

Fundamentals of Classical and Modern Error-Correcting Codes

Using easy-to-follow mathematics, this textbook provides comprehensive coverage of block codes and techniques for reliable communications and data storage. It covers major code designs and constructions from geometric, algebraic, and graph-theoretic points of view, decoding algorithms, error-control additive white Gaussian noise (AWGN) and erasure, and reliable data recovery. It simplifies a highly mathematical subject to a level that can be understood and applied with a minimum background in mathematics, provides step-by-step explanation of all covered topics, both fundamental and advanced, and includes plenty of practical illustrative examples to assist understanding. Numerous homework problems are included to strengthen student comprehension of new and abstract concepts, and a solution manual is available online for instructors. Modern developments, including polar codes, are also covered.

This is an essential textbook for senior undergraduates and graduates taking introductory coding courses, students taking advanced full-year graduate coding courses, and professionals working on coding for communications and data storage.

Shu Lin is Adjunct Professor in the Department of Electrical and Computer Engineering at the University of California, Davis, and an IEEE Life Fellow. He has authored and coauthored several books, including *LDPC Code Designs, Constructions, and Unification* (Cambridge University Press, 2016) and *Channel Codes: Classical and Modern* (Cambridge University Press, 2009).

Juane Li is Staff Systems Architect at Micron Technology Inc., San Jose, having previously completed her PhD at the University of California, Davis. She is also a coauthor of *LDPC Code Designs, Constructions, and Unification* (Cambridge University Press, 2016).

Fundamentals of Classical and Modern Error-Correcting Codes

SHU LIN

University of California, Davis

JUANE LI

Micron Technology Inc., San Jose

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/highereducation/isbn/9781316512623

DOI: 10.1017/9781009067928

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow, Cornwall, 2022

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Lin, Shu, 1937- author. | Li, Juane, author.

Title: Fundamentals of classical and modern error-correcting codes / Shu Lin, University of California,

Davis, Juane Li, Micron Technology, San Jose.

Description: Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, 2021. Includes bibliographical references and index.

Identifiers: LCCN 2021025406 (print) | LCCN 2021025407 (ebook) |

ISBN 9781316512623 (hardback) | ISBN 9781009067928 (epub)

Subjects: LCSH: Error-correcting codes (Information theory)

Classification: LCC TK5102.96 .L53 2021 (print) | LCC TK5102.96 (ebook) | DDC 005.7/2-dc23

LC record available at https://lccn.loc.gov/2021025406

LC ebook record available at https://lccn.loc.gov/2021025407

ISBN 978-1-316-51262-3 Hardback

Additional resources for this publication at www.cambridge.org/lin-li

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Li	st of I	Figures		page xiii
Li	st of	Tables		xxi
P^{7}	reface			xxv
A_{ϵ}	cknow	ledgme	nts	xxviii
1	Cod	ing fo	r Reliable Digital Information Transmission	
		Stora	_	1
	1.1		luction	2
	1.2	Categ	gories of Error-Correcting Codes	4
	1.3		lation and Demodulation	6
	1.4	Hard-	Decision and Soft-Decision Decodings	8
	1.5	Maxir	num A Posteriori and Maximum Likelihood Decodings	9
	1.6	Chan	nel Capacity on Transmission Rate	12
	1.7	Classi	fication of Channel Errors	13
	1.8	Error-	-Control Strategies	14
	1.9	Meası	ures of Performance	16
	1.10	Conte	ents of the Book	18
	Refe	rences		23
2	Som	e Eler	ments of Modern Algebra and Graphs	25
	2.1	Group	os Os	25
			Basic Definitions and Concepts	25
			Finite Groups	26
			Subgroups and Cosets	29
	2.2		e Fields	31
			Basic Definitions and Concepts	32
			Prime Fields	35
			Finite Fields with Orders of Prime Powers	36
	2.3		omials over Galois Field GF(2)	39
	2.4		ruction of Galois Field $GF(2^m)$	43
	2.5		Properties and Structures of Galois Field $GF(2^m)$	51
	2.6	_	outations over Galois Field $GF(2^m)$	58
	2.7	A Gei	neral Construction of Finite Fields	59

C_0	ontent	S	vi
	2.8	Vector Spaces over Finite Fields	60
		2.8.1 Basic Definitions and Concepts	60
		2.8.2 Vector Spaces over Binary Field GF(2)	62
		2.8.3 Vector Spaces over Nonbinary Field $GF(q)$	67
	2.9	Matrices over Finite Fields	67
		2.9.1 Concepts of Matrices over GF(2)	67
		2.9.2 Operations of Matrices over GF(2)	69
		2.9.3 Matrices over Nonbinary Field $GF(q)$	73
		2.9.4 Determinants	74
	2.10	Graphs	78
		2.10.1 Basic Definitions and Concepts	78
		2.10.2 Bipartite Graphs	82
	Prob		83
		rences	86
3	Line	ear Block Codes	89
•	3.1	Definitions	89
	3.2		90
	3.3	Systematic Linear Block Codes	96
	3.4	Error Detection with Linear Block Codes	99
	3.5	Syndrome and Error Patterns	102
	3.6	Weight Distribution and Probability of Undetected Error	103
	3.7	Minimum Distance of Linear Block Codes	105
	3.8	Decoding of Linear Block Codes	109
	3.9	Standard Array for Decoding Linear Block Codes	110
	0.0	3.9.1 A Standard Array Decoding	110
		3.9.2 Syndrome Decoding	116
	3 10	Shortened and Extended Codes	118
		Nonbinary Linear Block Codes	120
	Prob	·	120
		rences	123
4	Rins	ary Cyclic Codes	125
_	4.1	Characterization of Cyclic Codes	125
	4.2	Structural Properties of Cyclic Codes	127
	4.3	Existence of Cyclic Codes	131
	4.4	Generator and Parity-Check Matrices of Cyclic Codes	133
	4.5	Encoding of Cyclic Codes in Systematic Form	136
	4.6	Syndrome Calculation and Error Detection	142
	4.7	General Decoding of Cyclic Codes	145
	4.8	Error-Trapping Decoding for Cyclic Codes	150
	4.9	Shortened Cyclic Codes	153
	4.10	Hamming Codes	154
	4.11	Cyclic Redundancy Check Codes	158
	1.11	Quadratic Residue Codes	150

Cc	ntent	S	vii
	4.13	Quasi-cyclic Codes	161
		4.13.1 Definitions and Fundamental Structures	161
		4.13.2 Generator and Parity-Check Matrices in Systematic	
		Circulant Form	163
		4.13.3 Encoding of QC Codes	164
		4.13.4 Generator and Parity-Check Matrices in	
		Semi-systematic Circulant Form	168
		4.13.5 Shortened QC Codes	176
	4.14	Nonbinary Cyclic Codes	176
	4.15	Remarks	177
	Prob	lems	177
	Refe	rences	182
5	BCI	I Codes	185
	5.1	Primitive Binary BCH Codes	185
	5.2	Structural Properties of BCH Codes	190
	5.3	Minimum Distance of BCH Codes	192
	5.4	Syndrome Computation and Error Detection	196
	5.5	Syndromes and Error Patterns	198
	5.6	Error-Location Polynomials of BCH Codes	199
	5.7	A Procedure for Decoding BCH Codes	200
	5.8	Berlekamp-Massey Iterative Algorithm	201
	5.9	Simplification of Decoding Binary BCH Codes	205
		Finding Error Locations and Error Correction	211
		Nonprimitive Binary BCH Codes Remarks	212
	9.12 Prob		216
		rences	216
	Refe	rences	218
6		binary BCH Codes and Reed-Solomon Codes	220
	6.1	Nonbinary Primitive BCH Codes	221
	6.2	Decoding Steps of Nonbinary BCH Codes	224
	6.3	Syndrome and Error Pattern of Nonbinary BCH Codes	225
	6.4	Error-Location Polynomial of Nonbinary BCH Codes	226
	6.5	Error-Value Evaluator	231
	$6.6 \\ 6.7$	Decoding of Nonbinary BCH Codes Key-Equation	232 235
	6.8	Reed-Solomon Codes	$\frac{235}{235}$
	0.0	6.8.1 Primitive Reed–Solomon Codes	236
		6.8.2 Nonprimitive Reed–Solomon Codes	$\frac{230}{237}$
	6.9	Decoding Reed–Solomon Codes with Berlekamp–Massey	201
	0.0	Iterative Algorithm	238
	6.10	Euclidean Algorithm for Finding GCD of Two Polynomials	$\frac{230}{243}$
	6.11		247
		Weight Distribution and Probability of Undetected Error of	
	•	Reed-Solomon Codes	251

$C\alpha$	ontent	S		viii
	6.13	Remai	rks	252
		$_{ m lems}$		252
	Refe	rences		255
7	Fini	te Geo	ometries, Cyclic Finite-Geometry Codes, and	
	Maj	ority-l	Logic Decoding	258
	7.1	Funda	amental Concepts of Finite Geometries	259
	7.2	Major	rity-Logic Decoding of Finite-Geometry Codes	261
	7.3	Euclid	lean Geometries over Finite Fields	266
		7.3.1	Basic Concepts and Properties	266
		7.3.2	A Realization of Euclidean Geometries	269
		7.3.3	Subgeometries of Euclidean Geometries	275
	7.4	Cyclic	Codes Constructed Based on Euclidean Geometries	277
		7.4.1	Cyclic Codes on Two-Dimensional Euclidean Geometries	278
		7.4.2	Cyclic Codes on Multi-Dimensional Euclidean Geometries	
	7.5	Projec	ctive Geometries	288
	7.6		Codes Constructed Based on Projective Geometries	292
	7.7	Remar		296
	Prob	olems		297
	Refe	rences		300
8	Ree	d–Mul	ller Codes	303
	8.1		view of Euclidean Geometries over GF(2)	304
	8.2		ructing RM Codes from Euclidean Geometries over GF(2)	305
	8.3		ling of RM Codes	311
	8.4		ssive Retrieval of Information Symbols	314
	8.5		rity-Logic Decoding through Successive Cancellations	319
	8.6		RM Codes	324
	8.7	Remar		325
	Prob	olems		326
	Refe	rences		327
9	Som	ie Cod	ing Techniques	331
	9.1	Interle		332
	9.2		Product	334
	9.3		atenation	341
		9.3.1	Type-1 Serial Concatenation	342
		9.3.2	Type-2 Serial Concatenation	344
		9.3.3	Parallel Concatenation	346
	9.4	$ \mathbf{u} \mathbf{u} +$	- v -Construction	347
	9.5		ecker Product	348
	9.6	Auton	natic-Repeat-Request Schemes	353
		9.6.1	Basic ARQ Schemes	353
		9.6.2	Mixed-Mode SR-ARQ Schemes	358
		9.6.3	Hybrid ARQ Schemes	359
	Prob	olems		362
	Refe	rences		363

Co	ntent	S	ix
10	Cori	rection of Error-Bursts and Erasures	367
		Definitions and Structures of Burst-Error-Correcting Codes	368
		Decoding of Single Burst-Error-Correcting Cyclic Codes	370
		Fire Codes	373
	10.4	Short Optimal and Nearly Optimal Single	
		Burst-Error-Correcting Cyclic Codes	376
	10.5	Interleaved Codes for Correcting Long Error-Bursts	377
		Product Codes for Correcting Error-Bursts	379
	10.7	Phased-Burst-Error-Correcting Codes	380
		10.7.1 Interleaved and Product Codes	380
		10.7.2 Codes Derived from RS Codes	380
		10.7.3 Burton Codes	381
	10.8	Characterization and Correction of Erasures	382
		10.8.1 Correction of Errors and Erasures over BSECs	383
		10.8.2 Correction of Erasures over BECs	385
		10.8.3 RM Codes for Correcting Random Erasures	388
	10.9	Correcting Erasure-Bursts over BBECs	390
		10.9.1 Cyclic Codes for Correcting Single Erasure-Burst	391
		10.9.2 Correction of Multiple Random Erasure-Bursts	394
	10.10	RS Codes for Correcting Random Errors and Erasures	394
	Prob	lems	402
	Refer	rences	403
11	Intr	oduction to Low-Density Parity-Check Codes	406
	11.1	Definitions and Basic Concepts	407
	11.2	Graphical Representation of LDPC Codes	410
	11.3	Original Construction of LDPC Codes	414
		11.3.1 Gallager Codes	415
		11.3.2 MacKay Codes	416
	11.4	Decoding of LDPC Codes	416
		11.4.1 One-Step Majority-Logic Decoding	418
		11.4.2 Bit-Flipping Decoding	422
		11.4.3 Weighted One-Step Majority-Logic and Bit-Flipping	
		Decodings	425
	11.5	Iterative Decoding Based on Belief-Propagation	427
		11.5.1 Message Passing	428
		11.5.2 Sum-Product Algorithm	429
		11.5.3 Min-Sum Algorithm	436
	11.6	Error Performance of LDPC Codes with Iterative Decoding	439
		11.6.1 Error-Floor	439
		11.6.2 Decoding Threshold	441
		11.6.3 Overall Performance and Its Determinating Factors	442
		Iterative Decoding of LDPC Codes over BECs	446
	11.8	Categories of LDPC Code Constructions	449
	11.9	Nonbinary LDPC Codes	450
	Prob	lems	453
	Refer	rences	456

Contents x

12	-	lic and Quasi-cyclic LDPC Codes on Finite Geometries	464
		Cyclic-FG-LDPC Codes	465
	12.2	A Complexity-Reduced Iterative Algorithm for Decoding	
		Cyclic-FG-LDPC Codes	472
		QC-EG-LDPC Codes	480
		QC-PG-LDPC Codes	487
		Construction of QC-EG-LDPC Codes by CPM-Dispersion	489
		Masking Techniques	493
	12.7	Construction of QC-FG-LDPC Codes by	
		Circulant-Decomposition	496
	12.8	A Complexity-Reduced Iterative Algorithm for Decoding	
		QC-FG-LDPC Codes	503
		Remarks	509
	Prob		511
	Refe	rences	513
13	Part	ial Geometries and Their Associated QC-LDPC Codes	518
		CPM-Dispersions of Finite-Field Elements	518
	13.2	Matrices with RC-Constrained Structure	520
	13.3	Definitions and Structural Properties of Partial Geometries	522
	13.4	Partial Geometries Based on Prime-Order Cyclic Subgroups of	
		Finite Fields and Their Associated QC-LDPC Codes	524
	13.5	Partial Geometries Based on Prime Fields and Their Associated	
		QC-LDPC Codes	531
	13.6	Partial Geometries Based on Balanced Incomplete Block Designs	
		and Their Associated QC-LDPC Codes	538
		13.6.1 BIBDs and Partial Geometries	538
		13.6.2 Class-1 Bose $(N, M, t, r, 1)$ -BIBDs	541
		13.6.3 Class-2 Bose $(N, M, t, r, 1)$ -BIBDs	549
	13.7	Remarks	556
	Prob	lems	556
	Refer	rences	559
14	Oua	si-cyclic LDPC Codes Based on Finite Fields	562
		Construction of QC-LDPC Codes Based on CPM-Dispersion	563
		Construction of Type-I QC-LDPC Codes Based on Two Subsets	000
	11.2	of a Finite Field	564
	14 3	Construction of Type-II QC-LDPC Codes Based on Two Subsets	001
	11.0	of a Finite Field	576
	14 4	Masking-Matrix Design	580
	11.1	14.4.1 Type-1 Design	580
		14.4.2 Type-2 Design	582
		14.4.3 Type-3 Design	584
	14.5	A Search Algorithm for $2 \times 2/3 \times 3$ SM-Constrained Base	501
	11.0	Matrices for Constructing Rate-1/2 QC-LDPC Codes	586
	14.6	Designs of 2×2 SM-Constrained RS Base Matrices	590
	11.0	2 0010 01 2 / 2 0111 Combitation 160 Date Mantines	000

Cc	ontent	S	XI
	14.8 14.9 14.10 14.11 14.12 Prob	Construction of Type-III QC-LDPC Codes Based on RS Codes Construction of QC-RS-LDPC Codes with Girths at Least 8 A Special Class of QC-RS-LDPC Codes with Girth 8 Optimal Codes for Correcting Two Random CPM-Phased Erasure-Bursts Globally Coupled LDPC Codes Remarks lems rences	592 598 603 608 612 619 623
15	Grai	oh-Theoretic LDPC Codes	628
		Protograph-Based LDPC Codes	629
	15.2	${\bf A\ Matrix-Theoretic\ Method\ for\ Constructing\ Protograph-Based}$	
		LDPC Codes	640
		Masking Matrices as Protomatrices	655
		LDPC Codes on Progressive Edge-Growth Algorithms	670
	Prob	Remarks	676 677
		cences	679
	10101	CHCCS	013
16		ective Encoding and Soft-Decision Decoding of Cyclic es of Prime Lengths in Galois Fourier Transform	684
	16.1	Cyclic Codes of Prime Lengths and Their	
		Hadamard Equivalents	685
	16.2	Composing, Cascading, and Interleaving a Cyclic Code of	
		Prime Length and Its Hadamard Equivalents	688
		16.2.1 Composing	688
	100	16.2.2 Cascading and Interleaving	689
		Galois Fourier Transform of ICC Codes Structural Properties of CET ICC Codes	692
		Structural Properties of GFT-ICC Codes Collective Encoding of GFT-ICC-LDPC Codes	694 696
		Collective Iterative Soft-Decision Decoding of	090
	10.0	GFT-ICC-LDPC Codes	698
	16.7		700
		16.7.1 Performance Measurements	700
		16.7.2 Complexity	701
	16.8	Joint Decoding of RS Codes with GFT-ISDD Scheme	701
	16.9	Joint Decoding of BCH Codes with GFT-ISDD Scheme	706
		Joint Decoding of QR Codes with GFT-ISDD Scheme	709
	16.11	Code Shortening and Rate Reduction	710
		16.11.1 Shortened GFT-ICC Codes	710
		16.11.2 Reductions of Code Rate	713
		Erasure Correction of GFT-ICC-RS-LDPC Codes	715
		Remarks	717
	Prob	lems	717
	Katar	concoc	-7 T U

Content	S	xii
17 Pola	ar Codes	721
	Kronecker Matrices and Their Structural Properties	721
	Kronecker Mappings and Their Logical Implementations	724
	Kronecker Vector Spaces and Codes	735
	Definition and Polarized Encoding of Polar Codes	738
	Successive Information Retrieval from a Polarized Codeword	741
17.6	Channel Polarization	744
	17.6.1 Some Elements of Information Theory	745
	17.6.2 Polarization Process	747
	17.6.3 Channel Polarization Theorem	760
17.7	Construction of Polar Codes	766
17.8	Successive Cancellation Decoding	768
	17.8.1 SC Decoding of Polar Codes of Length $N=2$	770
	17.8.2 SC Decoding of Polar Codes of Length $N=4$	773
	17.8.3 SC Decoding of Polar Codes of Length $N=2^{\ell}$	778
17.9	Remarks	779
Prob	olems	780
Refe	rences	781
Appen	dix A Factorization of $X^n + 1$ over $GF(2)$	784
Appen	dix B A $2 \times 2/3 \times 3$ SM-Constrained Masked Matrix	
	ch Algorithm	785
Appen	dix C Proof of Theorem 14.4	786
Appen	dix D The 2×2 CPM-Array Cycle Structure of the	
	$\mathbf{mer} \ \mathbf{Graph} \ \mathbf{of} \ C_{\mathbf{RS},n}(2,n)$	791
Appen	dix E Iterative Decoding Algorithm for Nonbinary	
LDI	PC Codes	793
E.1	Introduction	793
E.2	Algorithm Derivation	794
	E.2.1 VN Update	795
	E.2.2 CN Update: Complex Version	795
	E.2.3 CN Update: Fast Hadamard Transform Version	796
E.3	The Nonbinary LDPC Decoding Algorithm	800
Index		802

Figures

1.1	block diagram of a typical data-transmission (or data-storage)	
	system	page 2
1.2	A simplified model of a coded system	4
1.3	A binary convolutional encoder with $k = 1$, $n = 2$, and $m = 2$	6
1.4	Transition probability diagrams: (a) BSC and (b) BI-DMC	8
1.5	A coded communication system with binary-input and	
	N-ary-output discrete memoryless AWGN channel	10
1.6	The two-state Gilbert–Elliott model	14
1.7	Models for (a) BEC and (b) BSEC, where p_e represents the	
	erasure probability and p_t represents the error probability	15
1.8	The BER performances of a coded communication using a	
	(127, 113) binary block code	17
1.9	Shannon limit E_b/N_0 (dB) as a function of code rate R	18
2.1	A graph with seven nodes and eight edges	79
2.2	Simple graphs	80
2.3	A bipartite graph	82
3.1	Systematic format of codewords in an (n,k) linear block code	96
3.2	Decoding regions for linear block codes	110
4.1	An encoding circuit for an (n, k) cyclic code with generator	
	polynomial $\mathbf{g}(X) = 1 + g_1 X + \dots + g_{n-k-1} X^{n-k-1} + X^{n-k}$	139
4.2	An encoding circuit for the $(7,4)$ cyclic code given in Example 4.5	140
4.3	Syndrome calculation circuit for an (n, k) cyclic code	143
4.4	Syndrome calculation circuit for the $(7,4)$ cyclic code in	
	Example 4.7	143
4.5	A general cyclic code decoder	147
4.6	A Meggitt decoder for the $(7,4)$ cyclic code in Example 4.8	149
4.7	An error-trapping decoder for cyclic codes	151
4.8	A Hamming code decoder	156
4.9	A CSRAA encoder circuit	166
4.10	A CSRAA-based QC code encoder	167
5.1	An error-location search and correction circuit	212
6.1	A decoding block diagram of a q -ary BCH decoder	233
6.2	Error performances of the (255, 239) and (255, 223) RS codes	
	over $GF(2^8)$	243

xiii

List o	of Figures	xiv
7.1	A five-point finite geometry	260
7.2	Error performances of the (1057, 813) cyclic PG code	
	$C_{\rm PG}(2,2^5)$ in Example 7.12 decoded with the OSMLD	296
7.3	A six-point finite geometry	297
9.1	A product codeword array $\mathbf{v}_{1\times 2}$	335
9.2	Diagonal transmission of a codeword array in a cyclic	
	product code	340
9.3	A turbo codeword array	341
9.4	A type-1 serial concatenated coding system	342
9.5	A type-2 serial concatenated coding system	344
9.6	A parallel concatenated coding system	346
9.7	Stop-and-wait ARQ	354
9.8	Go-back-N ARQ with $N=4$	355
9.9	Selective-repeat ARQ	355
9.10	An SR/GBN-ARQ scheme with $\lambda = 1$ and $N = 4$	359
10.1	An error-trapping decoder for l -burst-error-correcting	
	cyclic codes	372
10.2	An error-trapping decoder for the $(5,1,1)$ -Fire code	
	in Example 10.1	375
10.3	Mathematical models: (a) BEC and (b) BSEC	383
11.1	The Tanner graph of the (10,6) LDPC code given in Example 11.1	413
11.2	The Tanner graph of the (15,7) LDPC code given in Example 11.2	413
11.3	Message passing from VN v_i to its neighbor (or adjacent) CNs	429
11.4	Message passing from CN c_i to its neighbor (or adjacent) VNs	429
11.5	A VN decoder in an SPA decoder	430
11.6	A CN decoder in an SPA decoder	431
11.7	A Tanner graph with a cycle of length 4 and message passing	432
11.8	A plot of the $\phi(x)$ function together with its approximates	
	$2e^{-x}$ and $\log(x/2)$	435
11.9	The BER performances of the (4095, 3367) LDPC code given	
	in Example 11.12 decoded with the OSML, BF, weighted BF,	
	MSA, and SPA decodings	438
11.10	The error-floor phenomenon	439
11.11	The BER and BLER performances of the (3934, 3653) LDPC	
	code given in Example 11.13 decoded with SPA and MSA	440
11.12	(a) The Tanner graph of the (10,6) LDPC code given in	
	Example 11.1, (b) a $(4,2)$ trapping set, and (c) a $(3,2)$	
	elementary trapping set	443
11.13	The BER and BLER performances of the (4095, 3367) LDPC	
	code given in Example 11.12 decoded with 5, 10, 50, and 100	
	iterations of the MSA	447
11.14	The UEBR and UEBLR performances of the (4095, 3367)	
	cyclic finite-geometry LDPC code given in Example 11.12	
	over a BEC	448
11.15	Two stopping sets of the (10,6) LDPC code given in Example 11.1	448

List c	f Figures	XV
11.16	The Tanner graph of the 8-ary $(10,5)$ LDPC code given in	
	Example 11.14	452
12.1	The BER and BLER performances of the (1023, 781)	
	cyclic-EG-LDPC code $C_{\rm EG,cyc}(2,2^5)$ given in Example 12.1	
	decoded with 5, 10, and 50 iterations: (a) SPA and (b) MSA	467
12.2	The UEBR and UEBLR performances of the (1023, 781)	
	cyclic-EG-LDPC code $C_{\rm EG,cyc}(2,2^5)$ given in Example 12.1	
	over the BEC	468
12.3	The error performances of the (4095, 3367) cyclic-EG-LDPC	
12.0	code given in Example 12.3 over: (a) AWGN channel and (b) BEC	470
12.4	The BER and BLER performances of the (1057,813)	110
12.4	cyclic-PG-LDPC code given in Example 12.4	471
12.5	The BER and BLER performances of the (4095, 3367)	411
12.0	-	
	cyclic-EG-LDPC code in Example 12.5 using the RMSA with	170
10.0	$\ell = 819$ and $f = 5$	478
12.6	The BER and BLER performances of the (4095, 3367)	
	cyclic-EG-LDPC code decoded using the RMSA with $\ell=1$	4=0
	and $f = 16380$ given in Example 12.6	479
12.7	The BER and BLER performances of the (1057,813)	
	cyclic-PG-LDPC code given in Example 12.7 decoded with	
	the RMSA using two grouping sizes: (a) $\ell = 151$, $f = 16$, and	
	(b) $\ell = 244, f = 8$	481
12.8	The BER and BLER performances of the (1023, 909)	
	QC-EG-LDPC code given in Example 12.9	486
12.9	The BER and BLER performances of the (3780, 3543)	
	QC-EG-LDPC code given in Example 12.10	487
12.10	The BER and BLER performances of the (906, 662)	
	QC-PG-LDPC code given in Example 12.11	488
12.11	The BER and BLER performances of the (2016, 1779)	
	QC-EG-LDPC code given in Example 12.13	492
12.12	The performances of the (16 384, 15 363) QC-EG-LDPC code	
	given in Example 12.14 over: (a) AWGN channel and (b) BEC	494
12 13	The BER and BLER performances of the unmasked	101
12.10	(2048, 1027) and the masked (2048, 1024) QC-EG-LDPC	
	codes given in Example 12.15	496
19 14	The BER and BLER performances of the (8176, 7156)	430
12.14		
	QC-EG-LDPC code given in Example 12.16: (a) MSA and	FO1
10.15	(b) hardware MSA decoder	501
12.15	The BER and BLER performances of the (4088, 2044)	
	QC-EG-LDPC code given in Example 12.17	502
12.16	The BER and BLER performances of the (4599, 3068)	
	QC-EG-LDPC code given in Example 12.18	503
12.17	The BER and BLER performances of the (2016, 1779)	
	QC-EG-LDPC code $C_{\rm EG,qc}(4,32)$ given in Example 12.20	
	decoded with the CPM-RMSA of different sizes of decoding	
	matrices: (a) $\ell = 1$ and (b) $\ell = 3$	510

List o	of Figures	xvi
13.1	The performances of the (961, 840) QC-RS-PaG-LDPC code	
10.1	given in Example 13.4 over: (a) AWGN channel and (b) BEC	529
13.2	The BER and BLER performances of the (7921, 7568)	020
	QC-RS-PaG-LDPC code $C_{RS,PaG,c}(4,89)$ and the (7921, 7566)	
	PEG code C_{peg} given in Example 13.5	531
13.3	The BER and BLER performances of the two	
-0.0	QC-RS-PaG-LDPC codes given in Example 13.6:	
	(a) (5696, 5343) and (b) (2848, 2495)	532
13.4	(a) The BER and BLER performances of the (11 584, 10 863)	
10.1	QC-PaG-LDPC code $C_{\text{PaG},p}(4,64)$ in Example 13.8 and	
	(b) the BER performances of the four codes in Example 13.8	537
13.5	The performances of the (1016, 508) QC-PaG-LDPC code	
10.0	given in Example 13.9 over: (a) AWGN channel and (b) BEC	539
13.6	The BER and BLER performances of the (776, 680)	330
10.0	QC-BIBD-PaG-LDPC code $C_{\text{PaG,BIBD},1}(4,32)$ given in	
	Example 13.12	545
13.7	The performances of the (44713, 41781) and (23456, 20524)	0 10
10	QC-BIBD-PaG-LDPC codes given in Example 13.13 over: (a)	
	AWGN channel and (b) BEC	548
13.8	The BER and BLER performances of the four	010
10.0	QC-BIBD-PaG-LDPC codes given in Example 13.14	549
13.9	The BER and BLER performances of the (3934, 3653)	0 10
10.0	QC-BIBD-PaG-LDPC code given in Example 13.15	552
13 10	The BER and BLER performances of the two	002
10.10	QC-BIBD-PaG-LDPC codes given in Example 13.16 over the	
	AWGN channel: (a) (20512, 17951) and (b) (5128, 2564)	554
13 11	The UEBR and UEBLR performances of the two	001
10.11	QC-BIBD-PaG-LDPC codes given in Example 13.16 over the	
	BEC: (a) (20512, 17951) and (b) (5128, 2564)	555
14.1	The BER and BLER performances of the (180, 128)	000
	QC-LDPC code given in Example 14.2	567
14.2	The performances of the (5080, 4589) QC-LDPC code	00.
1 1.2	$C_{\rm s,qc}(4,40)$ given in Example 14.3 over: (a) AWGN channel	
	and (b) BEC	569
14.3	The performances of the unmasked (1016, 525) and masked	000
11.0	(1016, 508) QC-LDPC codes given in Example 14.3 over:	
	(a) AWGN channel and (b) BEC	570
14.4	The BER performances of nine QC-LDPC codes in	0.0
11.1	Example 14.4	572
14.5	The BER and BLER performances of the (16 120, 15 345)	012
11.0	QC-LDPC code given in Example 14.5	573
14.6	The BER and BLER performances of the three QC-LDPC	010
11.0	codes given in Example 14.6	575
14.7	The BER and BLER performances of the (4064, 3572)	5.0
	QC-LDPC code $C_{\rm s,qc}(4,32)$ given in Example 14.7	577
	~	J. 1

List o	f Figures	xvii
14.8	The BER and BLER performances of the (8192, 7171)	
11.0	QC-LDPC code given in Example 14.8	578
14.9	The BER and BLER performances of the (3440, 2755) and	
_	(6880, 6195) QC-LDPC codes given in Example 14.9	580
14.10	The BER performances of the nine QC-LDPC codes in	
	Example 14.10	583
14.11	The BER and BLER performances of the unmasked	
	(3960, 2643) and the masked (3960, 2640) QC-LDPC codes in	
	Example 14.11	584
14.12	The BER and BLER performances of the unmasked	
	(5280, 3305) and the masked (5280, 3302) QC-LDPC codes in	
	Example 14.12	586
14.13	The BER and BLER performances of the (504, 252)	
	QC-LDPC code $C_{\rm s,qc,mask}(4,8)$ and two other $(504,252)$	
	LDPC codes given in Example 14.13	590
14.14	The performances of the (32 704, 30 153) QC-RS-LDPC code	
	given in Example 14.14 over: (a) AWGN channel and (b) BEC	595
14.15	The BER and BLER performances of the two QC-RS-LDPC	
	codes given in Example 14.15	596
14.16	The BER and BLER performances of the (5696, 4985)	
	QC-RS-LDPC code given in Example 14.16	598
14.17	The BER and BLER performances of the unmasked	
	(4088, 2047) and the masked (4088, 2044) QC-RS-LDPC codes	
	given in Example 14.17	601
14.18	The BER and BLER performances of the unmasked (680, 343)	
	and the masked (680, 340) QC-RS-LDPC codes given in	
	Example 14.18	604
14.19	The BER and BLER performances of the unmasked	
	(2040, 1025) and masked (2040, 1020) QC-RS-LDPC codes	
	given in Example 14.19	606
14.20	The BER and BLER performances of the four QC-RS-LDPC	
	codes given in Example 14.20	608
14.21	The performances of the (4672, 4383) QC-RS-LDPC code in	
	Example 14.22 over: (a) AWGN channel and (b) BEC	613
14.22	The performances of the (15 876, 14 871) and (15 876, 13 494)	
	CN-QC-GC-LDPC codes given in Examples 14.23 and 14.24,	
	respectively, over: (a) AWGN channel and (b) BEC	617
15.1	(a) The protograph \mathcal{G}_{ptg} , (b) three copies of the protograph	
	$\mathcal{G}_{\mathrm{ptg}}$ and the grouping of their VNs and CNs, and (c) the	
	connected bipartite graph $\mathcal{G}_{ptg}(3,3)$ given in Example 15.1	634
15.2	(a) The protograph \mathcal{G}_{ptg} , (b) the bipartite graph $\mathcal{G}_{ptg,2}$, (c)	
	the performances of the (680, 340) QC-PTG-LDPC code, and	
	(d) the performances of the (4088, 2044) QC-PTG-LDPC code	
	given in Example 15.2	638

List c	f Figures	xviii
15.3	The UEBR and UEBLR performances of the (680, 340) and (4088, 2044) QC-PTG-LDPC codes given in Example 15.2 over BEC	639
15.4	(a) The protograph \mathcal{G}_{ptg} and (b) the BER and BLER performances of the (5792, 2896) QC-PTG-LDPC code given in Example 15.3	641
15.5	The performances of the (2640, 1320) QC-PTG-LDPC code given in Example 15.6 over: (a) AWGN channel and (b) BEC	652
15.6	The protograph \mathcal{G}_0 specified by the protomatrix \mathbf{B}_0 given by (15.29)	653
15.7	(a) The protograph \mathcal{G}_{ptg} and (b) the BER and BLER performances of the (3060, 2040) QC-PTG-LDPC code given in Example 15.7	654
15.8	The BER and BLER performances of the (8176,7156) QC-PTG-LDPC code given in Example 15.8	657
15.9	The BER and BLER performances of the (4080, 3060) QC-PTG-LDPC code given in Example 15.10	660
15.10	(a) The BER and BLER performances of the (3969, 3213) QC-PTG-LDPC code $C_{\rm ptg,qc}$ given in Example 15.11 and the (3969, 3213)* QC-LDPC code $C_{\rm qc}^*$ in [33] and (b) the BER and BLER performances of the (8001, 6477) QC-PTG-LDPC code given in Example 15.11	671
15.11	Tree representation of the neighborhood $N_{v_i}^{(l)}$ within depth l of a VN v_i	673
	The BER and BLER performances of the (4088, 2044) LDPC codes constructed by the PEG and ACE-PEG algorithms in Example 15.12	676
	The Tanner graph of an SC-LDPC code	676
16.1 16.2	A collective encoding scheme for a GFT-ICC-LDPC code $C_{\rm LDPC}$ A collective iterative soft-decision decoding scheme for a	696
16.3	GFT-ICC-LDPC code $C_{\rm LDPC}$ The FER and BLER performances of the (31,25) RS code given in Example 16.5 decoded by the GFT-ISDD/MSA and other decoding algorithms	699 704
16.4	(a) The FER and BLER performances of the (127,119) RS code given in Example 16.6 decoded by the GFT-ISDD/MSA and other decoding algorithms and (b) the average number of iterations required to decode the (127,119) RS code in	
16.5	Example 16.6 vs. E_b/N_0 (dB) The BLER performances of the (127, 113) BCH code given in Example 16.7 decoded by the GFT-ISDD/MSA, BM-HDDA,	705
16.6	and MLD The BLER performances of the (127, 120) Hamming code given in Example 16.8 decoded by the GFT-ISDD/MSA, the	707
	BM-HDDA, and MLD	708

List of Figures		xix
16.7	The BLER performances of the (23, 12) Golay code given in Example 16.9 decoded by the GFT-ISDD/MSA, HDDA, and MLD	710
16.8	(a) The BLER performances of the shortened $(64,58)$ RS code over $GF(2^7)$ and the $(127,121)$ RS code over $GF(2^7)$ and (b) the BLER performances of the shortened $(32,26)$ RS code over $GF(2^7)$ and the $(127,121)$ RS code over $GF(2^7)$ given in Example 16.10 decoded by the GFT-ISDD/MSA and the	
	BM-HDDA	714
16.9	The BLER performances of the $(16129,11970)$ QC-LDPC	
	code $C_{\text{BCH,LDPC}}(6,6,\ldots,6)$ in Example 16.11 decoded by the	715
171	GFT-ISDD/MSA The 1 feld Vermacher manning circuit	715
17.1	The 2 fold Knonecker mapping circuit	725
17.2	The 2-fold Kronecker mapping circuit The 3-fold Kronecker mapping circuit	728 730
17.3 17.4	The ℓ -fold Kronecker mapping circuit	733
17.4	(a) Two identical and independent channels W and (b) a	100
17.0	combined 1-fold vector channel W^2	747
17.6	(a) A combined vector channel with W^+ as the base channel	141
11.0	and (b) a combined vector channel with W^- as the base channel	751
17.7	(a) A combined vector channel W^4 and (b) the combined	101
11.1	vector channel W^4 after rewire	752
17.8	A combined vector channel W^8	755
17.9	An ℓ -level channel polarization tree	759
	The information transmission using the $(8,4)$ polar code	100
	$C_{\rm p}(4,3)$ given in Example 17.8 over the BEC vector channel	
	W^8 with the base BEC channel BEC(0.5)	761
17.11	The bit-coordinate channel capacities for BEC channel	
	polarization with (a) $N = 16$ and (b) $N = 64$ for BEC(0.5)	762
17.12	The bit-coordinate channel capacities for BEC channel	
	polarization with (a) $N = 256$ and (b) $N = 1024$ for BEC(0.5)	763
17.13	The bit-coordinate channel capacities for BEC channel	
	polarization after sorting with (a) $N=16$ and (b) $N=64$ for	
	BEC(0.5)	764
17.14	The bit-coordinate channel capacities for BEC channel	
	polarization after sorting with (a) $N=256$ and (b) $N=1024$	
	for $BEC(0.5)$	765
	Block diagram of a polar coded system	769
17.16	A block diagram of the SC decoding process for a polar code of length $N=2^\ell$	770
17 17	An SC decoder for a polar code of length $N=2$	770
	An SC decoder for a polar code of length $N=2$ A tree structure of an SC decoder of size $N=2$	771 773
	An SC decoder with size $N = 4$	774
	The SC decoding process of a polar code of length $N=4$	774
	Message-passing and decision trees in decoding a polar code	114
11.41	of length 4 with SC decoding	776

List of Figures		XX
17.22	The UEBR and UEBLR of the (256, 128) polar code over	
	BEC decoded with the SC decoding in Example 17.20	779
C.1	Location patterns of six configurations of a cycle-6 C_6	789
E.1	Diagram of implementation of $\mathbf{P} = \mathbf{p}\mathbf{H}_{16}$	799
E.2	Diagram of implementation of $\mathbf{P} = \mathbf{p}_0^7 \mathbf{H}_8$	799
E.3	Diagram of the fast Hadamard transform	800

Tables

1.1	A binary block code with $\kappa = 4$ and $n = 7$	$page$ \mathfrak{I}
1.2	Shannon limits, E_b/N_0 (dB), of a binary-input	
	continuous-output AWGN channel with BPSK signaling for	
	various code rates	19
2.1	The additive group $G = \{0, 1\}$ with modulo-2 addition	27
2.2	The additive group $G = \{0, 1, 2, 3, 4, 5, 6\}$ with modulo-7 additional additional contents of the second of the	on 27
2.3	The multiplicative group $G = \{1, 2, 3, 4, 5, 6\}$ with modulo-7	
	multiplication	28
2.4	The additive group $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ under modulo-8	
	addition	30
2.5	A subgroup $S = \{0, 2, 4, 6\}$ of G given in Table 2.4 under	
	modulo-8 addition	30
2.6	The prime field GF(2) under modulo-2 addition and multiplication	n 35
2.7	The field GF(7) under modulo-7 addition and multiplication	36
2.8	A list of primitive polynomials over GF(2)	43
2.9	$GF(2^4)$ generated by $p(X) = 1 + X + X^4$ over $GF(2)$	50
2.10	$GF(2^3)$ generated by $p(X) = 1 + X + X^3$ over $GF(2)$	56
2.11	$GF(2^6)$ generated by $p_1(X) = 1 + X + X^6$ over $GF(2)$	56
2.12	The prime field GF(3) under modulo-3 addition and multiplication	n 60
2.13	$GF(3^2)$ generated by $p(X) = 2 + X + X^2$ over $GF(3)$	60
2.14	The vector space \mathbf{V}_5 over $\mathrm{GF}(2)$ given in Example 2.18	66
2.15	A subspace S and its dual space \mathbf{S}_d in \mathbf{V}_5 given in Example 2.18	66
3.1	A codebook for a $(6, 3)$ linear block code over $GF(2)$	91
3.2	The dual code C_d of the $(6,3)$ linear block code C given by	
	Table 3.1	94
3.3	The $(7,4)$ linear block code generated by the matrix G given	
	by (3.13)	95
3.4	The $(7,3)$ linear block code generated by the matrix H (as a	
	generator matrix) given by (3.14)	95
3.5	A standard array for an (n, k) linear block code	111
3.6	A standard array for the (6,3) code given in Example 3.11	111
3.7	A look-up table for syndrome decoding	116
3.8	A syndrome look-up decoding table for the $(6,3)$ linear block code	e 117
4.1	A (7,4) cyclic code generated by $\mathbf{g}(X) = 1 + X + X^3$	133

xxi

List	of Tables	xxii
4.2	The (7,4) systematic cyclic code generated by	
	$\mathbf{g}(X) = 1 + X + X^3$ in Example 4.4	138
4.3	The register contents of syndrome calculation circuit of the	
	$(7,4)$ cyclic code with $\mathbf{r} = (0\ 0\ 1\ 1\ 1)$	143
4.4	A syndrome look-up decoding table for the (7,4) cyclic code	110
1.1	given in Example 4.8	148
4.5	Decoding steps for the (7,4) cyclic code given in Example 4.8	149
4.6	A list of standardized CRC codes	158
4.7	A list of QR codes	160
4.8	The eight codewords of the $(6,3)$ QC code C_{qc} given in	100
1.0	Example 4.12	162
4.9	The eight codewords of the $(6,3)$ QC code C_{qc} given in	102
1.0	Example 4.13	163
5.1	Binary primitive BCH codes of lengths less than 2 ¹⁰	187
$5.1 \\ 5.2$	Weight distribution of the dual code of a	101
0.2	double-error-correcting binary primitive BCH code of length	
	$n = 2^m - 1$, where $m \ge 3$ and m is odd	195
5.3	Weight distribution of the dual code of a	190
5.5		
	double-error-correcting binary primitive BCH code of length	105
E 1	$n=2^m-1$, where $m \geq 4$ and m is even	195
5.4	Weight distribution of the dual code of a	
	triple-error-correcting binary primitive BCH code of length	100
	$n=2^m-1$, where $m \geq 5$ and m is odd	196
5.5	Weight distribution of the dual code of a	
	triple-error-correcting binary primitive BCH code of length	100
	$n=2^m-1$, where $m \geq 6$ and m is even	196
5.6	Berlekamp–Massey iterative procedure for finding the	200
	error-location polynomial of a BCH code	203
5.7	Steps for finding the error-location polynomial of	
	$\mathbf{r}(X) = X^3 + X^5 + X^{12}$ for the (15,5) BCH code given in	
	Example 5.3	206
5.8	Steps for finding the error-location polynomial of	
	$\mathbf{r}(X) = X + X^3 + X^5 + X^7$ for the (15,5) BCH code given in	200
	Example 5.3	206
5.9	A simplified Berlekamp–Massey iterative procedure for finding	
	the error-location polynomial of a binary BCH code	207
5.10	Steps for finding the error-location polynomial of the binary	
	(15,5) BCH code given in Example 5.4	207
5.11	GF(2 ⁵) generated by the primitive polynomial	
	$\mathbf{p}(X) = 1 + X^2 + X^5$	209
5.12	Steps for finding the error-location polynomial of	
	$\mathbf{r}(X) = 1 + X^{12} + X^{20}$ for the binary (31, 16) BCH code in	
	Example 5.5	210
5.13	Steps for finding the error-location polynomial of	
	$\mathbf{r}(X) = X + X^3 + X^5 + X^7$ for the binary (31, 16) BCH code	
	in Example 5.5	210

List	ist of Tables x	
5.14	$\mathrm{GF}(2^6)$ generated by $\mathbf{p}(X)=1+X+X^6$ over $\mathrm{GF}(2)$	214
6.1	Berlekamp–Massey iterative procedure for finding the	
	error-location polynomial of a nonbinary BCH code	230
6.2	Steps for finding the error-location polynomial of the received	
	polynomial $\mathbf{r}(X)$ for the 4-ary (15,9) BCH code in Example 6.3	230
6.3	Steps for finding the error-location polynomial of the received	
	polynomial $\mathbf{r}^*(X)$ for the 4-ary (15,9) BCH code in Example 6.3	231
6.4	$GF(2^3)$ generated by $\mathbf{p}(X) = 1 + X + X^3$ over $GF(2)$	237
6.5	Steps for finding the error-location polynomial of $\mathbf{r}(X)$ for the	
	16-ary $(15,9)$ RS code over $GF(2^4)$ in Example 6.7	239
6.6	Steps for finding the error-location polynomial of $\mathbf{r}(X)$ for the	
	32-ary (31, 25) RS code in Example 6.8	241
6.7	Euclidean algorithm for finding the GCD of two polynomials	
	$\mathbf{a}(X)$ and $\mathbf{b}(X)$ over $\mathrm{GF}(q)$	246
6.8	Euclidean iterative algorithm for finding the GCD of two	
	polynomials $\mathbf{a}(X)$ and $\mathbf{b}(X)$ over GF (2 ⁴) in Example 6.9	246
6.9	Euclidean algorithm for finding error-location polynomial	
	$\sigma(X)$ and error-value evaluator $\mathbf{Z}_0(X)$	248
6.10	Euclidean iterative algorithm for decoding the 16 -ary $(15,9)$	
	RS code given in Example 6.10	249
6.11	Euclidean iterative algorithm for decoding the 32 -ary $(31, 25)$	
	RS code given in Example 6.11	250
7.1	$GF(2^4)$ generated by $\mathbf{p}(X) = 1 + X + X^4$ over $GF(2)$	272
7.2	$GF(2^4)$ as an extension field of $GF(2^2) = \{0, 1, \beta, \beta^2\}$ with $\beta = \alpha^5$	272
7.3	$GF(2^6)$ as an extension field of $GF(2^2) = \{0, 1, \beta, \beta^2\}$ with $\beta = \alpha^{21}$	273
7.4	Four parallel bundles of lines of $EG(3, 2^2)$ over $GF(2^2)$	274
7.5	Two cyclic classes of lines of $EG^*(3, 2^2)$ over $GF(2^2)$	276
7.6	A list of two-dimensional EG codes	281
7.7	Lines of the projective geometry $PG(2, 2^2)$ over $GF(2^2)$	292
7.8	A list of two-dimensional PG codes	294
9.1	The 16 codewords of the $(7,4)$ Hamming code	337
10.1	A list of Fire codes which have true burst-error-correcting	
	capabilities larger than their designed values [27]	375
10.2	A list of optimal and nearly optimal cyclic and shortened	
	cyclic l -burst-error-correcting codes [25]	376
10.3	Euclidean steps to find the solution $(\sigma(X), \mathbf{Z}_0(X))$ of the	
	key-equation for decoding the (15,9) RS code in Example 10.15	399
11.1	Decoding thresholds under IDBP for LDPC codes over AWGN	
	channels	441
12.1	$GF(2^4)$ as an extension field of $GF(2^2) = \{0, 1, \beta, \beta^2\}$ with $\beta = \alpha^5$	484
13.1	A list of bs for which $12b + 1$ is a prime and the field	
	GF(12b+1) satisfies the condition given by (13.11)	542
13.2	A list of bs for which $20b + 1$ is a prime and the field	
	GF(20b+1) satisfies the condition given by (13.19)	550
14.1	The nine QC-LDPC codes given in Example 14.4	571
14.2	The nine QC-LDPC codes constructed in Example 14.10	582

List c	f Tables	xxiv
14.3	Numbers of 4×8 masked base matrices over various fields $GF(q)$ that give rate-1/2 QC-LDPC codes with girths 8 or 10	
	for $\eta = 1$	588
14.4	Numbers of 4×8 masked matrices over GF(331) that give rate-1/2 QC-LDPC codes with girths 8 and 10 for different choices of η s	589
15.1	The nonzero constituent matrices of the protomatrix $\mathbf{B}_{\text{ptg},2}$ and the locations of their 1-entries with decomposition factor $k=85$ given in Example 15.5	648
15.2	The nonzero constituent matrices of the protomatrix $\mathbf{B}_{\text{ptg},2}$ and the locations of their 1-entries with decomposition factor $k=511$ given in Example 15.5	649
15.3	The nonzero constituent matrices of the protomatrix $\mathbf{B}_{\text{ptg},2}$ and the locations of their 1-entries with decomposition factor $k=330$ given in Example 15.6	650
15.4	The nonzero constituent matrices of the protomatrix ${f B}_{{ m ptg},2}$ and the locations of their 1-entries with decomposition factor	
15.5	k = 255 given in Example 15.7 The nonzero constituent matrices of the protomatrix \mathbf{B}_{ptg} and the locations of their 1-entries with decomposition factor	653
	k = 511 given in Example 15.8	656
15.6	The generators of the circulants in the array $\mathbf{H}_{\text{ptg,qc}}(511,511)$ given in Example 15.8 and the locations of their 1-entries	656
15.7	The nonzero constituent matrices of the protomatrix $\mathbf{B}_{\mathrm{ptg}}$ and the locations of their 1-entries with decomposition factor	
15.8	k = 330 given in Example 15.9 The nonzero constituent matrices of the protomatrix \mathbf{B}_{ptg} and the locations of their 1-entries with decomposition factor	658
	k = 255 given in Example 15.10	659
15.9	Column and row weight distributions of the 12×63	0.01
15.10	protomatrix $\mathbf{B}_{\mathrm{ptg}}$ used in Example 15.11 The nonzero constituent matrices of the protomatrix $\mathbf{B}_{\mathrm{ptg}}$ and the locations of their 1-entries with decomposition factor	661
	k = 63 given in Example 15.11	662
	The entries of $\mathbf{H}_{ptg,qc}(63,63)$ given in Example 15.11 The nonzero constituent matrices of the protomatrix \mathbf{B}_{ptg} and the locations of their 1-entries with decomposition factor	665
	k = 127 given in Example 15.11	666
	The entries of $\mathbf{H}_{\mathrm{ptg,qc}}(127,127)$ given in Example 15.11	669
16.1	$GF(2^3)$ generated by $\mathbf{p}(X) = 1 + X + X^3$ over $GF(2)$	688
17.1	The 2-fold Kronecker mappings of the 16 4-tuples over $GF(2)$ Factorization of $X^n + 1$ over $GF(2)$ with $1 < n < 31$	727
A.1	ractorization of $A = \pm 1$ over $Gr(2)$ with $1 \leq h \leq 51$	784

Preface

One of the serious problems in a digital data communication or storage system is the occurrence of errors caused by noise and interference in communication channels or imperfections in storage mediums. A major concern to the communication or storage-system designers is the control of these errors such that reliable transmission or storage of data can be achieved. In 1948, Shannon demonstrated in a landmark paper that by proper encoding and decoding of the data, errors induced by a noisy channel or imperfect storage medium can be reduced to any desired level without sacrificing the rate of information transmission or storage, as long as the information rate is less than the capacity of the channel or the storage medium. Since Shannon's work, a tremendous amount of research effort has been expended on the problems of devising efficient encoding and decoding methods and techniques for error control on noisy channels or imperfect storage mediums. As a result of this research effort, various efficient encoding and decoding methods and techniques have been developed to achieve the reliability required by today's explosive high-speed and large-volume digital communication and storage systems.

Much of the work on error-correcting codes (or error-control codes) developed since 1948 is highly mathematical in nature, and a thorough understanding requires an extensive background in modern algebra, combinatorial mathematics, and graph theory. This requirement may impede senior and first-year graduate students in electrical and computer engineering who are interested in learning and pursuing research in coding theory, and practicing engineers in industry who are interested in applying error-control coding techniques to practical systems.

One of the objectives of this book is to bring this highly complex material down to a reasonably simple level such that it can be understood and applied with a minimum background in mathematics. To achieve this objective, we take a middle ground between mathematical rigor and heuristic reasoning as the first author did in his first book on the introduction to error-correcting codes published in 1970. Because of the extensive developments in error-correcting codes over the past 50 years, it is not possible to include certain categories of error-correcting codes in this book. The main coverage of this book is the fundamental and essential aspects of codes with block structure, called block codes, and their up-to-date developments in construction, encoding, and decoding techniques. The presentation of these subjects is intended to be comprehensive. In

Preface xxvi

presenting every step of each topic in the book, illustrative examples are given to assist the readers to follow and fully understand the topic with a minimum barrier. Furthermore, derivations and long proofs that are not helpful in illustration of a topic are avoided. Long essential derivations or proofs of any topic are put in the appendices or referred to in published article(s).

In the following, a brief description of major coverage in each chapter is presented. Chapter 1 gives a brief overview of coding for error control in information transmission and data storage. Chapter 2 provides the readers with an elementary knowledge of modern algebra and graph theory that will aid in understanding the fundamental and essential aspects of error-correcting codes to be developed in the other chapters of the book. Chapter 3 gives an introduction to block codes with linear structure, called linear block codes, their structural properties, and general decoding methods. Chapter 4 introduces two special categories of linear block codes with cyclic and quasi-cyclic structures, called cyclic codes and quasi-cyclic codes, respectively. Also presented in this chapter are two small classes of cyclic codes, known as Hamming and quadratic-residue (QR) codes.

Chapters 5 and 6 present two well-known classes of cyclic codes constructed based on finite fields, called the Bose–Chaudhuri–Hocquenghem (BCH) and the Reed–Solomon (RS) codes. These two classes of cyclic codes have been widely used in digital-communication and data-storage systems. Major topics covered in these two chapters include code constructions, characterizations, and decoding algorithms. Presented in Chapter 7 are two classes of cyclic codes constructed based on two categories of finite geometries, named Euclidean and projective geometries. Finite-geometry codes in these two classes are low-density parity-check (LDPC) codes, which can be decoded with iterative soft-decision algorithms based on belief-propagation to achieve good error performance with practical implementation complexity.

Chapter 8 presents another well-known class of linear block codes, called Reed–Muller (RM) codes, for correcting multiple random errors. RM codes can be decoded with a simple majority-logic decoding algorithm using a successive-cancellation process. Chapter 9 presents several coding techniques that are commonly used in communication and storage systems for reliable information transmission and data storage. These coding techniques include: (1) interleaving; (2) direct product; (3) concatenation; (4) turbo coding; (5) $|\mathbf{u}|\mathbf{u}+\mathbf{v}|$ -construction; (6) Kronecker (or tensor) product; and (7) automatic-request-retransmission (ARQ) schemes. Chapter 10 presents various types of codes and coding techniques for correcting bursts of errors, random erasures, bursts of erasures, and combinations of random errors and erasures. Also presented in this chapter is a simple successive-peeling algorithm for correcting random erasures.

Chapter 11 introduces LDPC codes which can achieve near-capacity (or close to Shannon-limit) performance with iterative soft-decision decoding based on belief-propagation over various communication and data-storage channels. Many LDPC codes have been adopted as standard codes for various current and next-generation communication systems. Major aspects covered in this chapter include: (1) basic concepts and characteristics; (2) matrix and graphical representations; (3) various iterative decoding algorithms based on

Preface xxvii

belief-propagation; and (4) error performances over binary-input additive white Gaussian noise (AWGN) and erasure channels.

Chapters 12–14 present three classes of cyclic and quasi-cyclic LDPC codes that are constructed based on finite and partial geometries, finite fields, and experimental designs. These LDPC codes achieve good error performance on both binary-input AWGN and binary-erasure channels. Also included in these chapters are two reduced-complexity iterative decoding algorithms and a technique, called masking, for performance enhancement of LDPC codes. Chapter 15 presents two graphical methods for constructing LDPC codes, known as protograph and progressive-edge-growth methods. LDPC codes constructed based on protographs form a class of channel capacity approaching codes.

Chapter 16 presents a universal coding scheme for collective encoding and collective iterative soft-decision decoding of cyclic codes of prime lengths in the frequency domain. Collective encoding and decoding allows for reliability in information sharing among the received codewords during the decoding process. This collective decoding and information sharing can achieve a decoding gain over the maximum-likelihood decoding of individually received codewords. Collective encoding and decoding of BCH, RS, and QR codes are covered in this chapter.

Chapter 17 presents a class of channel-capacity-approaching codes, called polar codes. Essential aspects covered in this chapter include: (1) Kronecker matrices, mappings, and vector spaces; (2) polar codes from Kronecker mapping point of view; (3) multilevel encoding of polar codes; (4) construction of polar codes based on channel polarization; and (5) successive-cancellation decoding of polar codes.

Except for the first chapter, all other chapters contain a good number of problems. The problems are of various types, including those that require routine calculations, those that require computer solution or simulation, those that require derivations and proofs, and those that require designs and performance analysis. The problems are selected to strengthen students' or engineers' knowledge of the materials in each chapter.

This book can be used as a text for an introductory course on coding at the senior or beginning-graduate level or a more-comprehensive full-year graduate course. It can also be used as a self-guide for practicing engineers and computer scientists in industry who desire to learn the fundamentals and essentials of coding aspects and how they can be applied to the design of error-control systems. For a one-semester introductory course, the fundamentals presented in Chapters 1-6 and some selected topics in Chapters 7-11 can be used. For a two-semester sequence in coding theory, the first 10 chapters in fundamentals of coding can be used for the first semester and remaining chapters on advanced coding topics in the second semester. The book can also be used as a text for one-semester advanced-graduate course focused on LDPC and polar codes and collective encoding and decoding of cyclic codes of prime lengths. In this case, the instructor could use Chapters 11–17 or selected topics from Chapters 4–8. Furthermore, the materials covered in Chapters 1–4 can be used as supplementary subjects for an undergraduate course in information theory or digital-communication systems.

Acknowledgments

The first author (Shu Lin) would like to take this opportunity to acknowledge the late Professor Paul E. Pfeiffer, the late Professor Wesley W. Peterson, the late Professor Tadao Kasami, and Professor Franklin F. Kuo, who motivated, inspired, and guided him into the wonderful, elegant, and practically useful domain of coding theory at the beginning of his research career. Professor Pfeiffer was his thesis advisor at Rice University. Professor Peterson and Professor Kasami were two pioneers in coding theory, and Professor Peterson wrote the first and most influential book on error-correcting codes. Professor Kou is one of the founders of the Aloha system. Next, the first author would like to thank Professor Ian F. Blake, Professor Dan J. Costello, Jr., Professor Khaled A. S. Abdel-Ghaffar, and Professor William E. Ryan who closely worked with him over many years and helped him to broaden his knowledge in coding theory and its applications in digital communication and data-storage systems. Professor Costello is also his coauthor of two other books.

The most important person behind the first author during the past 57 years, which include the final two years of his graduate study and his entire teaching and research career, is his wife, Ivy. Without her love, support, tolerance, and comfort, as well as raising their three children, his teaching and research career would not have reached as many students or lasted as long as it has. She even took a course in modern algebra to understand what the author was working on at the beginning of his teaching career and to improve their communication. Any success the first author has, he owes to her. She is the one who encouraged him to write this book with his coauthor. So, it is here the first author says to his wife, I love you. Also, the first author would like to give his love and special thanks to his children, their spouses, and grandchildren for their continuing love and affection through the years.

The second author (Juane Li) expresses her sincere gratitude to her advisors, Professor Shu Lin and Professor Khaled A. S. Abdel-Ghaffar, for their valuable guidance, support, and encouragement during her graduate study at the University of California at Davis and during days after her graduation. Professor Lin has rich knowledge, profound ideas, and endless enthusiasm in the error-correcting coding research area. Professor Abdel-Ghaffar is knowledgeable, mathematically rigorous, precise, and patient with students. These two professors' critical and constructive suggestions have pushed her work to a higher

xxviii

Acknowledgments xxix

level. She also owes a special debt of gratitude to her family for their affection, encouragement, and support over the years.

Both authors are very grateful to Professor Ian F. Blake, Professor Harry Tan, Professor Shih-Chun Chang, Professor William E. Ryan, and Professor Khaled A. S. Abdel-Ghaffar who expended tremendous effort in reading through this book in detail and provided critical comments and numerous valuable suggestions. They would also like to express their appreciation to Professor Qin Huang and Professor Mona Nasseri, Dr. Keke Liu, and Dr. Xin Xiao for their contributions to several topics in this book. They also acknowledge the talented Dr. Zijian Wu who provided such a beautiful photograph of a lotus for the cover image of their book. Last but not least, the authors would like to thank Dr. Julie Lancashire at Cambridge University Press. Without her strong encouragement, warm support, and patience, we would not have been able to bring this book to fruition. Julie, you are a top and thoughtful editor and a good friend.

