Nonequilibrium Statistical Physics

Second Edition

Statistical mechanics is hugely successful when applied to physical systems at thermodynamic equilibrium; however, most natural phenomena occur in nonequilibrium conditions, and more sophisticated techniques are required to address this increased complexity. This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering essential topics such as Langevin equations, Lévy processes, fluctuation relations, transport theory, directed percolation, kinetic roughening, and pattern formation. The first part of the book introduces the underlying theory of nonequilibrium physics, the second part develops key aspects of nonequilibrium phase transitions, and the final part covers modern applications. A pedagogical approach has been adopted for the benefit of graduate students and instructors, with clear language and detailed figures used to explain the relevant models and experimental results. With the inclusion of original material and organizational changes throughout the book, this updated edition will be an essential guide for graduate students and researchers in nonequilibrium thermodynamics.

Roberto Livi is an honorary professor of theoretical physics at the University of Florence and an associate member of the National Institute of Nuclear Physics and of the Institute for Complex Systems of the National Research Council. His research is focused on nonequilibrium statistical physics, and he has extensive experience teaching courses on statistical physics. He is the current president of the Italian Society of Statistical Physics.

Paolo Politi is a research director at the Institute for Complex Systems of the National Research Council and a fellow of the Marie Curie Association, the Alexander von Humboldt Foundation, and the Japan Society for the Promotion of Science. He currently teaches a course on stochastic processes and nonequilibrium statistical physics at the University of Florence. He was awarded the Outreach Prize of the Italian Physical Society.

Nonequilibrium Statistical Physics

A Modern Perspective

Second Edition

Roberto Livi

University of Florence

Paolo Politi

Institute for Complex Systems of the National Research Council (CNR), Florence

CAMBRIDGE

Cambridge University Press & Assessment 978-1-316-51230-2 — Nonequilibrium Statistical Physics Roberto Livi , Paolo Politi Frontmatter <u>More Information</u>

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316512302

DOI: 10.1017/9781009058230

© Cambridge University Press & Assessment 2025

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

When citing this work, please include a reference to the DOI 10.1017/9781009058230

First published 2025

A catalogue record for this publication is available from the British Library

A Cataloging-in-Publication data record for this book is available from the Library of Congress

ISBN 978-1-316-51230-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CAMBRIDGE

Cambridge University Press & Assessment 978-1-316-51230-2 — Nonequilibrium Statistical Physics Roberto Livi , Paolo Politi Frontmatter <u>More Information</u>

> Dedicated to the memory of Angelo Baracca (1939–2023) and Jacques Villain (1934–2022)

Contents

Prefac	e to the Second Edition	<i>page</i> xiii	
Acknow	vledgments	XV	
Notatie	xvi		
List of	Abbreviations	xvii	
1 Kine	tic Theory and the Boltzmann Equation	1	
1.1	Historical Perspective	2	
1.2	Kinetic Theory	4	
	1.2.1 The Ideal Gas	4	
	1.2.2 Transport Phenomena	7	
1.3	Distribution Function in Molecular Space	10	
1.4	Time Evolution of the Distribution Function	12	
1.5	The H-theorem in the Spatially Uniform Case	18	
1.6	The H-theorem in the Nonuniform Case	22	
1.7	Evolution toward Equilibrium and Transport Phenomena	27	
	1.7.1 Additive Invariants	29	
	1.7.2 Hydrodynamics of the Inviscid Flow	32	
	1.7.3 Hydrodynamics: First-order Approximation	34	
1.8	Bibliographic Notes	38	
2 Brow	nian Motion, Langevin, and Fokker–Planck Equations	39	
2.1	The Origins of Stochastic Processes 40		
2.2	Brownian Motion	41	
	2.2.1 Random Walk: A Basic Model of Diffusion	44	
	2.2.2 The Langevin Equation for the Brownian Particle	47	
	2.2.3 The Fokker–Planck Equation for the Brownian Particle	50	
2.3	Discrete Time Stochastic Processes	52	
	2.3.1 Markov Chains	52	
	2.3.2 Basic Examples of Markov Chains	55	
	2.3.3 Random Walk with Absorbing Barriers	58	
	2.3.4 Ergodic Markov Chains	61	
	2.3.5 Master Equation and Detailed Balance	63	
	2.3.6 Monte Carlo Method	64	
2.4	Continuous Time Stochastic Processes	66	
	2.4.1 Continuous Time Master Equation	67	
	2.4.2 Equilibrium States versus Stationary States	68	

vii

viii	Contents			
		2.4.3 Stochastic Differential Equations	70	
		2.4.4 The Langevin Equation and Detailed Balance	74	
		2.4.5 General Fokker–Planck Equation	76	
		2.4.6 Physical Applications of the Fokker–Planck Equation	78	
	2.5	A Different Pathway to the Fokker–Planck Equation	83	
		2.5.1 First Exit Time and the Arrhenius Formula	86	
	2.6	Bibliographic Notes	90	
	3 Fluct	tuations and Their Probability	91	
	3.1	Links between Statistics and Physics	92	
	3.2	The Central Limit Theorem	94	
	3.3	Large Deviations	97	
		3.3.1 The Bimodal Distribution	98	
		3.3.2 The Exponential Distribution	99	
		3.3.3 The Cramer Function	100	
		3.3.4 Power Law Distributions	102	
		3.3.5 Extreme Value Statistics	103	
	3.4	Random Matrices	104	
	3.5	Generalized Random Walks	106	
		3.5.1 Continuous Time Random Walk	107	
		3.5.2 Lévy Walks	115	
		3.5.3 Anomalous Diffusion: A Summary	118	
	3.6	Statistical Fluctuations between Equilibrium and Out-of-equilibrium	119	
	3.7	Einstein's Approach	121	
	3.8	Stochastic Thermodynamics: An Introduction	126	
		3.8.1 Jarzynski Equality	127	
		3.8.2 Crooks Fluctuation Theorem	130	
		3.8.3 Fluctuation Theorem for a NESS	135	
	3.9	Bibliographic Notes	140	
	4 Linea	ar Response Theory and Transport Phenomena	141	
		A Theoretical Basis for Transport Processes	142	
	4.2	The Kubo Formula for the Brownian Particle	144	
	4.3	Generalized Brownian Motion	146	
	4.4	Linear Response to an External Force	148	
		4.4.1 Linear Response and Fluctuation–Dissipation Relation	150	
		4.4.2 Work Done by a Time-Dependent Field	154	
		4.4.3 Simple Applications of Linear Response Theory	155	
	4.5	Hydrodynamics and the Green–Kubo Relation	160	
	4.6	Generalized Linear Response Function	165	
		4.6.1 Onsager Regression Relation and Time Reversal	167	
	4.7	Entropy Production, Fluxes, and Thermodynamic Forces	169	
		4.7.1 Nonequilibrium Conditions between Macroscopic Systems	169	
		4.7.2 Phenomenological Equations	172	

ix	Contents			
		4.7.3 Variational Principle	175	
		4.7.4 Nonequilibrium Conditions in a Continuous System	177	
	4.8	Physical Applications of Onsager Reciprocity Relations	180	
		4.8.1 Coupled Transport of Neutral Particles	180	
		4.8.2 Onsager Theorem and Transport of Charged Particles	184	
	4.9	Bibliographic Notes	196	
5	From	Equilibrium to Out-of-Equilibrium Phase Transitions:		
	Drive	n Lattice Gases	198	
	5.1	The Importance of Phase Transitions	199	
	5.2	Basic Concepts and Tools of Equilibrium Phase Transitions	200	
		5.2.1 Phase Transitions and Thermodynamics	200	
		5.2.2 Phase Transitions and Statistical Mechanics	203	
		5.2.3 Landau Theory of Critical Phenomena	206	
		5.2.4 Critical Exponents and Scaling Hypothesis	211	
		5.2.5 Phenomenological Scaling Theory	214	
		5.2.6 Scale Invariance and Renormalization Group	216	
		5.2.7 Equilibrium Phase Transitions Do Not Generally Exist in One		
		Dimension	221	
	5.3	The Model of Katz, Lebowitz, and Spohn	222	
	5.4	The (T)ASEP Models	224	
		5.4.1 ASEP with Periodic Boundary Conditions	225	
		5.4.2 TASEP with Open Boundary Conditions	227	
	5.5	Symmetry Breaking: The Bridge Model	231	
		5.5.1 Mean-Field Solution	233	
		5.5.2 Exact Solution for $\beta \ll 1$	235	
	5.6	Bibliographic Notes	240	
6	Absor	bing Phase Transitions	242	
	6.1	From Isotropic to Directed Percolation	243	
	6.2	The Domany–Kinzel Model of Cellular Automata	245	
		6.2.1 Contact Processes	249	
	6.3	The Phase Transition in DP-Like Systems	250	
		6.3.1 Control Parameters, Order Parameters, and Critical Exponents	250	
		6.3.2 Phenomenological Scaling Theory	254	
		6.3.3 Mean-Field Theory	256	
	6.4	Beyond the DP Universality Class	259	
		6.4.1 More Absorbing States	259	
		6.4.2 Conservation Laws	263	
	6.5	Self-Organized Critical Models	264	
		6.5.1 The Bak–Tang–Wiesenfeld Model	267	
	6.6	Bibliographic Notes	269	

Х	Contents				
	7 Stoch	nastic Dynamics of Surfaces and Interfaces	271		
	7.1	The Physics of Growth Processes	272		
	7.2	Roughness: Definition, Scaling, and Exponents	274		
	7.3	Deposition Models	278		
		7.3.1 The Random Deposition Model	278		
		7.3.2 Random Deposition with Relaxation	279		
		7.3.3 Deposition without Conservation	281		
	7.4	Self-Similarity and Self-Affinity	283		
	7.5	Symmetries and Power Counting: Toward Langevin-Type Equations	285		
	7.6	The Edwards–Wilkinson Equation	290		
		7.6.1 Dimensional Analysis	292		
		7.6.2 The Scaling Functions	294		
	7.7	The Kardar–Parisi–Zhang Equation	299		
		7.7.1 Overview of KPZ versus Dimension d	299		
		7.7.2 The Galilean (or Tilt) Transformation	301		
		7.7.3 Exact Exponents in $d = 1$	305		
		7.7.4 Beyond the Exponents	308		
		7.7.5 Experimental Results	310		
	7.8	Nonlocal Models	312		
	7.9	Bibliographic Notes	317		
	8 Phase	e-Ordering Kinetics	319		
	8.1	The Equilibrium Phase Diagrams	320		
	8.2	Quenching and Relaxation to Equilibrium	325		
		8.2.1 The Langevin Approach	328		
	8.3	The Correlation Function and the Structure Factor	333		
	8.4	The Coarsening Law in Ising-Like Systems: Nonconserved Dynamics	338		
		8.4.1 The Continuum Picture in Any Dimension	338		
		8.4.2 The Discrete Picture in $d = 1$	342		
	8.5	The Coarsening Law in Ising-Like Systems: Conserved Dynamics	346		
		8.5.1 The Continuum Picture in $d > 1$	346		
		8.5.2 The Discrete Picture in $d = 1$	350		
	8.6	Domain Size Distribution	352		
	8.7	The Coarsening Law in Nonscalar Systems	354		
	8.8	The Classical Nucleation Theory	362		
		8.8.1 The Becker–Döring Theory	364		
	8.9	Bibliographic Notes	369		
	9 High	lights on Pattern Formation	370		
	9.1	Pattern Formation in the Laboratory and the Real World	370		
	9.2	Linear Stability Analysis and Bifurcation Scenarios	374		
	9.3	The Turing Instability	380		
		9.3.1 Linear Stability Analysis	381		
		9.3.2 The Brusselator Model	385		

xi	Contents	
	9.4 Periodic Steady States	387
	9.5 Energetics	393
	9.6 Nonlinear Dynamics for Pattern-Forming Systems: The Envelope Equation	395
	9.7 The Eckhaus Instability	399
	9.8 Phase Dynamics	403
	9.9 Back to Experiments9.10 Bibliographic Notes	406 408
	7.10 Diolographie Roles	400
	Appendix A Binary Elastic Collisions in the Hard Sphere Gas	410
	Appendix B Maxwell–Boltzmann Distribution in the Uniform Case	414
	Appendix C Physical Quantities from the Boltzmann Equation	
	in the Nonuniform Case	416
	Appendix D Outine of the Chapman–Enskog Method	420
	Appendix E First-order Approximation to Hydrodynamics	424
	Appendix F Spectral Properties of Stochastic Matrices	427
	Appendix G Reversibility and Ergodicity in a Markov Chain	429
		-
	Appendix H The Ising Model	431
	Appendix I The Deterministic KPZ Equation and the Burgers Equation	440
	Appendix J Stochastic Differential Equation for the Energy of the Brownian Particle	446
	Appendix K The Kramers—Moyal Expansion	448
	Appendix L Probability Distributions	450
	Appendix M The Diffusion Equation and the Random Walk	452
	Appendix N Linear Response in Quantum Systems	460
	Appendix 0 Mathematical Properties of Response Functions	469
	Appendix P The Van der Waals Equation	473
	Appendix Q Derivation of the Ginzburg–Landau Free Energy	477

xii	Contents	
	Appendix R The Perturbative Renormalization Group for KPZ	480
	Appendix S TASEP: Map Method and Simulations	484
	Appendix T Bridge Model: Mean-field and Simulations	489
	Appendix V The Allen–Cahn Equation	494
	Appendix V The Gibbs–Thomson Relation	496
	Appendix W The Rayleigh–Bénard Instability	498
	Appendix X General Conditions for the Turing Instability	504
	Appendix Y Steady States of the One-Dimensional TDGL Equation	506
	Appendix Z Multiscale Analysis	507
	Index	510

Preface to the Second Edition

The first edition of this book was published in 2017, and it was motivated by the desire to provide a textbook rather than a monograph. For this reason, its writing was led by the ambition to be as didactic as possible. On the other hand, the subject covered by its title, *Nonequilibrium Statistical Physics*, is potentially boundless: We made the choice to balance standard topics (Brownian motion, Langevin and Fokker–Planck equations, and linear response theory), more modern but inescapable subjects (transport processes and nonequilibrium phase transitions), and a personal selection of other topics (kinetic roughening, phase-ordering kinetics, and pattern formation).

Years after its publication, having discussed with many colleagues and having had the opportunity to use the book for our second-level master course, we thought that an enlarged and improved second edition might make sense from a scientific/pedagogical point of view. Fortunately, the first edition was successful enough to also make sense from an editorial point of view. We have therefore proposed a second edition whose main differences with the first edition are the addition of two new chapters and the heavy rewriting of four old chapters.

The new material is now contained in Chapters 1 and 3. The first chapter, "Kinetic Theory and the Boltzmann Equation" is completely new, while the third one, "Fluctuations and Their Probability," contains pedagogical introductions to large deviations and to stochastic thermodynamics. It also contains a discussion on generalized random walks, which is now framed in a more homogeneous context. Chapters 2 and 4, the core of standard topics of the first edition, are reissued with few changes.

The two old chapters on nonequilibrium phase transitions have instead been reorganized so as to distinguish between driven lattice models, Chapter 5, and absorbing phase transitions, Chapter 6. The next two chapters, Chapter 7 on kinetic roughening and Chapter 8 on phase ordering, have been rewritten to make them clearer and more fluid. Finally, Chapter 9 on pattern formation is almost unchanged.

Each chapter is accompanied by an opening, followed by an introductory section, and is closed by a final section with bibliographic notes. The reading of opening and introduction is recommended for those who aim at framing the great deal of methods and concepts contained in the book and specifically in each chapter. The final section lists some bibliographic advices for the specific chapter. A few suggested, general readings are: P. M. Chaikin and T. C. Lubensky, *Principles of Condensed Matter Physics* (Cambridge University Press, 2000); D. Chandler, *Introduction to Modern Statistical Mechanics* (Oxford University Press, 1987); P. L. Krapivsky, S. Redner, and E. Ben-Naim, *A Kinetic View of Statistical Physics* (Cambridge University Press, 2010); L. Peliti, *Statistical Mechanics*

xiii

xiv

Preface to the Second Edition

in a Nutshell (Princeton University Press, 2011); and J. P. Sethna, *Statistical Mechanics: Entropy, Order Parameters, and Complexity* (Oxford University Press, 2006).

The book is complemented by a dedicated website: https://sites.google.com/site/ nespbook/. Readers are encouraged to report any errata or share their comments via the email address provided on the site.

Acknowledgments

Some colleagues have read and commented on parts of the book. So it is a great pleasure to thank Federico Corberi, Joachim Krug, and Alessandro Sarracino. Discussions with many colleagues helped us to clarify several questions. We are especially grateful to Franco Bagnoli, Filippo Colomo, Peter Grassberger, and Ruggero Vaia. Filippo Cherubini is acknowledged for having produced many figures of the book. PP thanks the Alexander von Humboldt Foundation for financial support, allowing him to spend a month at the Institute for Theoretical Physics of the University of Cologne to work on the present edition of this book.

xv

© in this web service Cambridge University Press & Assessment

Notations

Throughout this book, we assume the Boltzmann constant ($K_{\rm B} = 1.380658 \times 10^{-23} \, {\rm J \, K^{-1}}$) to be equal to 1, which corresponds to measuring the temperature in joules or energy in kelvin.

We often use the symbol $N_A = 6.022141 \times 10^{23}$ to indicate the Avogadro number.

The space dimension is indicated by d.

As for the Fourier transform, we use the same symbol in the real and dual spaces, using the following conventions:

$$h(\mathbf{k}) = \int d\mathbf{x} \exp(-i\mathbf{k} \cdot \mathbf{x})h(\mathbf{x}),$$

$$h(\mathbf{x}) = \frac{1}{(2\pi)^d} \int d\mathbf{k} \exp(i\mathbf{k} \cdot \mathbf{x})h(\mathbf{k})$$

Similarly, for the Laplace transform,

$$\begin{split} \omega(s) &= \int_0^\infty dt e^{-st} \omega(t), \\ \omega(t) &= \frac{1}{2\pi i} \mathrm{PV} \int_{a-i\infty}^{a+i\infty} ds e^{st} \omega(s). \end{split}$$

Here, PV is the principal value of the integral and $a > a_c$, with a_c being the abscissa of convergence.

The friction coefficient of a particle of mass m, that is, the ratio between the force F_0 acting on it and its terminal drift velocity v_{∞} , is indicated by the symbol $\tilde{\gamma} = F_0/v_{\infty}$, but we frequently use the reduced friction coefficient, $\gamma = \tilde{\gamma}/m$, which has the dimension of the inverse of time. Similar reduced quantities are used in the context of Brownian motion.

The Helmholtz free energy is indicated by the symbol F = U - TS, and the free-energy density is indicated by f. We often use a free-energy functional, also called pseudo-free-energy functional or Lyapunov functional, and it is indicated by \mathcal{F} . It is the space integral of a function f, $\mathcal{F} = \int d\mathbf{x} f$. The susceptibility, indicated by χ , may be an extensive as well as an intensive quantity, depending on the context.

We use *O* and *o* to indicate the big and small *O* notations. For example, $\sin x = x + o(x)$ or $\sin x = x + O(x^3)$ for vanishing *x*.

When in the main text we cite a scientist, at the first occasion, we add their given name and nationality. If the family name of a scientist is only used to define an effect, an equation, or a model, we generally do not add further information.

xvi

Abbreviations

ASEP	asymmetric simple exclusion process
BD	ballistic deposition
BTW	Bak–Tang–Wiesenfeld
CA	cellular automaton
CDP	compact directed percolation
СН	Cahn–Hilliard
CIMA	chlorite-iodide-malonic-acid
CTRW	continuous time random walk
DK	Domany–Kinzel
dKPZ	deterministic Kardar–Parisi–Zhang
DLA	diffusion limited aggregation
DLG	driven lattice gas
DP	directed percolation
DyP	dynamical percolation
DW	domain wall
emf	electromotive force
EW	Edwards–Wilkinson
GL	Ginzburg–Landau
GOE	Gaussian orthogonal ensemble
GUE	Gaussian unitary ensemble
HD	high density
KLS	Katz-Lebowitz-Spohn
KMC	kinetic Monte Carlo
KPZ	Kardar–Parisi–Zhang
LD	low density
LG	lattice gas
LW	Lévy walk
MC	maximal current
MF	mean field
NESS	nonequilibrium steady state
PC	parity conserving
pdf	probability distribution function
PV	principal value
QFT	quantum field theory
RD	random deposition

xvii

(C) in this web service Cambridge University Press & Assessment

TW

WV

Tracy-Widom

Wolf-Villain

xviii	List of Abbreviations		
	RDR	random deposition with relaxation	
	RG	renormalization group	
	RSOS	restricted solid on solid	
	SH	Swift–Hohenberg	
	SOC	self-organized criticality	
	SS	single step	
	TASEP	totally asymmetric simple exclusion process	
	TDGL	time-dependent Ginzburg Landau	

© in this web service Cambridge University Press & Assessment