Machine Learning for Engineers

This self-contained introduction to machine learning, designed from the start with engineers in mind, will equip students and researchers with everything they need to start applying machine learning principles and algorithms to real-world engineering problems. With a consistent emphasis on the connections between estimation, detection, information theory, and optimization, it includes: an accessible overview of the relationships between machine learning and signal processing, providing a solid foundation for further study; clear explanations of the differences between state-of-the-art machine learning techniques and conventional model-driven methods, equipping students and researchers with the tools necessary to make informed technique choices; demonstration of the links between information-theoretical concepts and their practical engineering relevance; and reproducible examples using MATLAB®, enabling hands-on experimentation. Assuming only a basic understanding of probability and linear algebra, and accompanied by lecture slides and solutions for instructors, this is the ideal introduction to machine learning for engineering students of all disciplines.

Osvaldo Simeone is Professor of Information Engineering at King's College London, where he directs the King’s Communications, Learning & Information Processing (KCLIP) lab. He is a Fellow of the IET and of the IEEE.
Machine Learning for Engineers

Osvaldo Simeone
King’s College London
Contents

Preface page xi
Acknowledgements xvii
Notation xviii
Acronyms xxi

Part I Introduction and Background

1 When and How to Use Machine Learning 3
 1.1 Overview 3
 1.2 What is Machine Learning For? 3
 1.3 Why Study Machine Learning Now? 4
 1.4 What is Machine Learning? 5
 1.5 Taxonomy of Machine Learning Methods 9
 1.6 When to Use Machine Learning? 10
 1.7 Summary 11
 1.8 Recommended Resources 12
 Bibliography 13

2 Background 14
 2.1 Overview 14
 2.2 Random Variables 14
 2.3 Expectation 18
 2.4 Variance 20
 2.5 Vectors 21
 2.6 Matrices 25
 2.7 Random Vectors 29
 2.8 Marginal Distributions 35
 2.9 Conditional Distributions 36
 2.10 Independence of Random Variables and Chain Rule of Probability 40
 2.11 Bayes’ Theorem 42
 2.12 Law of Iterated Expectations 45
 2.13 Summary 46
 2.14 Recommended Resources 46
 Problems 46
 Bibliography 49

Part II Fundamental Concepts and Algorithms

3 Inference, or Model-Driven Prediction 53
 3.1 Overview 53
 3.2 Defining Inference 54
Contents

3.3 Optimal Hard Prediction 56
3.4 Optimal Prediction for Jointly Gaussian Random Vectors 62
3.5 KL Divergence and Cross Entropy 65
3.6 Optimal Soft Prediction 70
3.7 Mutual Information 78
3.8 Log-Loss As a “Universal” Loss Function 82
3.9 Free Energy 82
3.10 Summary 85
3.11 Recommended Resources 86
Problems 86
Appendices 89
Bibliography 93

4 Supervised Learning: Getting Started 94
4.1 Overview 94
4.2 Defining Supervised Learning 95
4.3 Training Hard Predictors 100
4.4 Inductive Bias Selection and Validation 106
4.5 Bias and Estimation Error 113
4.6 Beyond the Bias vs. Estimation Error Trade-Off 116
4.7 Regularization 118
4.8 Testing 120
4.9 Training Soft Predictors 121
4.10 MAP Learning and Regularization 124
4.11 Kernel Methods 126
4.12 Summary 130
4.13 Recommended Resources 131
Problems 131
Appendices 134
Bibliography 135

5 Optimization for Machine Learning 136
5.1 Overview 136
5.2 Optimization for Training 136
5.3 Solving an Optimization Problem 137
5.4 First-Order Necessary Optimality Condition for Single-Variable Functions 139
5.5 Second-Order Optimality Conditions for Single-Variable Functions 142
5.6 Optimality Conditions for Convex Single-Variable Functions 144
5.7 Optimality Conditions for Multi-variable Functions 146
5.8 Gradient Descent 153
5.9 Convergence of Gradient Descent 157
5.10 Second-Order Methods 164
5.11 Stochastic Gradient Descent 165
5.12 Convergence of Stochastic Gradient Descent 167
5.13 Minimizing Population Loss vs. Minimizing Training Loss 171
5.14 Symbolic and Numerical Differentiation 172
5.15 Automatic Differentiation 173
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.16</td>
<td>Summary</td>
<td>182</td>
</tr>
<tr>
<td>5.17</td>
<td>Recommended Resources</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>193</td>
</tr>
<tr>
<td>6</td>
<td>Supervised Learning: Beyond Least Squares</td>
<td>194</td>
</tr>
<tr>
<td>6.1</td>
<td>Overview</td>
<td>194</td>
</tr>
<tr>
<td>6.2</td>
<td>Discriminative Linear Models for Binary Classification: Hard Predictors</td>
<td>194</td>
</tr>
<tr>
<td>6.3</td>
<td>Discriminative Linear Models for Binary Classification: Soft Predictors and Logistic Regression</td>
<td>203</td>
</tr>
<tr>
<td>6.4</td>
<td>Discriminative Non-linear Models for Binary Classification: Multi-layer Neural Networks</td>
<td>209</td>
</tr>
<tr>
<td>6.5</td>
<td>Generative Models for Binary Classification</td>
<td>224</td>
</tr>
<tr>
<td>6.6</td>
<td>Discriminative Linear Models for Multi-class Classification: Softmax Regression</td>
<td>231</td>
</tr>
<tr>
<td>6.7</td>
<td>Discriminative Non-linear Models for Multi-class Classification: Multi-layer Neural Networks</td>
<td>235</td>
</tr>
<tr>
<td>6.8</td>
<td>Generative Models for Multi-class Classification</td>
<td>237</td>
</tr>
<tr>
<td>6.9</td>
<td>Mixture Models</td>
<td>238</td>
</tr>
<tr>
<td>6.10</td>
<td>Beyond Feedforward Multi-layer Neural Networks</td>
<td>240</td>
</tr>
<tr>
<td>6.11</td>
<td>(K)-Nearest Neighbors Classification</td>
<td>243</td>
</tr>
<tr>
<td>6.12</td>
<td>Applications to Regression</td>
<td>243</td>
</tr>
<tr>
<td>6.13</td>
<td>Summary</td>
<td>244</td>
</tr>
<tr>
<td>6.14</td>
<td>Recommended Resources</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>248</td>
</tr>
<tr>
<td>7</td>
<td>Unsupervised Learning</td>
<td>250</td>
</tr>
<tr>
<td>7.1</td>
<td>Overview</td>
<td>250</td>
</tr>
<tr>
<td>7.2</td>
<td>Unsupervised Learning Tasks</td>
<td>251</td>
</tr>
<tr>
<td>7.3</td>
<td>Density Estimation</td>
<td>251</td>
</tr>
<tr>
<td>7.4</td>
<td>Latent-Variable Models</td>
<td>253</td>
</tr>
<tr>
<td>7.5</td>
<td>Autoencoders: (x \rightarrow z \rightarrow x)</td>
<td>260</td>
</tr>
<tr>
<td>7.6</td>
<td>Discriminative Models: (x \rightarrow z)</td>
<td>268</td>
</tr>
<tr>
<td>7.7</td>
<td>Undirected Generative Models: (x \leftrightarrow z)</td>
<td>271</td>
</tr>
<tr>
<td>7.8</td>
<td>Directed Generative Models: (z \rightarrow x)</td>
<td>279</td>
</tr>
<tr>
<td>7.9</td>
<td>Training Directed Generative Models: (K)-Means Clustering</td>
<td>280</td>
</tr>
<tr>
<td>7.10</td>
<td>Training Directed Generative Models: Expectation Maximization</td>
<td>285</td>
</tr>
<tr>
<td>7.11</td>
<td>Summary</td>
<td>298</td>
</tr>
<tr>
<td>7.12</td>
<td>Recommended Resources</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>306</td>
</tr>
</tbody>
</table>
Part III Advanced Tools and Algorithms

8 Statistical Learning Theory

- **8.1 Overview**
- **8.2 Benchmarks and Decomposition of the Optimality Error**
- **8.3 Probably Approximately Correct Learning**
- **8.4 PAC Learning for Finite Model Classes**
- **8.5 PAC Learning for General Model Classes: VC Dimension**
- **8.6 PAC Bayes and Information-Theoretic Bounds**
- **8.7 Summary**
- **8.8 Recommended Resources**
- **Problems**
- **Bibliography**

9 Exponential Family of Distributions

- **9.1 Overview**
- **9.2 Definitions and Examples**
- **9.3 Exponential-Family Distributions As Maximum-Entropy Models**
- **9.4 Gradient of the Log-Loss**
- **9.5 ML Learning**
- **9.6 Information-Theoretic Metrics**
- **9.7 Fisher Information Matrix**
- **9.8 Generalized Linear Models**
- **9.9 Summary**
- **9.10 Recommended Resources**
- **Problems**
- **Appendices**
- **Bibliography**

10 Variational Inference and Variational Expectation Maximization

- **10.1 Overview**
- **10.2 Variational Inference, Amortized Variational Inference, and Variational EM**
- **10.3 Exact Bayesian Inference**
- **10.4 Laplace Approximation**
- **10.5 Introducing Variational Inference**
- **10.6 Mean-Field Variational Inference**
- **10.7 Introducing Parametric Variational Inference**
- **10.8 Black-Box Variational Inference**
- **10.9 Reparametrization-Based Variational Inference**
- **10.10 Combining Factorization and Parametrization for Variational Inference**
- **10.11 Particle-Based Variational Inference and Stein Variational Gradient Descent**
- **10.12 Amortized Variational Inference**
- **10.13 Variational Expectation Maximization**
- **10.14 Summary**
- **10.15 Recommended Resources**
- **Problems**
- **Appendices**
- **Bibliography**
11 Information-Theoretic Inference and Learning

11.1 Overview
11.2 I-Projection and M-Projection
11.3 Generalized Variational Inference and Generalized Variational Expectation Maximization
11.4 Maximum-Entropy Learning
11.5 InfoMax
11.6 Information Bottleneck
11.7 Rate-Distortion Encoding
11.8 Two-Sample Estimation of Information-Theoretic Metrics
11.9 Beyond the KL Divergence: \(f \)-Divergences and Two-Sample Estimators
11.10 Generative Adversarial Networks
11.11 Distributionally Robust Learning
11.12 Summary
11.13 Recommended Resources

Problems
Appendices
Bibliography

12 Bayesian Learning

12.1 Overview
12.2 Frequentist Learning and Calibration
12.3 Basics of Bayesian Learning
12.4 Why Bayesian Learning?
12.5 Exact Bayesian Learning
12.6 Laplace Approximation
12.7 MC Sampling-Based Bayesian Learning
12.8 Variational Bayesian Learning
12.9 Model Selection without Validation: Empirical Bayes
12.10 Bayesian Non-parametric Learning
12.11 Bayesian Learning with Local Latent Variables
12.12 Generalized Bayesian Learning
12.13 Summary
12.14 Recommended Resources

Problems
Appendices
Bibliography

Part IV Beyond Centralized Single-Task Learning

13 Transfer Learning, Multi-task Learning, Continual Learning, and Meta-learning

13.1 Overview
13.2 Transfer Learning
13.3 Multi-task Learning
13.4 Continual Learning
13.5 Meta-learning
13.6 Bayesian Perspective on Transfer, Multi-task, Continual, and Meta-learning
13.7 Summary
Contents

13.8 Recommended Resources 539
Appendices 539
Bibliography 540

Part V Epilogue

15 Beyond This Book 565
15.1 Overview 565
15.2 Probabilistic Graphical Models 565
15.3 Adversarial Attacks 568
15.4 Causality 570
15.5 Quantum Machine Learning 571
15.6 Machine Unlearning 573
15.7 General AI? 573
15.8 Recommended Resources 574
Bibliography 575

Index 576
Preface

Overview

This book provides a self-contained introduction to the field of machine learning through the lens of signal processing and information theory for an audience with an engineering background. This preface explains why the book was written and what you will find in it.

Background and Motivation

Advances in machine learning and artificial intelligence (AI) have made available new tools that are revolutionizing science, engineering, and society at large. Modern machine learning techniques build on conceptual and mathematical ideas from stochastic optimization, linear algebra, signal processing, Bayesian inference, as well as information theory and statistical learning theory. Students and researchers working in different fields of engineering are now expected to have a general grasp of machine learning principles and algorithms, and to be able to assess the relative relevance of available design solutions spanning the space between model- and data-based methodologies. This book is written with this audience in mind.

In approaching the field of machine learning, students of signal processing and information theory may at first be ill at ease in reconciling the similarity between the techniques used in machine learning – least squares, gradient descent, maximum likelihood – with differences in terminology and emphasis (and hype?). Seasoned signal processing and information-theory researchers may in turn find the resurgence of machine learning somewhat puzzling (“didn’t we write off that technique three decades ago?”), while still being awed by the scale of current applications and by the efficiency of state-of-the-art methods. They may also pride themselves on seeing many of the ideas originating in their communities underpin machine learning solutions that have wide societal and economic repercussions.

Existing books on the subject of machine learning come in different flavors: Some are compilations of algorithms mostly intended for computer scientists; and others focus on specific aspects, such as optimization, Bayesian reasoning, or theoretical principles. Books that have been used for many years as references, while still relevant, appear to be partly outdated and superseded by more recent research papers.

In this context, what seems to be missing is a textbook aimed at engineering students and researchers that can be used for self-study, as well as for undergraduate and graduate courses alongside modules on statistical signal processing, information theory, and optimization. An ideal text should provide a principled introduction to machine learning that highlights connections with estimation, detection, information theory, and optimization, while offering a concise but extensive coverage of state-of-the-art topics and simple, reproducible examples. Filling this gap in the bookshelves of engineering libraries is the ambition of this book.
As I end this first section without mentioning “deep learning”, some readers may start to worry. Indeed, deep learning is seen in this book “merely” as a particularly effective way to define and train a specific class of models. I have attempted to place it in the context of related methods, and I have often preferred to focus on simpler models that are better suited to illustrate the underlying ideas. While running counter to the general trend on the computer science side of machine learning, the focus on simple, reproducible examples is intended as a means to strip away aspects of scale to reveal concepts, intuition, and key techniques.

Intended Audience

This book is intended for a general audience of students, engineers, and researchers with a background in probability and signal processing. (I also hope that it will be of some interest to students and researchers working in information theory, who may not be aware of some of the connections explored here.)

To offer a self-contained introduction to these intended readers, the text introduces supervised and unsupervised learning in a systematic fashion – including the necessary background on linear algebra, probability, and optimization – taking the reader from basic tools to state-of-the-art methods within a unified, coherent presentation. Information-theoretic concepts and metrics are used throughout the text to serve as training criteria and performance measures. Later chapters explore topics that are subject to intense research at the time of writing, in the hope that they can serve as launching pads for original research and new contributions.

Why This Book?

I am often asked by colleagues and students with a background in engineering to suggest “the best place to start” to get into the field of machine learning. I typically respond with a list of books: For a general, but slightly outdated introduction, read this book; for a detailed survey of methods based on Bayesian signal processing, check this other reference; to learn about optimization for machine learning, I found this text useful; for theoretical aspects, here is another text; and, for more recent developments, a list of papers is attached. Unfortunately, the size and number of these references may be intimidating.

I started writing this book in the form of lectures notes for a course taught at the New Jersey Institute of Technology (NJIT). My motivation was, and remains, that of distilling the array of references mentioned above into a single text that offers a balanced presentation connecting to other courses on statistical signal processing, information theory, and optimization. This initial effort led to the monograph [1], which contains some of the material covered here.

Years later, across the ocean, now with a family and forced to work from home, I have had a chance to revise the original text [1] for a module on machine learning I am currently teaching at King’s College London (KCL). The current book was born as a result of this activity. It is meant to serve as a full textbook, including background material; expanded discussions on principles and algorithms, such as automatic differentiation, contrastive learning, and energy-based models; completely new chapters on optimization, variational inference and learning, information-theoretic learning, Bayesian learning, transfer learning, meta-learning,
and federated learning, as well as on further topics for research; new examples and figures; and end-of-chapter problems.

The number of machine learning books is quite extensive and growing. There are classical books, such as the texts by Bishop [2] and Hastie, Tibshirani, and Friedman [3], which provide general introductions in the form of an extensive review of techniques, not including more recent developments. In this book, I have taken a different approach, striving for unification within the framework of information theory and probabilistic models, with the aim of also covering more advanced material. The text by Murphy [4] focuses on probabilistic models, and can serve as a complementary reference to fill in the details of specific techniques that are not detailed here. Theoretical books, such as the excellent reference by Shalev-Shwartz and Ben-David [5], may not be the most natural choice for researchers interested in general principles, intuition, and applications, rather than detailed theoretical derivations. The text by Watt, Borhani, and Katsaggelos [6] takes an optimization perspective, and can also be used as a complement for this book. The book by Theodoridis [7] is an extensive reference on Bayesian learning. For readers interested in programming for deep learning, a useful reference is the book by Zhang, Lipton, Li, and Smola [8]. There are also various books that focus on applications, but mostly in the form of edited contributions (e.g., [9]).

Using This Book

This book can be used for self-study, as a reference for researchers seeking as an entry point in the field of machine learning, as well as a textbook. Courses on machine learning are primarily taught in computer science departments, but they are also increasingly part of the portfolio of engineering departments. This text can be adopted for a senior undergraduate course or for a more advanced graduate course on machine learning within an engineering curriculum.

An undergraduate course, like the one I currently teach at KCL, can cover Part I and Part II by discussing Chapter 1 to Chapter 6 in full, while including a selection of topics from Chapter 7 (see the Organization section below). A more advanced course could be taught by selecting topics from Chapter 7, as well as Part III and Part IV.

A note of warning for the more formally minded readers: While I have tried to be precise in the use of notation and in the formulation of statements, I have purposely avoided a formal – theorem, proof, remark – writing style, attempting instead to follow a more “narrative” and intuitive approach. I have endeavored to include only results that are easy to interpret and prove, and the text includes short proofs for the main theoretical results. I have also excluded any explicit mention of measure-theoretic aspects, and some results are provided without detailing all the underlying technical assumptions.

Throughout the text, I have made an effort to detail simple, reproducible examples that can be programmed in MATLAB® or Python without making use of specialized libraries in a relatively short amount of time. In particular, all examples in the book have been programmed in MATLAB® (with one exception for Fig. 13.17). Complex, large-scale experiments can be easily found in the literature and in books such as [8].

End-of-chapter problems are provided for Chapter 2, Part II, and Part III. (For the topics covered in Part IV, the reader is invited to reproduce the experiments provided in the text and to search the literature for open problems and more complex experiments.) The problems offer a mix of analytical and programming tasks, and they can be solved using the material and
tools covered in the text. Solutions for instructors can be found at the book’s website. Questions requiring programming are indicated with an asterisk (*).

When teaching, I find it useful to discuss some of end-of-chapter problems as part of tutorial sessions that encompass both theoretical and programming questions. I have also found it easier to use MATLAB®, particularly with students having little expertise in programming.

A list of recommended resources is included at the end of each chapter. The main purpose of these notes is to offer pointers for further reading. I have not attempted to assign credit for the techniques presented in each chapter to the original authors, preferring instead to refer to textbooks and review papers.

In writing, editing, and re-editing the text, I was reminded of the famous spider (*Cyclosa octotuberculata* if you wish to look it up) that weaves information about the positions of previously observed preys into its web. Like the spider, we as engineers use mathematics as a form of extended cognition, outsourcing mental load to the environment. In making various passes through the text, I have picked up my previous trails on the web, discovering new ideas and correcting old ones. I realize that the process would be never-ending, weaving and unweaving, and I offer my apologies to the reader for any mistakes or omissions in the current text. A list of errors will be maintained at the book’s website.

Organization

The text is divided into four main parts. The first part includes a general introduction to the field of machine learning and to the role of engineers in it, as well as a background chapter used to set the notation and review the necessary tools from probability and linear algebra. The second part introduces the basics of supervised and unsupervised learning, including algorithmic principles and theory. The third part covers more advanced material, encompassing statistical learning theory, exponential family of distributions, approximate Bayesian inference, information maximization and estimation, and Bayesian learning. Finally, the fourth part moves beyond conventional centralized learning to address topics such as transfer learning, meta-learning, and federated learning. Following is a detailed description of the chapters.

Part I: Introduction and Background

Chapter 1. When and How to Use Machine Learning. This chapter motivates the use of machine learning – a data-driven inductive bias-based design methodology – as opposed to the conventional model-driven domain knowledge-based design engineers are more accustomed to; it provides general guidelines for the use of machine learning; and it introduces the landscape of machine learning frameworks (supervised, unsupervised, and reinforcement learning).

Chapter 2. Background. Chapter 2 reviews the necessary key concepts and tools from probability and linear algebra.

Part II: Fundamental Concepts and Algorithms

Chapter 3. Inference, or Model-Driven Prediction. As a benchmark for machine learning, this chapter reviews optimal Bayesian inference, which refers to the ideal scenario in which the statistical model underlying data generation is known. The chapter focuses on detection and estimation under both hard and soft predictors. It provides an introduction to key information-theoretic metrics as performance measures adopted for optimal inference, namely cross entropy, Kullback–Liebler (KL) divergence, entropy, mutual information, and free energy.
Chapter 4. Supervised Learning: Getting Started. Chapter 4 covers the principles of supervised learning in the frequentist framework by introducing key definitions, such as inductive bias, model class, loss function, population loss, generalization, approximation and estimation errors, and overfitting and underfitting. It distinguishes between the problems of training hard and soft predictors, demonstrating the connections between the two formulations.

Chapter 5. Optimization for Machine Learning. The previous chapter considers only problems for which closed-form, or simple numerical, solutions to the learning problem are available. Chapter 5 presents background on optimization that is needed to move beyond the simple settings studied in Chapter 4, by detailing gradient descent, stochastic gradient descent, backpropagation, as well as their properties.

Chapter 6. Supervised Learning: Beyond Least Squares. This chapter builds on the techniques introduced in Chapters 4 and 5 to cover linear models and neural networks, as well as generative models, for binary and multi-class classification. The chapter also introduces mixture models and non-parametric techniques, as well as extensions to regression.

Chapter 7. Unsupervised Learning. Chapter 7 introduces unsupervised learning tasks within a unified framework based on latent-variable models, distinguishing directed discriminative and generative models, autoencoders, and undirected models. Specific algorithms such as K-means clustering, expectation maximization (EM), energy model-based training, and contrastive representation learning, are detailed. An underlying theme of the chapter is the use of supervised learning as a subroutine to solve unsupervised learning problems.

Part III: Advanced Tools and Algorithms

Chapter 8. Statistical Learning Theory. The previous chapters have left open an important question: How many samples are needed to obtain desirable generalization performance? This chapter addresses this question by reviewing the basics of statistical learning theory with an emphasis on probably approximately correct (PAC) learning theory. Limitations of the theory and open problems are also discussed.

Chapter 9. Exponential Family of Distributions. Another limitation of the previous chapters is their reliance on Gaussian and Bernoulli distributions. This chapter provides a general framework to instantiate probabilistic models based on the exponential family of distributions (which includes as special cases Gaussian and Bernoulli distributions). Generalized linear models (GLMs) are also introduced as conditional extensions of exponential-family models.

Chapter 10. Variational Inference and Variational Expectation Maximization. As discussed in Chapter 7, Bayesian inference is a key subroutine in enabling learning for models with latent variables, including most unsupervised learning techniques and mixture models for supervised learning. Exact Bayesian inference becomes quickly intractable for model sizes of practical interest, and, in order to scale up such methods, one needs to develop approximate Bayesian inference strategies. This chapter elaborates on such techniques by focusing on variational inference (VI) and variational EM (VEM). As an application of VEM, the chapter describes variational autoencoders (VAE).

Chapter 11. Information-Theoretic Inference and Learning. All the inference and learning problems studied in the previous chapters can be interpreted as optimizing specific information-theoretic metrics – most notably the free energy in the general framework of VI and VEM. This chapter explores this topic in more detail by covering both likelihood-based and likelihood-free learning problems. For likelihood-based models, problem formulations, such as maximum
entropy, are introduced as generalized forms of VI and VEM. For likelihood-free models, two-sample estimators of information-theoretic metrics – most generally \(f \)-divergences – are described and leveraged to define generative adversarial networks (GANs).

Chapter 12. Bayesian Learning

This chapter provides an introduction to Bayesian learning, including motivation, examples, and main techniques. State-of-the-art parametric methods, such as stochastic gradient Langevin dynamics (SGLD), are covered, along with non-parametric methods such as Gaussian processes (GPs).

Part IV: Beyond Centralized Single-Task Learning

Chapter 13. Transfer Learning, Multi-task Learning, Continual Learning, and Meta-learning

As discussed in Part II and Part III, machine learning typically assumes that the statistical conditions during training match those during testing, and that training is carried out separately for each learning problem. This chapter introduces formulations of learning problems that move beyond this standard setting, including transfer learning, multi-task learning, continual learning, and meta-learning. Among the specific algorithms covered by the chapter are likelihood- and regularization-based continual learning, as well as model agnostic meta-learning (MAML). Bayesian perspectives on these formulations are also presented.

Chapter 14. Federated Learning

Previous chapters assume the standard computing architecture of centralized data processing. A scenario that is of increasing interest involves separate learners, each with its own local data set. Training algorithms that operate in a decentralized way without the exchange of local data sets are often labeled as “federated”. This chapter provides an introduction to federated learning, presenting basic algorithms such as federated averaging (FedAvg) and generalizations thereof, covering privacy aspects via differential privacy (DP), and Bayesian solutions based on federated VI.

Part V: Epilogue

Chapter 15. Beyond This Book

This chapter provides a brief look at topics not covered in the main text, including probabilistic graphical models, causality, quantum machine learning, machine unlearning, and general AI.

Bibliography

Acknowledgements

I have read somewhere that writing is all about compressing time – the time, that is, spent by the writer in researching, selecting and organizing, and finally committing to page. A reader may need only five minutes to read a paragraph that the writer spent hours laboring on. Compression – writing – is successful if is nearly lossless, allowing the reader to reproduce the ideas in the mind of the writer with limited effort. Calibrating the level of compression has been an ongoing concern in writing this text, and I have been helped in making choices by readers of the original monograph [1] and by students at NJIT and KCL who have attended my courses on machine learning. A special mention goes to Kfir Cohen, who has patiently sifted through hundreds of slides for typos and imperfections (and prepared Fig. 7.2).

I have learned many of the topics covered in this book alongside colleagues and students: variational inference with Dr. Hyeryung Jang and Dr. Nicolas Skatchkovsky; Bayesian learning with Dr. Rahif Kassab; meta-learning with Dr. Sangwoo Park and Dr. Sharu Theresa Jose; differential privacy with Dr. Dongzhu Liu; information-theoretic learning with Dr. Jingjing Zhang; and the list goes on. Professor Bipin Rajendran has motivated me to look into probabilistic machine learning, and I am grateful for his illuminating explanations; Professor Petar Popovski has been inspirational as ever throughout the long period of gestation of this book and has provided very useful and detailed comments; Dr. Jakob Hoydis has provided useful initial feedback; and Dr. Onur Sahin has offered much needed reminders not to forget to use cases. I am grateful to all my colleagues at NJIT and at KCL, as well as my collaborators around the world, for making my work life so fulfilling. Thank you also to Dr. Hari Chittoor for spotting a number of typos, to Dr. Yusha Liu for preparing Fig. 12.5, and to Dr. Sangwoo Park for preparing Fig. 13.17.

I would like to gratefully acknowledge support by the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement No. 725732).

At Cambridge University Press, I have been lucky to work with Helen Shannon, Elizabeth Horne, and Jane Adams. Special thanks also to Julie Lancashire for believing in this project from the beginning and to Khaled Makhshoush for graciously agreeing to design the cover of this book. Finally, I am grateful to John King for his excellent and thoughtful work on editing the text.

This work is dedicated to my parents, to Lisa, Noah, Lena, and to my extended family across two continents.
Notation

General Conventions

- Random variables or random vectors – both abbreviated as rvs – are represented using Roman typeface, while their values and realizations are indicated by the corresponding standard font. For instance, the equality $x = x$ indicates that rv x takes value x.
- An exception is made for rvs denoted by Greek letters, for which the same symbol is used for both rvs and realizations, with their use made clear by the context.
- All vectors are taken to be in column form.
- Matrices are indicated using uppercase fonts, with Roman typeface used for random matrices.
- Calligraphic fonts are used for sets.
- The distribution of an rv x, which may be either a probability mass function (pmf) for a discrete rvs or a probability density function (pdf) for continuous rvs, is denoted as $p(x)$. To specify a given numerical value x for rv x, we will also write $p(x = x)$.
- For the Kullback–Liebler (KL) divergence, which involves two distributions $p(x)$ and $q(x)$, we use both notations $KL(p || q)$ and $KL(p(x)||q(x))$. The latter notation is particularly useful for conditional distributions $p(x|y)$ and $q(x|y)$, in which case the KL divergence $KL(p(x|y)||q(x|y))$ is evaluated for a fixed value y. The same approach is applied to the other information-theoretic metrics listed below.
- In numerical calculations, we will often only keep the first two decimal digits by rounding up the second digit at each intermediate step.

Notations

General

- \mathbb{R} set of real numbers
- \mathbb{R}^N set of $N \times 1$ vectors of real numbers
- \mathbb{R}^+ set of non-negative real numbers
- $(a, b]$ interval between two real numbers a and b with $a < b$, excluding a and including b
- (a, b) interval between two real numbers a and b with $a < b$, excluding a and b
- $[a, b]$ interval between two real numbers a and b with $a < b$, including a and b
- $\{1, \ldots, K\}$ set including all integer numbers from 1 to K
- $\{(a_k)_{k=1}^K\}$ or $\{a_k\}_{k=1}^K$ set $\{a_1, \ldots, a_K\}$
- \sum_S set of elements x_k indexed by the integers $k \in S$
- S^N set of all $N \times 1$ vectors with entries taking values in set S
- $|S|$ cardinality of a set S
- \propto proportional to
- \exists there exists
- \sum_x sum over all values of variable x
Functions

\(f(\cdot) \) a function

\(f(x) \) output of function \(f(x) \) for input \(x \), or the function itself

\(\nabla f(x) \) gradient vector of function \(f(x) \)

\(\nabla^2 f(x) \) Hessian matrix of function \(f(x) \)

\(\log(\cdot) \) natural logarithm

\(\log_2(\cdot) \) logarithm in base 2

\(|\cdot| \) absolute value (magnitude)

\(1(\cdot) \) indicator function: it equals 1 if the argument is true and 0 otherwise

\(\delta(\cdot) \) Dirac delta function or Kronecker delta function \((\delta(x - x') = 1(x = x')) \)

\(\sigma(\cdot) \) sigmoid function: \(\sigma(x) = 1/(1 + \exp(-x)) \)

\(\lceil \cdot \rceil \) ceiling function (smallest larger integer)

\(\text{step}(\cdot) \) step function: \(\text{step}(x) = 1 \) if \(x > 0 \), and \(\text{step}(x) = 0 \) if \(x < 0 \)

\(\min_{x} f(x) \) minimization problem for function \(f(\cdot) \) over \(x \)

\(\arg \min_{x} f(x) \) an element \(x \) in the set of minimizers of function \(f(x) \)

\(\mathcal{O}(f(x)) \) a function of the form \(af(x) + b \) for some constants \(a \) and \(b \)

Linear Algebra

\([x]_i \) \(i \)th element of vector \(x \)

\([A]_{ij} \) or \([A]_{i,j}\) \((i,j)\)th element of matrix \(A \)

\([A]_r \) or \([A]_{r,c}\) \(r \)th row and \(c \)th column of matrix \(A \), respectively

\(x^T \) and \(X^T \) transpose of vector \(x \) and matrix \(X \)

\(\|a\|^2 = \sum_{i=1}^{N} a_i^2 \) quadratic, or \(\ell_2 \), norm of a vector \(a = [a_1, \ldots, a_N]^T \)

\(\|a\|_1 = \sum_{i=1}^{N} |a_i| \) \(\ell_1 \) norm

\(\|a\|_0 \) \(\ell_0 \) pseudo-norm, which returns the number of non-zero entries of vector \(a \)

\(I_L \) \(L \times L \) identity matrix

\(I \) identity matrix when dimension is clear from context

\(0_L \) \(L \times L \) all-zero matrix or \(L \times 1 \) all-zero vector, as clear from the context

\(I \) \(L \times 1 \) all-one vector

\(\det(\cdot) \) determinant of a square matrix

\(\text{tr}(\cdot) \) trace of a square matrix

\(\text{diag}(\cdot) \) column vector of elements on the main diagonal of the argument matrix

\(\text{Diag}(\cdot) \) square diagonal matrix with main diagonal given by the argument vector

\(\odot \) element-wise product

Probability

\(x \sim \mathcal{N}(\cdot) \) \(x \) is distributed according to distribution \(\mathcal{N}(\cdot) \)

\(x_n \sim \mathcal{N}(\cdot) \) \(x_n \) are independent and identically distributed (i.i.d.)

\(p(x|y) \) or \(p(x|y = y) \) conditional distribution of \(x \) given the observation of \(y = y \)

\((x|y = y) \sim p(x|y) \) \(x \) is drawn according to the conditional distribution \(p(x|y = y) \)

\(E_{x \sim p(x|y)}[\cdot] \) expectation of the argument over the distribution of the \(x \sim p(x) \)

\(E_{x \sim p(x)}[\cdot] \) conditional expectation of the argument over the distribution \(p(x) \)
Notation

\[\Pr_{x \sim p(x)}[\cdot] \] probability of the argument over the distribution of the rv \(x \sim p(x) \)
\[\Pr[\cdot] \] probability of the argument when the distribution is clear from the context
\[\text{Bern}(x|q) \] Bernoulli pmf with parameter \(q \in [0, 1] \)
\[\text{Cat}(x|q) \] categorical pmf with parameter vector \(q \)
\[\mathcal{N}(x|\mu, \Sigma) \] multivariate Gaussian pdf with mean vector \(\mu \) and covariance matrix \(\Sigma \)
\[\text{Beta}(z|a, b) \] beta distribution with parameters \(a \) and \(b \)
\[U(x|a, b) \] uniform pdf in the interval \([a, b]\)
\[\text{Var}(p(x)) \] or \(\text{Var}(p) \) variance of \(x \sim p(x) \) when the distribution \(p(x) \) is clear from the context
\[\text{Var}(x) \] variance of \(x \sim p(x) \) when the distribution \(p(x) \) is clear from the context

Information-Theoretic Metrics

\[H(p(x)) \text{ or } H(p) \] entropy of \(x \sim p(x) \)
\[H(x) \] entropy of \(x \sim p(x) \) when the distribution \(p(x) \) is clear from the context
\[H(x|y) \] conditional entropy of \(x \sim p(x) \) given \(y \)
\[I(x; y) \] mutual information between rvs \(x \) and \(y \)
\[H(p||q) \] cross entropy between distributions \(p \) and \(q \)
\[\text{KL}(p||q) \] KL divergence between distributions \(p \) and \(q \)
\[F(p||\tilde{p}) \] free energy for distribution \(p \) and unnormalized distribution \(\tilde{p} \)
\[JS(p||q) \] Jensen–Shannon divergence between distributions \(p \) and \(q \)
\[D_f(p||q) \] \(f \)-divergence between distributions \(p \) and \(q \)
\[IPM(p||q) \] integral probability metric between distributions \(p \) and \(q \)

Learning-Related Quantities

\(D \) training set
\[L_p(\theta) \] population loss as a function of the model parameter \(\theta \)
\[L_D(\theta) \] training loss as a function of the model parameter \(\theta \)
\(\theta_{\text{ERM}} \) model parameter obtained via empirical risk minimization (ERM)
\(\theta_{\text{ML}} \) model parameter obtained via maximum likelihood (ML)
\(\theta_{\text{MAP}} \) model parameter obtained via maximum a posteriori (MAP)
\[\text{ExpFam}(x|\eta) \] distribution in the exponential family with natural parameter vector \(\eta \)
\[\text{ExpFam}(x|\mu) \] distribution in the exponential family with mean parameter vector \(\mu \)
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Assumed Density Filtering</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>BFL</td>
<td>Bayesian Federated Learning</td>
</tr>
<tr>
<td>BN</td>
<td>Bayesian Network</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>CDL</td>
<td>Contrastive Density Learning</td>
</tr>
<tr>
<td>CRL</td>
<td>Contrastive Representation Learning</td>
</tr>
<tr>
<td>DAG</td>
<td>Directed Acyclic Graph</td>
</tr>
<tr>
<td>DP</td>
<td>Differential Privacy</td>
</tr>
<tr>
<td>DV</td>
<td>Donsker–Varadhan</td>
</tr>
<tr>
<td>ELBO</td>
<td>Evidence Lower BOund</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation Maximization</td>
</tr>
<tr>
<td>EP</td>
<td>Expectation Propagation</td>
</tr>
<tr>
<td>ERM</td>
<td>Empirical Risk Minimization</td>
</tr>
<tr>
<td>EWC</td>
<td>Elastic Weight Consolidation</td>
</tr>
<tr>
<td>FIM</td>
<td>Fisher Information Matrix</td>
</tr>
<tr>
<td>FL</td>
<td>Federated Learning</td>
</tr>
<tr>
<td>FVI</td>
<td>Federated Variational Inference</td>
</tr>
<tr>
<td>GAN</td>
<td>Generative Adversarial Network</td>
</tr>
<tr>
<td>GD</td>
<td>Gradient Descent</td>
</tr>
<tr>
<td>GGN</td>
<td>Generalized Gauss–Newton (GGN)</td>
</tr>
<tr>
<td>GLM</td>
<td>Generalized Linear Model</td>
</tr>
<tr>
<td>GOFAI</td>
<td>Good Old Fashioned AI</td>
</tr>
<tr>
<td>GP</td>
<td>Gaussian Process</td>
</tr>
<tr>
<td>GVEM</td>
<td>Generalized Variational Expectation Maximization</td>
</tr>
<tr>
<td>GVI</td>
<td>Generalized Variational Inference</td>
</tr>
<tr>
<td>i.i.d.</td>
<td>independent identically distributed</td>
</tr>
<tr>
<td>IPM</td>
<td>Integral Probability Metric</td>
</tr>
<tr>
<td>ITM</td>
<td>Information-Theoretic Measure</td>
</tr>
<tr>
<td>JS</td>
<td>Jensen–Shannon</td>
</tr>
<tr>
<td>KDE</td>
<td>Kernel Density Estimation</td>
</tr>
<tr>
<td>KL</td>
<td>Kullback–Leibler</td>
</tr>
<tr>
<td>K-NN</td>
<td>K-Nearest Neighbors</td>
</tr>
<tr>
<td>LDR</td>
<td>Log-Distribution Ratio</td>
</tr>
<tr>
<td>LLR</td>
<td>Log-Likelihood Ratio</td>
</tr>
<tr>
<td>LS</td>
<td>Least Squares</td>
</tr>
<tr>
<td>MAML</td>
<td>Model Agnostic Meta-Learning</td>
</tr>
<tr>
<td>MAP</td>
<td>Maximum A Posteriori</td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
</tbody>
</table>
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDL</td>
<td>Minimum Description Length</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Likelihood</td>
</tr>
<tr>
<td>MMD</td>
<td>Maximum Mean Discrepancy</td>
</tr>
<tr>
<td>MRF</td>
<td>Markov Random Field</td>
</tr>
<tr>
<td>OMP</td>
<td>Orthogonal Matching Pursuit</td>
</tr>
<tr>
<td>PAC</td>
<td>Probably Approximately Correct</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>pdf</td>
<td>probability density function</td>
</tr>
<tr>
<td>PGM</td>
<td>Probabilistic Graphical Model</td>
</tr>
<tr>
<td>pmf</td>
<td>probability mass function</td>
</tr>
<tr>
<td>QDA</td>
<td>Quadratic Discriminant Analysis</td>
</tr>
<tr>
<td>RBM</td>
<td>Restricted Boltzmann Machine</td>
</tr>
<tr>
<td>RKHS</td>
<td>Reproducing Kernel Hilbert Space</td>
</tr>
<tr>
<td>rv</td>
<td>random variable, or random vector</td>
</tr>
<tr>
<td>SGD</td>
<td>Stochastic Gradient Descent</td>
</tr>
<tr>
<td>SGLD</td>
<td>Stochastic Gradient Langevin Dynamics</td>
</tr>
<tr>
<td>SG-MCMC</td>
<td>Stochastic Gradient Markov Chain Monte Carlo</td>
</tr>
<tr>
<td>SVGD</td>
<td>Stein Variational Gradient Descent</td>
</tr>
<tr>
<td>TV</td>
<td>Total Variation</td>
</tr>
<tr>
<td>VAE</td>
<td>Variational AutoEncoder</td>
</tr>
<tr>
<td>VC</td>
<td>Vapnik–Chervonenkis</td>
</tr>
<tr>
<td>VCL</td>
<td>Variational Continual Learning</td>
</tr>
<tr>
<td>VEM</td>
<td>Variational Expectation Maximization</td>
</tr>
<tr>
<td>VI</td>
<td>Variational Inference</td>
</tr>
</tbody>
</table>