
	9.3.1 Small-Wave Propagation	170
	9.3.2 Upstream and Downstream Control	172
	9.3.3 Surge Propagation	172
	9.3.4 Standing Waves in Supercritical Flows	173
	9.3.5 Nonhydrostatic Flows in Curved Channels	175
	9.3.6 Conservation of Momentum or Energy?	177
	Additional Resources	178
	Exercises	178
	Problems	178
10	Gradually Varied Flow	180
	10.1 Gradually Varied Flow Equation	180
	10.1.1 Gradually Varied Flow	180
	10.1.2 Wide Rectangular Channels	181
	10.2 Gradually Varied Flow Profiles	182
	10.2.1 Classification of Gradually Varied Flows	182
	10.2.2 Control Points and Hydraulic Jumps	183
	10.2.3 Sketching Water-Surface Profiles	185
	10.3 Gradually Varied Flow Calculations	187
	10.3.1 Standard-Step Method	187
	10.3.2 Direct-Step Method	188
	10.4 Bridge Hydraulics	194
	10.5 Computer Models	196
	Additional Resources	198
	Exercises	198
	Problems	199

Cambridge University Press & Assessment 978-1-316-51309-5 — Essentials of Hydraulics Pierre Y. Julien Frontmatter <u>More Information</u>

	Contents
11 Unsteady Flow	203
11.1 Floodwave Equation	203
11.1 1 Continuity for Unsteady Flow	203
11.1.2 Flow Resistance	203
11.1.2 Nomentum	204
11.1.4 Flood Routing	205
11.2 Floodwave Propagation	200
11.2 Thouwave Tropagation	208
11.2.2 Numerical Solution for Floodwave Propagation	200
Additional Resources	210
Evervises	213
Problems	213
r toolenis	214
2 Culverts	216
12.1 Culvert Characteristics	216
12.2 Culvert Performance Curves	217
12.2.1 Barrel Control ($H < D$)	218
12.2.2 Inlet Control ($H > D$)	219
12.2.3 Outlet Control ($H > D$)	221
12.2.4 Submerged Outlets	223
12.3 Culvert Outlet Works	224
12.3.1 Downstream Erosion Control	224
12.3.2 Trenches and Pipe-Bearing Capacity	225
Additional Resources	228
Exercises	228
Searching the Web	229
Problems	229
3 Spillways and Gates	231
13.1 Spillways	231
13.1.1 Morning Glory Spillways	231
13.1.2 Ogee Spillways	231
13.1.3 Ogee Spillways with Control Gates	234
13.1.4 Flip-Bucket Spillways with Plunge Pools	235
13.1.5 Energy Dissipation through Stilling Basins	236
13.1.6 Stepped Spillways	238
13.1.7 Baffle Chutes	230
13.2 Gates and Weirs	235
13.2 Gates	242
13.2.2 Weirs	242
13.2.2 Wells	245
Additional Resources	245
Fyerrises	247 249
LACICIOLS Searching the Web	240 240
Drobleme	240
1 100101115	248

xi

xii

Cambridge University Press & Assessment 978-1-316-51309-5 — Essentials of Hydraulics Pierre Y. Julien Frontmatter <u>More Information</u>

Contents

14	Hydrology	251
	14.1 Hydrologic Processes	251
	14.1.1 Hydrologic Cycle	251
	14.1.2 Precipitation	252
	14.1.3 River Basins	253
	14.1.4 Infiltration	256
	14.2 Flood Discharge	256
	14.2.1 Time to Equilibrium	256
	14.2.2 Rational Method for Small Watersheds	258
	14.2.3 Dynamic Watershed Modeling	260
	14.2.4 Flood Frequency Analysis	264
	14.3 Extreme Floods	267
	14.3.1 Risk Analysis	267
	14.3.2 Extreme Precipitation	268
	14.3.3 Extreme Floods	269
	Additional Resources	273
	Exercises	273
	Problems	274
5	Geohydrology	277
	15.1 Soil Properties	277
	15.1.1 Soil Granulometry and Mineralogy	277
	15.1.2 Properties of Wet Soils	282
	15.2 Wet Soil Processes	284
	15.2.1 Capillarity	284
	15.2.2 Effective Stress and Quick Condition	285
	15.2.3 Static Liquefaction	286
	15.2.4 Consolidation and Subsidence	288
	15.2.5 Seismic Surveys	291
	Additional Resources	292
	Exercises	292
	Problems	292
16	Groundwater	295
	16.1 Permeability	295
	16.2 Steady Groundwater Flow	298
	16.2.1 Steady Flow in Aquifers	299
	16.2.2 Seepage through Shallow Embankments	300
	16.2.3 Two-Dimensional Groundwater Flow	301
	16.2.4 Flow Nets for Deep Foundations	302
	16.2.5 Flow Nets for Shallow Foundations	304
	16.3 Unsteady Groundwater Flow	306
	16.3.1 Unsteady Flow in Stratified Floodplains	306
	16.3.2 Unsteady Flow in Pumping Wells	307

16.3.3 Unsteady Flow from Tidal Fluctuations309

	Contents	xiii
Additional Resources	312	
Exercises	312	
Problems	313	
Appendices		
A. Basic Cost Analysis	317	
B. Society and Sustainability	319	
C. Professional Engineering Obligations	323	
References	326	
Index	336	

Preface

Water sustains life and engineers supply drinking water to a growing world population. Meeting this daunting challenge requires a proper understanding of hydraulic engineering. Hydraulics is an integral part of the curriculum for all civil and environmental engineers. Water flows naturally in river systems and the propagation of large floods can be devastating. In controlling floods through dams and multiple hydraulic structures, engineers have developed techniques to generate hydropower and distribute water through open channels, culverts and pipe networks. The principles governing the motion of water include conservation of mass, momentum and energy, as well as resistance to flow. These governing equations constitute essential knowledge for the understanding of the motion of fluids in pipes and open channels. This textbook demonstrates the benefits of mastering these governing principles. Fundamentally, hydraulic engineering requires an understanding of hydrodynamic forces governing the motion of water in closed conduits and open channels. Engineers apply these fundamental concepts to meet the practical needs of society. These needs include flood control, water distribution systems for agriculture and water supply, hydropower production and sustainable development of water resources.

This textbook prepares engineers through understanding fundamental concepts and problem solving. The essential complementarity of theory and practice cannot be overemphasized. Theory can best enhance engineering applications when the fundamental understanding has been grounded in practical observations. Rather than a voluminous encyclopedia, this textbook scrutinizes selected and proven methods meeting pedagogical objectives. The prerequisites required of the reader include basic knowledge of engineering dynamics, fluid mechanics and differential equations. Besides basic theory and lecture material, the chapters of this book contain numerous examples and solved problems, several data sets, computer problems and case studies. They illustrate specific aspects of the profession from theoretical derivations to practical solutions with the analysis of typical problems. The key to successfully mastering the material from this book is to solve problems. Most problems can be solved with algebraic equations while a few require the use of computers. No specific computer code or language is required. Instead of promoting the use of commercial software packages, student creativity and originality is stimulated by developing their own spreadsheets and computer programs. Throughout the book, a solid diamond (•) denotes examples and problems of particular significance, double diamond (++) denotes the most important and/or difficult.

This textbook proceeds from closed conduits to open channels as follows: Chapter 1 describes the physical properties of water and hydrostatics;

Chapter 2 reviews the motion of water in pipes;

Chapter 3 derives the governing equations describing the motion of water;

Chapter 4 guides the design of pumping systems;

Chapter 5 treats the topic of hydropower generation from turbines;

xvi Preface

Chapter 6 delves into the compressibility effects of water in pipes; Chapter 7 presents fundamental methods for unsteady flow in pipes; Chapter 8 focuses on steady open-channel flow; Chapter 9 deals with rapidly varied open-channel flow; Chapter 10 delineates backwater curves and gradually varied open-channel flows; Chapter 11 broaches the advanced topic of unsteady flow in open channels; Chapter 12 copes with more complex flows through culverts; Chapter 13 introduces different types of spillways and gates; Chapter 14 outlines broad-based concepts in hydrology; Chapter 15 summarizes the fundamentals of geohydrology; and Chapter 16 covers essential knowledge of groundwater.

There is more than sufficient material for a 45-hour undergraduate-level course. On a three-hour per week basis, the core material can be subdivided into four parts (four weeks each) with the possibility for monthly mid-term exams. The first part covers hydrostatics and flow in pipes (Chapters 1–3). The unique aspect of this section is to solve pipe networks. The second part focuses on hydro-machinery with pumps and turbines (Chapters 4–6). The unique skill being developed is the optimization of a pipe and pump system. The third part covers open-channel flows (Chapters 8–10). This section uniquely presents methods to obtain synthetic knowledge and analytical solutions, besides the numerical solution of differential equations for backwater profiles. The last section deals with hydraulic structures (Chapters 12–13). This shorter and more descriptive section leads to a comprehensive final exam. One unique aspect of this last section is to introduce practical engineering issues and professional ethics. The end of the semester is also convenient for broader guest lectures from practitioners.

Graduate and honor students will gain advanced knowledge of unsteady flow in pipes (Chapter 7) and in open channels (Chapter 11). In preparation for graduate studies, additional knowledge of hydraulics is provided along complementary concepts in hydrology (Chapter 14), geohydrology (Chapter 15) and groundwater (Chapter 16). All these chapters can support teaching in a quarter system. My preference for presenting pipes before open channels is rooted in the fact that pipes have constant cross sections which makes the geometry simpler to handle. It is also possible to reverse the teaching order and follow the sequence: hydrology, open channels, pipes and hydro-machinery.

This book benefitted from my teaching experience at university level since the late 1970s. The suggestions of a couple of generations of undergraduate students helped tailor the content to meet their needs under the constraints of quality, concision and affordability. I am grateful to Drs. Jai Hong Lee, Joon Hak Lee and Seong Joon Byeon who helped me prepare earlier versions of lecture notes for the students of hydraulic engineering at Colorado State University. Jean Parent deserves all the credit for patiently drafting all the figures. It has been a renewed pleasure to collaborate with Matt Lloyd, Jane Adams, Rachel Norridge, Zoë Lewin and the Cambridge University Press production staff.

Notation

Symbols

Symbols		D_1 D_2	upstream and downstream flow
а	acceleration	D_1, D_2	denths of a stilling basin
a_x, a_y, a_z	Cartesian acceleration	DC	downstream control
a_s	seismic acceleration	e en en	efficiency of pumps
Α	surface area	e, e _m , e _p	nine thickness
Α	activity of a clay	e	void ratio
A_T	surge tank area	F	specific energy
A_t	watershed drainage area	E	water modulus of elasticity
В	(base) channel width	E_w	nine modulus of elasticity
В	wicket-gate height, turbine-blade		energy grade line EGI — HGI \pm
	height	EGL	$V^2/2a$
С	wave celerity	٨E	v /2y
С	damping coefficient	ΔE	chevation gain for pumps
c′	wave celerity in an elastic pipe	ΔE	iump
c_v	consolidation coefficient	f	Jump Dargy Weisbach friction factor
С	resistance coefficient	J f f	demped and natural frequency of
C, C_D	discharge coefficient	Jd, Jn	accillations
С	runoff coefficient	E	forme
C _c	orifice coefficient	Г Г	notwork frequency
C _C	consolidation coefficient	Г Г	fetwork frequency
C_g	volumetric gas concentration in	F E	luture value
	water	Γ_h	hydrostatic force
C_G	Venturi geometric coefficient	Γ_H, Γ_V, W	former
C_{H}, C_{Q}	pump head and discharge	Γ.,	Torces
	dimensionless parameters	Fr	Froude number
C_s	seismic coefficient	g C	gravitational acceleration
C_{ν}	coefficient of variation	G	specific gravity of sediment
C_V	Venturi coefficient	n	flow depth
C_{Δ}	triangular weir discharge	Δh	flow depth increment
	coefficient	h_b	block height of baffled chutes
C _{\$}	cost function	h _c	critical flow depth
CMP	corrugated metal pipe	h _c	capillary rise
<i>d</i> , <i>w</i>	opening height of a Tainter gate	h_d, h_u	downstream and upstream flow
d_{10}, d_{50}	particle size distribution, % finer by		depths
10, 30	weight	h_f	friction loss in pipes
d_s	particle size	h_n	normal flow depth
D, d	pipe/culvert diameter	h _t	tailwater depth
Ď	scour depth below a flip-bucket	h_v	vapor head
	spillway	h_1 to h_4	various sizes of stilling basins

Δh	local change in flow depth	L_F	loading factor for pipe trenches
H	Bernoulli sum, or flow depth	L_j	length of hydraulic jump
H_D	design head of a spillway	L_{II}, L_{III}, L_{IV}	lengths of stilling basins
H_0, H_a	initial and added pressure head	L_r	river length
HDPE	high-density polyethylene	LL	liquid limit
HGL	hydraulic grade line, also	т	Manning equation unit coefficient
	piezometric line		(m = 1.49 in customary units,
ΔH	energy loss		m = 1 in SI units)
<i>i</i> , <i>i</i> _r	rainfall intensity	М, т	mass
i	annual interest rate	M_s , M_w , M_t	mass of solids, water and total
i	gradient of the groundwater	M	specific momentum
	surface	M_{0}	moment of force about 0
i_b	riverbed infiltration rate	п	Manning roughness coefficient
i _c	critical groundwater gradient for	п	porosity of a soil
	boiling sands	n	number of independent trials
Ī	area moment of inertia about the	n	number of years
	center of gravity	Ν	rotational speed
I_0	area moment of inertia about	Ν	dimensionless parameter in
	axis 0		Allievi's formula
k	pipe conveyance coefficient	Ν	normal force
	$(h_f = k Q^2)$	Ν	number of years in a sample
k	open-channel conveyance	N_p, N_s	number of potential and
	coefficient ($Q = k S_f^{1/2}$)	•	streamlines
k	constant of a spring-mass system	$N_{ m rpm}$	number of rotations per minute
k	number of occurrences	N_s	specific speed of a pump, or turbine
k	intrinsic permeability coefficient	$N_{ m sq}$	specific speed for turbines in SI
$k_1, h_1/D$	culvert inlet control parameters		units
ks,ε	surface roughness	NPSH	net positive suction head
Κ	pipe loss coefficient ($h_f = K V^2/2g$)	p	pressure
Κ	conveyance coefficient	p_{atm}	atmospheric pressure
Κ	permeability coefficient	p_{rel}	relative pressure
Κ	flood diffusion (dispersion)	p_{abs}	absolute pressure
	coefficient	p	probability of occurrence
Κ	saturated hydraulic conductivity	<i>p</i> , <i>q</i>	average and half-difference soil
	(V = K i)		pressure
K_b	pipe bend coefficient	p_0	number of poles in a generator
K _C	pipe contraction coefficient	p_0	porosity
Ke	pipe or culvert entrance coefficient	p_{v}	vapor pressure
K_E	pipe expansion coefficient	Р	power
K_f , K_f'	ratio of horizontal to vertical	Р	wetted perimeter
	normal stresses	Р	present value
$K_G(T)$	frequency factor of the Gumbel	Р	flow depth at the spillway crest
	distribution	P_k	binomial probability distribution
L	pipe, spillway or weir length	$P_{\rm kW}$, $P_{\rm hp}$	power in kilowatt and horsepower
L _e	equivalent pipe length for minor	PI	plasticity index
	losses	PL	plastic limit

Cambridge University Press & Assessment 978-1-316-51309-5 — Essentials of Hydraulics Pierre Y. Julien Frontmatter <u>More Information</u>

Notation

xix

Р	probability	Т	trench width
Δp	pressure increase from a water	Т	transmissivity of an aquifer
	hammer	Т	dimensionless consolidation time
ΔP	power loss in a hydraulic jump	T°	temperature
q	unit discharge	T_n, T_d	natural and damped period of
q_1	lateral inflow unit discharge		oscillations
Q	discharge	и	pore pressure in a soil
$Q_{\rm gpm}, Q_{\rm cfs},$	discharge in gallons per minute,	U, U _%	consolidation percentage
$Q_{\rm cms}$	ft ³ /s and m ³ /s	UC	upstream control
r, R	radius	v_p	plate velocity
R	reaction force	v_x, v_y	local velocity components
R	manometer reading	V	mean flow velocity
R	hydrologic risk	V_r, V_t	radial and tangential velocity
R	repeated uniform annual amount	\forall	volume
Re	Reynolds number	\forall_v, \forall_t	volume of voids and total volume
R_h	hydraulic radius	w, d	opening height of a Tainter gate
RCP	reinforced concrete pipe	w	water content of a soil
S_u	subsidence	W	channel surface width
S	slope	W	weight
S	surge-tank water elevation	W_T	throat width of a Parshall flume
S	degree of saturation	W(u)	Theis integral
S_F	safety factor	<i>x</i> , <i>y</i> , z	coordinates usually x downstream,
S_0, S_f, S_w	bed, friction and water-surface		y lateral, and z upward
Ū.	slope	<i>x</i> , <i>y</i>	coordinates of an ogee spillway
S_y	specific yield of an aquifer	x_b	flip-bucket launching distance
S_{XY}	sign of pipe flow (+ clockwise from	Δx , Δy , Δz	infinitesimal fluid element
	<i>X</i> to <i>Y</i>)	Δ <i>x</i> , Δy	infinitesimal distance and flow
<i>S</i> ₃	three-edge pipe-bearing strength		depth in backwater calculations
t	time	X_{max}	maximum elevation without
t	trapezoidal section parameter		cavitation
	(H:V)	У	open-channel flow depth
Δt , Δx	time and space increment	${\mathcal Y}_b$	flip-bucket launching height
t _C	time of pipe closure	y_c	critical flow depth
t _e	watershed time to equilibrium	\mathcal{Y}_{cp}	center of pressure
t _r	rainfall duration	\mathcal{Y}_n	normal flow depth
Т	torque	Z _b	bed elevation
Т	tension, and surface tension	Z_{max}	maximum successive flow
Т	surge-tank oscillation period		oscillations
Т	period of return of extreme events	Z_t	turbine elevation above the tailrace

Cambridge University Press & Assessment 978-1-316-51309-5 — Essentials of Hydraulics Pierre Y. Julien Frontmatter <u>More Information</u>

xx Notation

Greek Symbols

Greek Synn	1012	0	mass density of solid
α	angle of failure in the p-q diagram	ρ_s	mass density of solid
α	flip bucket launching angle	ρ_{sat}	mass density of a saturated son
α, β	coefficient and exponent of the	σ	turbine cavitation index
	stage discharge relationship	σ	standard deviation
α_{s}	ratio of seismic acceleration to	σ_{i}	applied stresses in a soil
5	gravity	σ'	effective stress in a soil
в	turbine-blade angle	σ_{g}	gradation coefficient
r v	specific weight of water	σ_p	pipe tension
۲ ٤	surface roughness	ϕ	turbine speed ratio
θ.	angular coordinate	ϕ	dimensionless turbulent flow
С 7	dimensionless domning		oscillations
ç	coefficient	ϕ, ϕ'	internal friction angle, and
K 0 K ()	turbulence models		effective internal friction angle
$\kappa = \varepsilon, \kappa = \omega$	durbulence models	ϕ, φ	groundwater potential and
μ	lynamic viscosity of water		streamlines
v š	kinematic viscosity of water	φ	oscillation phase angle
ζ, η	orthogonal functions for potential	τ, σ	tangential and normal shear
	and streamlines in groundwater	,	stresses
$ ho, ho_w$	mass density of water	ω	turbine (angular) rotational speed
$ ho_d$	dry mass density of a water-	ω_{r} ω_{J}	natural and damped circular
	sediment mixture	ω_n, ω_a	frequency of oscillations
$ ho_g$	mass density of gas or air	$0 - 1 - Fr^2$	coefficient of the diffusive-wave
ρ_m, ρ_t	total mass density of a water-	<u> 22 — 1</u> 11	equation
	sediment mixture		Cquation

Superscripts and Diacriticals

\overline{e}	average value
x , \dot{x} and \ddot{x} .	position, velocity and acceleration,
	e.g. spring-mass system
\forall	volume
\forall	volume

Subscripts

a_x, a_y, a_z	Cartesian components
Yn, Yc	normal and critical flow depths
ρ_s, γ_s	solid properties