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STRONGLY REGULAR GRAPHS

Strongly regular graphs lie at the intersection of statistical design, group theory,
finite geometry, information and coding theory, and extremal combinatorics. This
monograph collects all the major known results together for the first time in book
form, creating an invaluable text that researchers in algebraic combinatorics and
related areas will refer to for years to come. The book covers the theory of strongly
regular graphs, polar graphs, rank 3 graphs associated to buildings and Fischer
groups, cyclotomic graphs, two-weight codes and graphs related to combinatorial
configurations such as Latin squares, quasi-symmetric designs and spherical
designs. It gives the complete classification of rank 3 graphs, including some new
constructions. More than 100 graphs are treated individually. Some unified and
streamlined proofs are featured, along with original material including a new
approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in
mathematics or mathematical science and for which a detailed development of the
abstract theory is less important than a thorough and concrete exploration of the
implications and applications.

Books in the Encyclopedia of Mathematics and Its Applications cover their
subjects comprehensively. Less important results may be summarized as exercises at
the ends of chapters. For technicalities, readers can be referred to the bibliography,
which is expected to be comprehensive. As a result, volumes are encyclopedic
references or manageable guides to major subjects.
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Preface

The present volume is a monograph on the topic of Strongly Regular Graphs. So far,

no book-length treatment of this subject area has been available.

The topic of strongly regular graphs is an area where statistics, Euclidean geometry,

group theory, finite geometry, and extremal combinatorics meet. The subject concerns

beautifully regular structures, studied mostly using spectral methods, group theory,

geometry and sometimes lattice theory.

Roughly around 1970–1980, Algebraic Combinatorics came up as a separate

branch in mathematics. It turned out that the same structures were studied in statistics

(for the design of experiments), in Euclidean geometry (e.g. in the construction

of systems of equiangular lines), in group theory (where several sporadic groups

arise as automorphism groups of a strongly regular graph), in coding theory (where

association schemes provide a tool for obtaining bounds on the size of codes, and

beautiful structures give rise to good and easy-to-decode codes), in the theory of

special functions (where the spectral data of association schemes give rise to series of

orthogonal polynomials), in finite geometry (where collinearity graphs of polar spaces

are strongly regular), in extremal combinatorics, in cryptography, and elsewhere.

More recently such very regular structures find some application in the theory of

quantum computation (e.g. for mutually unbiased bases (MUBs) and symmetric,

informationally complete, positive operator-valued measures (SICPOVMs)).

Axiomatizing the combinatorial information in the action of a finite permutation

group � on a set � yields a hierarchy of combinatorial structures. A general group

gives the structure of coherent configuration. For a transitive group one finds an

association scheme. If the representation is multiplicity-free, the pair (�, �), where�

is the point stabilizer in �, is called a Gelfand pair. The corresponding combinatorial

object is a commutative association scheme. If � is generously transitive, one finds

a symmetric association scheme. The simplest nontrivial case is that of a strongly

regular graph, the combinatorial analog of a rank 3 group, where � has three orbits

on � × � .

xv
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xvi Preface

Delsarte’s 1973 thesis1 defined the concept of (commutative) association scheme

and showed the use of the linear programming bound. Bannai & Ito2 introduced the

term ‘algebraic combinatorics’, described as ‘character-theoretical study of combi-

natorial objects’, or ‘group theory without groups’. Brouwer, Cohen & Neumaier3

published a monograph on distance-regular graphs (that is, �- and �-polynomial

association schemes) of diameter at least 3 (where the strongly regular graphs are

precisely the distance-regular graphs of diameter 2). They wrote ‘Another book would

be required to cover the present knowledge about strongly regular graphs (no such

book is available at present)’. The present monograph fills this gap.

Various teams of authors, starting around 1980 with Van Lint and the present first

author, contemplated writing such a book, but for various reasons such a project was

never completed. Many years later J. I. Hall, at a 2011 meeting in Oisterwijk, again

commented on the lack of a good source of information about strongly regular graphs

more recent than Hubaut’s 1975 survey,4 and the project was rekindled.

This book was started with the aim to give the classification of rank 3 graphs and to

describe these graphs, possibly as members of larger families, and give information

such as parameters, group, cliques, cocliques, local structure, and characterization.

Later, the project was widened to include the theory of general strongly regular

graphs.

The bulk of the material is more or less well known. Many details are new. In

particular, we give information about regular subsets that is often new. Our approach

to the (affine) half spin graphs of rank 5 hyperbolic polar spaces is original and based

on the idea of ‘thickening’ the Clebsch graph. We felt free to omit proofs that are

rather technical, or that do not fit naturally into the line of development of the book.

Chapter 1 contains the fundaments. Chapters 2 and 3 find the finite polar geometries

in a uniform way and describe the related graphs and substructures. Chapter 4 is a

brief introduction to buildings,5 and provides an explicit and elementary construction

of the finite buildings of types E6 and G2. Chapter 5 is a very short introduction to the

geometry related to the Fischer groups.6 For later use, lax embeddings of symplectic

copolar spaces are studied. Chapter 6 gives the main facts on the Golay codes and

Witt designs, and contains a very short introduction to the Leech lattice.7 Chapter 7 is

about cyclotomy and difference sets, and the relation to two-weight codes. Chapter 8

contains combinatorial material that is partly new, with, for example, discussions of

orthogonal arrays, quasi-symmetric designs, partial geometries, regular two-graphs,

1 Ph. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep.
Suppl. 10 (1973).

2 E. Bannai & T. Ito, Algebraic Combinatorics I, Benjamin, 1984.

3 A. E. Brouwer, A. M. Cohen & A. Neumaier, Distance-Regular Graphs, Springer, 1989.

4 X. L. Hubaut, Strongly regular graphs, Discr. Math. 13 (1975) 357–381.

5 For a monograph, see P. Abramenko & K. S. Brown, Buildings, Theory and Applications, Springer,
2008.

6 For a monograph on the group theoretical side, see M. Aschbacher, 3-Transposition Groups, Cambridge
University Press, 1997.

7 For a monograph, see J. H. Conway & N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer,
1988.
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Preface xvii

spherical designs, randomness properties and much more. Chapter 9 discusses the

�-rank of the adjacency matrix, in some cases a useful invariant that may distinguish

graphs with the same parameters. The long Chapter 10 consists of a hundred sections

discussing (more than) a hundred individual graphs in some more detail. In Chapter 11

we give the classification of rank 3 groups, and identify in each case the corresponding

strongly regular graph. Everywhere there are extensive tables. Chapter 12 is just a

table, listing all feasible parameter sets of strongly regular graphs with at most

512 vertices together with some information about existence and other details, with

references to other parts of the book.

We would like to especially thank Jon Hall, Ferdinand Ihringer, Dima Pasechnik,

Alexander Gavrilyuk, and the anonymous referees for detailed comments on earlier

drafts. We are also grateful to Maarten De Boeck, Ludmila Tsiovkina, Paulien

Jansen, Jeroen Schillewaert, Anneleen De Schepper, Sam Mattheus, and Jan De

Beule for reading, and commenting on, draft versions of specific chapters. Finally, we

acknowledge with thanks the help of the librarian, Samuel Perez, for locating several

difficult-to-find papers.

Amsterdam and Ghent, March 2021.
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