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Introduction

To define reinforcement learning (RL), it is first necessary to define automatic control.

Examples in your everyday life may include the cruise control in your car; the thermostat

in your air conditioning, refrigerator, and water heater; and the decision-making rules in

a modern clothes dryer. There are sensors that gather data, a computer to take the data to

understand the state of the “world” (is the car traveling at the right speed? Are the towels still

damp?), and based on these measurements an algorithm powered by the computer spits out

commands to adjust whatever needs to be adjusted: throttle, fan speed, heating coil current,

etc. More exciting examples include space rockets, artificial organs, and microscopic robots

to perform surgery.

The dream of RL is automatic control that is truly automatic; without any knowledge of

physics or biology or medicine, an RL algorithm tunes itself to become a super controller:

the smoothest ride into space, and the most expert microsurgeon!

The dream is surely beyond reach in most applications, but recent success stories have

inspired industry, scientists, and a new generation of students.

DeepMind’s AlphaGo set the world on fire following the defeat of Go champion Fan Hui

in 2015, and Lee Sedol the following year (a story told in the 2017 film [185]). Soon after

was the astonishing sequel AlphaZero, which learns to play chess and Go by “self play”

without any help from experts [150, 310, 322].1

1.1 What You Can Find in Here

Reinforcement learning today rests on two pillars of equal importance:

1. Optimal control: the two most famous RL algorithms, TD- and Q-learning, are all about

approximating the value function that is at the heart of optimal control. Similarly, actor-

critic methods are based on state feedback, which is motivated by optimal control theory.

2. Statistics and information theory, especially the topic of exploration, as in bandit theory.

Consider the annoying ads on YouTube, which provide one example of Google’s

1 These success stories follow a longer history of demonstrations based on board games. An earlier breakthrough is

Tesauro’s implementation of TD-learning with neural network function approximation to obtain an RL algorithm

for backgammon [350]. The 1997 victory of IBM’s “Deep Blue” over chess champion Garry Kasparov was also

front-page news [373]. While this algorithm resembles model predictive control rather than any RL algorithm

described in this book, we will be liberal in our taxonomy of control and RL since we want to benefit from the

best of both.
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2 Introduction

exploration: “will Diana click???” [171, 216, 307]. Exploration in RL is a rapidly

evolving field – it will surely generate many new books in the years to come.

The big focus of the book is the first pillar, emphasizing the geometry of optimal control,

and why it should not be difficult to create reliable algorithms for learning. We will not

ignore the second pillar: motivation and successful heuristics will be explained without

diving deeply into the theory. The reader will learn enough to begin experimenting with

homemade computer code, and have a big library of options for algorithm design. Before

completing half of the book, I hope that a student will have a solid understanding of why

these algorithms are expected to be useful, and why they sometimes fail.

This is only possible through mastery of several fundamentals:

(i) The philosophical foundations of control design.

(ii) The theory of optimal control.

(iii) Ordinary differential equations (ODEs): stability and convergence. The ODE method,

including translation to algorithm.

(iv) Basics of machine learning (ML): function approximation and optimization theory.

Any reader who knows the author will wonder why the list is so short! The following topics

are seen as fundamental in RL theory, and are fundamental to much of my research:

(i) Stochastic processes and Markov chains.

(ii) Markov decision theory.

(iii) Stochastic approximation and convergence of algorithms.

Yes, we will get to all of this. However, I want to make it clear that there is no need for

probability theory to understand many of the important concepts in RL.

The first half of the book contains RL theory and design techniques without any

probability prerequisites. This means we pretend that the world is purely deterministic until

the surname “Markov” appears in the second half of the book. Justification comes in part

from the control foundations covered in Chapters 2 and 3. Do you think we modeled the

probability of hitting a seagull when we designed a control system to take astronauts to the

moon? The models used in traditional control design are often very simple, but good enough

to get insight on how to control a rocket or a pancreas.

Beyond this, once you understand RL techniques in this simplified setting, it does not take

much work to extend the ideas to the more complex probabilistic realm.

Among the highlights of Part I of the book are the following

�

ODE design. The ODE method has been a workhorse for algorithm analysis since the

introduction of the stochastic approximation technique of Robbins and Monro in the early

1950s [301]. In this book, we flip the narrative, and start off in the continuous time domain.

There is tremendous motivation for this point of view:

(i) We will see that an ODE is much simpler to describe and analyze than the discrete-time

noisy algorithm that is eventually implemented.

(ii) Remarkable discoveries in the optimization literature reinforce the value of this

approach: first design an ODE with desirable properties, and then find a numerical

analyst to implement this on a computer [318]. It is now known that the famous

acceleration techniques of Polyak and Nesterov can be interpreted in this way.
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Figure 1.1 Maximum Bellman error {Bn : n ≥ 0} for various Q-learning
algorithms [107].

(iii) Zap Q-learning will be one of many algorithms described in the book. It is a particular

ODE design based on the Newton–Raphson flow introduced in the economics literature,

and first analyzed by Smale in the 1970s [325]. The Zap ODE is universally stable

and consistent, and hence when translated with care, provides new techniques for RL

design [89, 107, 110, 112]. The power of Zap design is illustrated in Figure 1.1 – see

Section 9.8.2 for details.

�

Quasistochastic approximation. The theory of “stochastic approximation” amounts to

justifying a discrete time algorithm based on an ODE approximation. An understanding of

the general theory requires substantial mathematical background.

The reader will be introduced to stochastic approximation without any need to know the

meaning of “stochastic.” This is made possible by substituting mixtures of sinusoids for

randomness, which is justified by an emerging science [11, 51, 52, 87, 93, 228]. Not only is

this more accessible, but the performance in application to policy gradient methods in RL is

remarkable.

The plots shown in Figure 1.2 are based on experiments described in Chapter 4, com-

paring exploration using sinusoids versus traditional random “independent and identically

distributed (i.i.d.)” exploration. The histograms were generated through 1,000 independent

experiments. The traditional approach labeled “1SPSA” requires additional training of many

orders of magnitude when compared to quasistochatic approximation (QSA).

�

Batch RL methods and convex Q-learning. One of the founders of AlphaGo admits that

extension of these techniques is not trivial: “This approach won’t work in more ill-structured

problems like natural-language understanding or robotics, where the state space is more

complex and there isn’t a clear objective function” [150].

In applications to controlling building systems, the energy grid, robotic surgery, or

autonomous vehicles, we need to think carefully about more structured learning and control

architectures, designed so that we have a reliable outcome (hopefully with some guarantees

on performance as well as the probability of disaster). The basic RL engine of AlphaZero is

deep Q-learning (DQN) [259–261]: a batch Q-learning method that is easily explained, and

offers great flexibility to allow the inclusion of “insights from experts.” Completely new in

this book are convex-analytic approaches to RL that have a far stronger supporting theory

and can be designed to impose bounds on performance.

www.cambridge.org/9781316511961
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51196-1 — Control Systems and Reinforcement Learning
Sean Meyn 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction

Figure 1.2 Error analysis for two policy gradient algorithms for Mountain Car,
using QSA and traditional randomized exploration.

Part II might be considered a more traditional treatment of RL, since it begins with

Markovian models and surveys the original TD methods developed in the 1990s. What is

unique in this book is the attention to algorithm design, including ways to obtain insight

in selecting “metaparameters” such as step-size gains. There is also new material, such as

variance reduction methods (also known as acceleration techniques) for both Q-learning and

actor-critic methods.

1.2 What’s Missing?

The focus of the book is on control fundamentals that are most relevant to reinforce-

ment learning, and a large collection of tools for RL algorithm design based on these

fundamentals.

Some important topics will receive less attention:

(i) Exploration. This is a hot topic for research right now [171, 216, 244, 281, 307]. The

theory is mature mainly within the subdiscipline of bandit theory. This book contains

only a mention of bandit basics to explain the exploration/exploitation trade-off in RL.

(ii) Data science. Here I refer to the empirical side of statistics and computer engineering.

Much success in RL may have been initially inspired by hardcore mathematical

analysis, but success in applications requires clever computer engineers to create

efficient code, and patience to test algorithms and hopefully improve them based on

insight gained in particular examples.

There are no large-scale empirical studies described in this book. Also, there is no

attempt to catalog the growing list of RL algorithms.

(iii) Machine learning topics. The book will explain the meaning of neural networks and

kernels, but ask the reader to go elsewhere for details.

Sample complexity theory is covered only briefly. There is no question that sample

complexity theory is the bedrock of statistical learning theory, and the theory of bandits.

However, I personally believe that its value in RL is limited: Bounds are typically loose, and
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Figure 1.3 Comparison of Q-learning and relative Q-learning algorithms for the
stochastic shortest path problem of [112]. The relative Q-learning algorithm is
unaffected by large discounting.

to date they offer little insight for algorithm design. For example, I don’t see how today’s

finite-n bounds will help DeepMind create better algorithms for Go or chess.

The value of asymptotic statistics is underappreciated in the RL literature. The best way

to make this point is through images. Figure 1.3 is taken from [114] (many similar plots can

be found in the thesis of A. Devraj [107]). Technical details regarding these plots may be

found in Section 9.7.

The histograms show estimation error for a single parameter (one of many) using a

particular implementation of tabular Q-learning. The integer N refers to the run length of

the algorithm, and the histograms were obtained from 1,000 independent experiments. The

“theoretical density” is what you can obtain from asymptotic statistics theory for stochastic

approximation. This density is easily estimated based on limited data. In particular, in this

experiment, it is clear after N = 104 samples that we have a very good variance estimate.

This can then be used to obtain approximate confidence bounds after we run to N = 107

(we know how far we have to run once we have a variance estimate).

Variance theory for SA is used to decide run lengths. It is also used for algorithm design:

for example, to adjust variables in an algorithm so that the asymptotic variance is minimized.

Zap stochastic approximation and Polyak–Ruppert averaging are two examples of this

approach. Outside of the bandits literature, I am not aware of work in the sample complexity

literature that can offer similar value for algorithm design in reinforcement learning.

1.3 Resources

Many of the examples introduced in Chapters 2 and 3 are adapted from Lecture Notes on

Control System Theory and Design [29]. The early chapters provide useful linear algebra

background, but far more control theory than is needed to follow this book.

There are many great textbooks on deterministic control systems. See [15] and Murray’s

two-part online survey [268] for basics of modeling and design, and much more on linear

control systems in [7, 76, 205]. Bertsekas [45, 46] provides a great treatment of optimal

control for nonlinear systems, and an introduction to RL with a perspective that is similar to

this book.

Luenberger [230] is my favorite introduction to optimization, and Boyd and Vanden-

berghe [73] is considered the bible, with far more depth in the domain of numerical methods.

See also the new monograph of Bach [19].
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The book of Sutton and Barto [338] is an encyclopedic introduction to RL. The books [44,

47, 347] are more foundational, and [289] is complementary to the treatment of RL here. The

monographs [221, 360] contain essays by researchers at the intersection of RL and control.

Finally, don’t forget the resources at the Simons Institute website, simons.berkeley.edu.

Videos and slides from the 2020 fall program on RL will be available whenever you have

time to view a tutorial.
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