
Cambridge University Press
978-1-316-51203-6 — Strongly Regular Graphs
Andries E. Brouwer , H. Van Maldeghem 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Graphs

This chapter collects some basic material on strongly regular graphs and gives some

information about more general objects (distance-regular graphs and association

schemes) that will be needed later.

1.1 Strongly regular graphs

A graph is a set � of vertices provided with a symmetric relation ∼ on � called

adjacency, such that no � ∈ � is adjacent to itself. If the graph is denoted by Γ, then

its vertex set � is also denoted by VΓ. A pair of adjacent vertices is called an edge.

If �� is an edge, then � is called a neighbor of �.

Let Γ be a finite graph. The adjacency matrix � of Γ is the square matrix indexed by

the vertices of Γ such that ��� = 1 when � ∼ �, and ��� = 0 otherwise. The spectrum

of Γ is by definition the spectrum (eigenvalues and multiplicities) of �, considered

as a real matrix. A nonzero (column) vector �, indexed by VΓ, is an eigenvector of �

with eigenvalue � when �� = ��, i.e., when
∑

�∼� �� = ��� for all �.

A graph Γ is regular of degree (or valency) � , for some integer � , when every

vertex has precisely � neighbors.

Let Γ be finite with adjacency matrix �. The all-1 vector 1 (of appropriate length)

is an eigenvector (with eigenvalue �) if and only if Γ is regular (of valency �). If Γ

is regular of valency � , then the multiplicity of the eigenvalue � is the number of

connected components of Γ. An eigenvalue � of a regular graph is called restricted if

it has an eigenvector orthogonal to 1.

A finite regular graph without restricted eigenvalues has at most one vertex. A finite

regular graph with only one restricted eigenvalue is complete or edgeless. A strongly

regular graph is a finite regular graph with precisely two restricted eigenvalues.

History

The term ‘strongly regular graph’ was first used by Bose [92]. An equivalent concept

was studied by Bose & Shimamoto [97].
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2 Graphs

1.1.1 Parameters

Let Γ be a strongly regular graph, regular of valency � , with adjacency matrix � and

restricted eigenvalues �, �, where � > �. Let � be the all-1 matrix of suitable size, so

that �� = �� = ��. We have (� − � �) (� − ��) = �� for some constant �, so that

�2 = �� + �� + �(� − � − �) for certain constants �, �, �. Apparently � = � and

� = � + � + � and � − � = −��.
This can be stated in a combinatorial way: For �, � ∈ VΓ, the number of common

neighbors of �, � is � when � = �, and � when � ∼ �, and � when � ≁ �. One says

that the strongly regular graph Γ has parameters (�, �, �, �), where � = |VΓ| is the

number of vertices. Conversely, if in a finite graph Γ, not complete and not edgeless,

the number of common neighbors of two vertices is �, �, � depending on whether

they are equal, adjacent or nonadjacent, then Γ is strongly regular, and the restricted

eigenvalues �, � are found as the roots of �2 + (� − �)� + (� − �) = 0.

The combinatorial definition of �, �, � shows that these are nonnegative integers,

and 0 ≤ � ≤ � − 1 and 0 ≤ � ≤ � . By Perron-Frobenius’ theorem, � ≥ � . Since

tr � = 0 it follows that � < 0 and � ≥ 0.

If � ≠ 0, then the parameters are related by � = 1 + � + � (� − 1 − �)/�.

From (� − � �) (� − ��) = �� one gets the identity (� − �) (� − �) = ��.

History

The parameters �, �, �, �, �, �, �, � , � (with � = � and � = � − � − 1) were perhaps first

used in [419]. Earlier, Bose [92] used �, �1, �2, �
1
11, �

2
11.

1.1.2 Complement

If Γ is a strongly regular graph with parameters (�, �, �, �) and restricted eigenvalues

�, �, then the complementary graphΓ (with the same vertex set asΓ, and where distinct

vertices are adjacent if and only if they are nonadjacent in Γ) is also strongly regular,

with parameters (�, �̄, �̄, �̄) and restricted eigenvalues �̄ , �̄, where �̄ = � − � − 1,

�̄ = � − 2� + � − 2, �̄ = � − 2� + �, �̄ = −1 − �, �̄ = −1 − � , as is immediately clear

from the definitions and the fact that Γ has adjacency matrix � = � − � − �.

1.1.3 Imprimitivity

A strongly regular graphΓ is called imprimitive whenΓ orΓ is a nontrivial equivalence

relation, equivalently, when� = �−1 or � = � , equivalently, when � = 0 or � = 2�−�,

equivalently, when � = −1 or � = 0.

In the former case Γ is a disjoint union ��� of � complete graphs of size � (and

� = ��, � = � − 1, � = � − 2, � = 0, � = � − 1, � = −1), where � > 1.

In the latter case Γ is a complete multipartite graph ��×� (and � = ��, � =

(� − 1)�, � = (� − 2)�, � = (� − 1)�, � = 0, � = −�), again with � > 1.
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1.1 Strongly regular graphs 3

(The graphs �� and �1×� = �� have only one restricted eigenvalue, namely −1

and 0 respectively, and hence are not strongly regular.)

For a primitive strongly regular graph it follows that 0 ≤ � < � − 1 and 0 < � < �

and � > 0 and � < −1. A primitive strongly regular graph is connected, and hence

� > �.

The graph ��2 is sometimes called a ladder graph. Its complement ��2 = ��×2 a

cocktail party graph.

1.1.4 Spectrum

Let Γ be strongly regular, with spectrum � , � (with multiplicity � ) and � (with

multiplicity �). Then � , � can be solved from 1+ � +� = � and � + � � +�� = tr � = 0.

The fact that � , � must be integers is a strong restriction on possible parameter sets.

If � ≠ �, then one can also solve �, � from � + � = � − � and � � + �� = −� ,

and it follows that �, � are rational. Since they are also algebraic integers, they are

integral in this case. On the other hand, if � = �, then � = � = (� − 1)/2. Now

� = (�−�) � = (�−�) (�−1)/2, and since 0 < � < �−1 it follows that � = (�−1)/2
and � = � + 1. Now � = 1 + � + � (� − 1 − �)/� yields � = � − 1 − � = �/2, so

that (�, �, �, �) = (4� + 1, 2�, � − 1, �) for a suitable integer �, and �, � = (−1 ±√
�)/2.

This is known as the ‘half case’. It occurs, e.g., for the Paley graphs (see §1.1.9). For

further details, see §8.2.

Summary: if we are not in the half case, then the spectrum is integral.

Explicit expressions for � , � are � =
(�+1)� (�−�)

� (�−� ) and � =
(�+1)� (�−� )

� (�−�) .

The identity
�� (�−1−�)

� �
= (� − �)2 (known as the Frame quotient, cf. [123] §2.2A,

2.7A) follows.

In particular, � = (� − �)2 if and only if { � , �} = {�, � − � − 1}.

1.1.5 Rank 3 permutation groups

A permutation group is a group � together with an action of � on some set � , that

is, together with a map � × � → � written (�, �) ↦→ ��, such that 1� = � and

�(ℎ�) = (�ℎ)� for all �, ℎ ∈ � and � ∈ � , where 1 is the identity element of �.

An orbit of � on � is a set of the form �� for some � ∈ � . The �-orbits form a

partition of � . The action (or the group) is called transitive when this partition has a

single element only, that is, when �� = � for all � ∈ � . A set � is preserved by �

when �� = � for all � ∈ �.

The action of � on � induces an action of � on � × � via �(�, �) = (��, ��). If

� is transitive, then it is said to be of (permutation) rank � when it has precisely �

orbits on � × � .

The action (or the group) is called primitive when there is no nontrivial equivalence

relation � ⊆ � × � that is preserved by �. The trivial equivalence relations are the

full set � × � and the diagonal � = {(�, �) | � ∈ �}.
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4 Graphs

Suppose � is a rank 3 permutation group on the set � . Then � has three orbits

�, �, � on � × � , where � is the diagonal. Now either � and � are inverse relations:

� = {(�, �) | (�, �) ∈ �}, or � and � are symmetric. In the former case (�, �) is

a complete directed graph, a tournament (and (�, �) is the opposite tournament). In

the latter case (�, �) and (�, �) are a complementary pair of graphs. When � is

finite, they are a complementary pair of strongly regular graphs: the group � acts as

a group of automorphisms on the graphs (�, �) and (�, �), and since � and � are

single orbits, � is transitive on ordered pairs of adjacent (nonadjacent) vertices, and

the number of common neighbors of two vertices does not depend on the vertices

chosen, but only on whether they are equal, adjacent or nonadjacent.

History

The study of rank 3 permutation groups was initiated by Higman [420].

1.1.6 Local graphs

If Γ is a graph, and � a vertex of Γ, then the local graph of Γ at � is the graph induced

by Γ on the set of neighbors of � in Γ.

A graph Γ is called locally Δ (or locally X) where Δ is a graph and X a graph

property, when all local graphs are isomorphic to Δ (or have property X).

For example, the icosahedron is the unique connected locally pentagon graph.

Hall [391] determined all locally Δ graphs on at most 11 vertices, for all possible Δ,

and determined for each graph Δ on at most 6 vertices whether there exists a locally

Δ graph.

If Γ is a connected graph, and � a vertex of Γ, then the �th subconstituent of Γ (at

�) is the graph induced on the set of vertices at (graph) distance � from �. If Γ is a

strongly regular graph, and � a vertex of Γ, then the second subconstituent of Γ (at �)

is the graph induced on the set of vertices other than � and nonadjacent to �.

1.1.7 Johnson graphs

Let Ω be a set, and � ≥ 0 an integer. The Johnson graph � (Ω, �) is the graph that has

as vertex set the set
(

Ω

�

)

of �-subsets of Ω, where two �-sets �, � are adjacent when

|� ∩� | = � −1. Suppose |Ω| ≥ 2�. Then � (Ω, �) has diameter �, and the symmetric

group Sym(Ω) acts as a group of automorphisms that is transitive of rank � + 1. If

|Ω| = � one writes � (�, �) instead of � (Ω, �).
The full group of automorphisms of � (Ω, �) is Sym(Ω) when |Ω| > 2� > 0, but

Sym(Ω) × 2 when |Ω| = 2� > 0, and 1 when � = 0.

In particular, the graph � (�, 2) (also called the triangular graph � (�)), where

� ≥ 4, is strongly regular. It has parameters � = �(� − 1)/2, � = 2(� − 2),
� = � − 2, � = 4 and eigenvalues � , � = � − 4, � = −2 with multiplicities 1,

� = � − 1, � = �(� − 3)/2. The graph � (�) is the line graph of the complete graph

�� on � vertices. The complement � (5) of � (5) is the Petersen graph (§10.3).
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1.1 Strongly regular graphs 5

These graphs are characterized by their parameters, except when � = 8. There

are four graphs with the parameters (�, �, �, �) = (28, 12, 6, 4) of � (8), namely � (8)
itself and three graphs known as the Chang graphs ([191, 192]), cf. §10.11.

1.1.8 Hamming graphs

Let Ω be a set, and � ≥ 0 an integer. The Hamming graph � (�,Ω) is the graph

that has as vertex set the set Ω� of �-tuples of elements of Ω, where two �-tuples

(�1, . . . , ��), (�1, . . . , ��) are adjacent when they have Hamming distance 1, i.e.,

when �� ≠ �� for a unique �. Suppose |Ω| ≥ 2. Then � (�,Ω) has diameter �, and its

full group of automorphisms is the wreath product Sym(Ω) wr Sym(�). This group

is transitive of rank � + 1. If |Ω| = � one writes � (�, �) instead of � (�,Ω).
In particular, the graph � (2, �) (also called the lattice graph �2 (�) or the � × �

grid ), where � ≥ 2, is strongly regular. It has parameters � = �2, � = 2(� − 1),
� = � − 2, � = 2 and eigenvalues � , � = � − 2, � = −2 with multiplicities 1,

� = 2(� − 1), � = (� − 1)2. The graph � (2, �) is the line graph of the complete

bipartite graph ��,� . The graph �2 (3) is isomorphic to its complement. It is the Paley

graph (see §1.1.9) of order 9.

These graphs are characterized by their parameters, except when � = 4. There

are two graphs with the parameters (�, �, �, �) = (16, 6, 2, 2), namely �2 (4) and the

Shrikhande graph ([649]), cf. §10.6.

The graph � (�, �) is locally ���−1, the disjoint union of � complete graphs of

size � − 1. The Shrikhande graph is locally a hexagon.

1.1.9 Paley graphs

Let � = 4� +1 be a prime power. The Paley graph Paley(�) is the graph with the finite

field F� as vertex set, where two vertices are adjacent when they differ by a nonzero

square. It is strongly regular with parameters (4�+1, 2�, �−1, �). (The restriction � ≡ 1

(mod 4) is to ensure that −1 is a square, so that the resulting graphs are undirected.)

Let � = ��, where � is prime. The full group of automorphisms consists of the

maps � ↦→ ��� + � where �, � ∈ F� , � a nonzero square, and � = �� with 0 ≤ � < �

([186]). It has order ��(� − 1)/2.

Paley(5) is the pentagon. Paley(9) is the 3 × 3 grid. Paley(13) is a graph that is

locally a hexagon. For a more detailed discussion, see §7.4.4.

1.1.10 Strongly regular graphs with smallest eigenvalue −2

A disjoint union of cliques has smallest eigenvalue � = −1. The pentagon has smallest

eigenvalue (−1 −
√

5)/2. All other strongly regular graphs satisfy � ≤ −2. Seidel

[642] determined the strongly regular graphs with smallest eigenvalue � = −2. There

are three infinite families and seven more graphs:
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6 Graphs

(i) the complete �-partite graph ��×2, with parameters (�, �, �, �) = (2�, 2�−2, 2�−
4, 2� − 2), � ≥ 2,

(ii) the lattice graph �2 (�), that is, the Hamming graph � (2, �), that is, the � × �

grid, with parameters (�, �, �, �) = (�2, 2(� − 1), � − 2, 2), � ≥ 3,

(iii) the triangular graph � (�) with parameters (�, �, �, �) = (
(�
2

)

, 2(�− 2), �− 2, 4),
� ≥ 5,

(iv) the Shrikhande graph (cf. §10.6), with parameters (�, �, �, �) = (16, 6, 2, 2),
(v) the three Chang graphs (cf. §10.11), with parameters (�, �, �, �) = (28, 12, 6, 4),
(vi) the Petersen graph (cf. §10.3), with parameters (�, �, �, �) = (10, 3, 0, 1),
(vii) the Clebsch graph (cf. §10.7), with parameters (�, �, �, �) = (16, 10, 6, 6),
(viii) the Schläfli graph (cf. §10.10), with parameters (�, �, �, �) = (27, 16, 10, 8).

More generally, the strongly regular graphs with fixed smallest eigenvalue are

(i) complete multipartite graphs, (ii) Latin square graphs, (iii) block graphs of Steiner

systems, (iv) finitely many further graphs, see Theorem 8.6.4.

We include a proof of Seidel’s classification. (For different proofs, see [419] and

[123], Theorem 3.12.4. See also below.)

Theorem 1.1.1 A strongly regular graph with smallest eigenvalue −2 is one of the

examples in (i)–(viii) above.

Proof. We shall assume the classification of the graphs with the parameters of the

examples. The proof here derives the possible parameters.

Let Γ be a strongly regular graph with parameters �, �, �, � and spectrum �1 � � ��,

where � = −2. Then � = � + � − 2 and � = � + 2� (by §1.1.1), so that � = 2� − � + 4.

If � = 2, then Γ has the parameters of �2 (�) (for � = � + 2), and hence is �2 (�),
or (if � = 4) the Shrikhande graph (cases (ii) and (iv)). If � = 4, then Γ has the

parameters of � (�) (for � = � + 4), and hence is � (�), or (if � = 8) a Chang graph

(cases (iii) and (v)). Assume � ≠ 2, 4.

From 1 + � + � = � and � + � � − 2� = 0 and �� = (� − �) (� + 2), we find

� = 2�−�−2
�+2

=
(�+2� ) (�+2�+2)

� (�+2) .

Let an �-claw be an induced �1,� subgraph. Let a quadrangle be an induced �4

subgraph. Let � ∼ �, � with � ≁ �. If {�, �, �} is contained in � 3-claws and in �

quadrangles, then � = 2 + 2� − (� − 1 − �) + � so that � + � = 1.

First consider the case where the graph contains a 3-claw. Let � ∼ �, �, � with

mutually nonadjacent �, �, �. We shall show that � = 2� + 4 and Γ is one of the

examples (iv)–(vi).

For a list of vertices � , let � (�) (‘near’) be the set of vertices adjacent to each � in

� , and � (�) (‘far’) the set of vertices not in � and nonadjacent to each � in � . Since

the �−�−1 = �+1 vertices in � (�)∩� (�) are in {�, �}∪� (�, �)\{�}, we have � ≤ �.

Since the � − � vertices in (� (�) ∩ � (�)) ∪ {�} are among the � = � − 2� + � − 2

vertices of � (�, �), we have � ≥ 5� + � + 4. Since �� = (� − �) (� + 2) we have

� = 3� + � + 2 + 2� (�+1)
�

so that � ≤ �. It follows that � = �, � = 2� − 2, � = 3�,
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1.1 Strongly regular graphs 7

� = 6� +4 = 2� +4, � = 9− 12
�+2

so that � ∈ {1, 2, 4, 10}. For � = 1, 2, 4 we are in case

(vi), (iv), (v), respectively. The case (�, �, �, �) = (64, 30, 18, 10) has � = 8, which

violates the absolute bound � ≤ 1
2
� ( � + 3) (Proposition 1.3.14 below).

Now assume that Γ does not contain 3-claws. Since � + � = 1, each 2-claw is in a

unique quadrangle. It follows that � is even, say � = 2�, and if � ≁ �, then � (�, �)
induces a ��×2. If moreover � ∼ �, � ≁ �, then � is adjacent to precisely � vertices

of � (�, �). (If �, � ∈ � (�, �) with � ≁ �, then � cannot be nonadjacent to both �

and �, since (�; �, �, �) would be a 3-claw, and � cannot be adjacent to both � and �,

since we already see the � common neighbors of � and � in � (�, �) ∪ {�, �}.)
Let � be a vertex, and consider the graph induced on � (�). It is strongly regular or

complete or edgeless with parameters (�0, �0, �0, �0) = (� − � − 1, � − �, � − �, �).
If it is edgeless, then � = �, so that Γ is imprimitive, and we are in case (i). If it is

complete, then � − � − 1 = � − � + 1 so that (� + 2�) (� + 1) = �(2� + 1), hence

� = 2(� + 1) and � = 8 − 12
�+2

, so that � ∈ {1, 2, 4, 10}. For � = 1 we have � (5) (in

case (iii)), for � = 2 the Clebsch graph (case (vii)), and � = 4 (� = 28, � = 6) and

� = 10 (� = 64, � = 7) both violate the absolute bound.

So we may assume that � (�) induces a strongly regular graph Δ. Since �0 =

2�0 − �0 + 4, also Δ has smallest eigenvalue −2, and the other restricted eigenvalue

is �0 = � −� with multiplicity �0 =
2� (�+1)

�(�−�+2) . By induction we already know Δ (and

it does not contain 3-claws) so either � ∈ {6, 8}, or Δ is ��×2. For � = 6 there are no

feasible parameters. For � = 8 we find the Schläfli graph (case (viii)). If Δ is ��×2,

then (�, �, �, �) = (6� − 3, 4� − 4, 3� − 5, 2� − 2), � = � − 1, � = 8 − 12
�+2

, so that

� ∈ {1, 2, 4, 10}. For � = 1 we have �2 (3) (in case (ii)), for � = 2 we have � (6)
(in case (iii)), for � = 4 the Schläfli graph (case (viii)), and � = 10 (� = 63, � = 7)

violates the absolute bound. �

Root systems

In fact it is possible to find all graphs with smallest eigenvalue ≥ −2. By the beautiful

theorem of Cameron, Goethals, Seidel & Shult [179] (see also [123], §3.12 and

[132], §8.4) such a graph is either a generalized line graph or is one in a finite (but

large) collection.

(Sketch of the proof: Consider � + 2�. It is positive semidefinite, so one can write

� + 2� = �⊤� . Now the columns of � are vectors of squared length 2 with integral

inner products, and this set of vectors can be completed to a root system. By the

classification of root systems one gets one of A�, D�, E6, E7 or E8. In the first two

cases the graph was a generalized line graph. In the latter three cases the graph is

finite: at most 36 vertices, each vertex of degree at most 28. If the graph was regular,

it has at most 28 vertices, and each vertex has degree at most 16. For details, see

[123], Theorem 3.12.2, or [132], Chapter 8.)

There is a lot of literature describing manageable parts of this large collection, and

related problems. A book-length treatment is Cvetković et al. [249].
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8 Graphs

1.1.11 Seidel switching

Instead of the ordinary adjacency matrix �, Seidel considered the Seidel matrix � of

a graph, with zero diagonal, where ��� = −1 if � ∼ �, and ��� = 1 otherwise. These

matrices are related by � = � − � − 2�.

Let Γ be a graph with vertex set � . Let� ⊆ � . The graph Γ′ obtained by switching

Γ with respect to � is the graph with vertex set � , where two vertices that are both

inside or both outside� are adjacent in Γ′ when they are adjacent in Γ, while a vertex

inside � is adjacent in Γ′ to a vertex outside � when they are not adjacent in Γ. If

Γ has Seidel matrix �, then Γ′ has Seidel matrix �′ where �′ is obtained from � by

multiplying each row and each column with index in � by −1. It follows that � and

�′ have the same spectrum.

If Γ′ is obtained from Γ by switching w.r.t. � , and Γ′′ is obtained from Γ′ by

switching w.r.t. � , then Γ′′ is obtained from Γ by switching w.r.t.�△� . It follows that

graphs related by switching fall into equivalence classes (called switching classes).

Two graphs in the same switching class are called switching equivalent.

If two regular graphs of the same valency are switching equivalent, then they have

the same ordinary spectrum. This happens precisely when each vertex inside (outside)

the switching set is adjacent to half of the vertices outside (inside, respectively) the

switching set. For example, the Shrikhande graph is obtained from the 4 × 4 grid by

switching w.r.t. a diagonal.

It may happen that two strongly regular graphs of different valencies are switching

equivalent. If that happens, then they are related to regular 2-graphs (see §1.1.12).

Proposition 1.1.2 Let Γ be a strongly regular graph with parameters (�, �, �, �)
and spectrum �1 � � ��. Let Δ be a strongly regular graph of valency ℓ > � switching

equivalent to Γ. Then (i) Δ has spectrum ℓ1 � � −1 ��+1, (ii) 1
2
� = � − � = ℓ − �, (iii)

� − � = 2�, (iv) 1
2
� = 2� − � − �, (v) any switching set from Γ to Δ has size 1

2
� and

is regular of degree � − �.

Proof. (i)–(iv) The Seidel matrices � = �−�−2� ofΓ andΔ have the same spectrum

(� − 1− 2�)1 (−1− 2�) � (−1− 2�)�, and if � < � it follows that � − 1− 2� = −1− 2�

and � − 1− 2ℓ = −1− 2�. Since (� − �) (� − �) = �� for all strongly regular graphs, it

follows from � − � = 1
2
� that � − � = 2�. Since � + � = � − � for all strongly regular

graphs, we find 1
2
� = � − � = � − � − � + � = � + � − � + � − 2� = 2� − � − �.

(v) Suppose Δ is obtained from Γ by switching w.r.t. a set � of size �. Let � ∈ �

have �1 neighbors in� and �2 outside. Then � = �1+�2 and ℓ = �1+�−�−�2, so that

�1 and �2 can be expressed in terms of �, ℓ, �, � and are independent of �. Similarly,

if � ∉ � has �3 neighbors in � and �4 outside, then � = �3 + �4 and ℓ = � − �3 + �4,

so that �3 and �4 are independent of �. Counting the number of edges with one end

in � in two ways, we find �2� = �3 (� − �), and since �2 =
1
2
(� − ℓ − � + �) and

�3 =
1
2
(� − ℓ +�) this simplifies to (� − ℓ)� = (� − ℓ) (�−�), so that � =

1
2
�, �2 = �3,

�1 = �4. �
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1.1 Strongly regular graphs 9

The Seidel matrix plays a role in the description of regular two-graphs and of sets

of equiangular lines, cf. [132], Chapter 10. The condition 1
2
� = 2�−�−� is necessary

and sufficient for a strongly regular graph to be associated to a regular two-graph,

cf. [132], 10.3.2(i), and see below.

History

The Seidel matrix was introduced in Seidel [641].

1.1.12 Regular two-graphs

A two-graph Ω = (�,Δ) is a finite set � provided with a collection Δ of unordered

triples from � , such that every 4-subset of � contains an even number of triples from

Δ. The triples from Δ are called coherent.

From a graph Γ = (�, �), one can construct a two-graph Ω = (�,Δ) by calling a

triple from� coherent if the three vertices induce a subgraph in Γwith an odd number

of edges. One checks that Ω is a two-graph. It is called the two-graph associated to

Γ. Switching equivalent graphs have the same associated two-graph.

Conversely, from any two-graphΩ = (�,Δ), and any fixed � ∈ � , we can construct

a graph Γ = Ω� with vertex set � as follows: let � be an isolated vertex in Γ, and let

any two other vertices �, � be adjacent in Γ if {�, �, �} ∈ Δ. Then Ω is the two-graph

associated to Γ.

Thus we have established a one-to-one correspondence between two-graphs and

switching classes of graphs.

Let Ω = (�,Δ) be a two-graph, and � ∈ � . The descendant of Ω at � is the graph

Ω∗
� , obtained from Ω� by deleting the isolated vertex �.

A two-graph (�,Δ) is called regular (of degree �) if every unordered pair from� is

contained in exactly � triples from Δ. The two-graph Ω = (�,Δ) with � = |� | vertices

and 0 < |Δ| <
(�
3

)

is regular if and only if any descendant is strongly regular with

parameters (� − 1, �, �, �) where � = �/2 (and then this holds for all descendants).

If this is the case, then � = � and � = 3� − 2�.

See also §8.10 and [132], §10.3.

History

Regular two-graphs were introduced by G. Higman. See also Taylor [677].

1.1.13 Regular partitions and regular sets

Let Γ be a finite graph with vertex set � . A partition {�1, . . . , ��} of � is called

regular or equitable when there are numbers �� � , 1 ≤ �, � ≤ �, such that each vertex

of �� is adjacent to precisely �� � vertices in � � . In this situation the matrix � = (�� � )
of order � is called the quotient matrix of the partition.

If � is an eigenvalue of � , say �� = ��, then � is also an eigenvalue of Γ, for the
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10 Graphs

eigenvector that is constant �� on �� . And conversely, the eigenvalues of Γ that belong

to eigenvectors constant on each �� are eigenvalues of � .

Let Γ be finite and regular of valency � . A subset � of the vertex set � is called

regular (of degree � and nexus �) when the partition {�, �\� } is regular (and �11 = �,

�21 = � where �1 = � ). Now the quotient matrix � = ( � �−�
� �−� ) has eigenvalues � and

� − �, so that � − � is an (integral) eigenvalue of Γ.

A regular set is also called an intriguing set ([263]).

Proposition 1.1.3 Let Γ be strongly regular with parameters (�, �, �, �). If � and

� ′ are regular sets of degrees �, � ′ and nexus �, �′ belonging to different eigenvalues

� − � and � ′ − �′ other than � , then |� ∩ � ′ | = ��′/�.

Proof. The vector � that is 1 on � and � := −�
�−� outside � is an eigenvector of the

adjacency matrix � of Γ with eigenvalue � := � − �. Here � ≠ 1 since � ≠ � . The

characteristic vector of � is �� =
1

1−�� − �
1−�1, where �

1−� =
−�
�−� . Similarly for � ′.

Since �, �′, 1 are mutually orthogonal, (1, 1) = �, and �� = (� − �) (� − � ′), we have

|� ∩ � ′ | = (�� , �� ′) = ��′

(�−�) (�−�′) � = ��′/�. �

We also see that |� | = (�� , 1) = ��
�−� with � = � − �.

The collection of regular sets belonging to the same eigenvalue � = � − � (together

with ∅ and �) is closed under taking complements, under taking disjoint unions, and

under removal of one set from one containing it.

In descendants of regular two-graphs, switching sets are regular sets.

Proposition 1.1.4 Let Γ be strongly regular with parameters (�, �, �, �) and re-

stricted eigenvalues �, �, where � = 2�. Let � be a regular set in Γ of degree � and

nexus �. If |� | = � − �, where {�, � − �} = {�, �}, then adding an isolated vertex and

switching w.r.t. � yields a strongly regular graph with parameters (� + 1, � − �, � −
�, � − �). �

1.1.14 Inequalities for subgraphs

We give inequalities that must hold for a graph Γ to have certain induced subgraphs.

Additional regularity holds when there are such subgraphs and the inequality holds

with equality.

Interlacing

Let Γ be a finite graph with adjacency matrix �, and let Π = {�1, . . . , ��} be a

partition of a subset of VΓ. The quotient matrix of � w.r.t. Π is the matrix � of order

� where �� � is the average row sum of the submatrix �(�, �) of � that has rows

indexed by �� and columns indexed by � � . If each �(�, �) has constant row sums,

and Π partitions VΓ, then Π is an equitable partition of Γ, and � is a quotient matrix

in the sense of §1.1.13 (hence the present definition generalizes the previous one).
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