
Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Preface xv

1 Introduction 1
1.1 What Is Software Engineering? 1

1.1.1 Definition of Software Engineering 2
1.1.2 A Tale of Two Companies 4

1.2 The Requirements Challenge 5
1.2.1 Identifying Users and Requirements 6
1.2.2 Dealing with Requirements Changes 7

1.3 Software Is Intrinsically Complex 8
1.3.1 Sources of Complexity 8
1.3.2 Architecture: Dealing with Program Complexity 9

1.4 Defects Are Inevitable 11
1.4.1 Fix Faults to Avoid Failures 11
1.4.2 Introduction to Testing 12
1.4.3 Black-Box and White-Box Testing 13

1.5 Balancing Constraints: The Iron Triangle 13
1.5.1 Scope. Cost. Time. Pick Any Two! 14

1.6 Social Responsibility 15
1.6.1 Case Study: The Volkswagen Emissions Scandal 15
1.6.2 The ACM Code 15
1.6.3 Case Study: The Therac-25 Accidents 16
1.6.4 Lessons for Software Projects 17

1.7 Conclusion 19
Further Reading 20
Exercises 20

2 Software Development Processes 24
2.1 Processes and Values Guide Development 24

2.1.1 What Is a Process? 25
2.1.2 Two Development Cultures: Plan versus Grow 26
2.1.3 Role Models: Unix Culture and Agile Values 28
2.1.4 Selecting a Process Model 30

www.cambridge.org/9781316511947
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

viii Contents

2.2 Structuring Teamwork: The Scrum Framework 32
2.2.1 Overview of Scrum 32
2.2.2 Scrum Roles 34
2.2.3 Scrum Events 34
2.2.4 Scrum Artifacts 36
2.2.5 Summary 37

2.3 Agile Development: Extreme Programming 37
2.3.1 Listening to Customers: User Stories 38
2.3.2 Testing: Make It Central to Development 39
2.3.3 When to Design? 41
2.3.4 A Scrum+XP Hybrid 43
2.3.5 Summary 44

2.4 Limitations of Waterfall Processes 44
2.4.1 The Perils of Big-Bang Integration and Testing 45
2.4.2 The Waterfall Cost-of-Change Curve 46
2.4.3 Managing the Risks of Waterfall Processes 47
2.4.4 Summary 49

2.5 Levels of Design and Testing: V Processes 49
2.5.1 Overview of V Processes 50
2.5.2 Levels of Testing, from Unit to Acceptance 51
2.5.3 Summary 51

2.6 Additional Project Risks 51
2.6.1 Rough Risk Assessment 53
2.6.2 Netscape 3.0: A Successful Iterative Project 53
2.6.3 Netscape 4.0: A Troubled Project 54

2.7 Risk Reduction: The Spiral Framework 55
2.7.1 Overview of the Spiral Framework 56
2.7.2 Summary 58

2.8 Conclusion 58
Further Reading 60
Exercises 60

3 User Requirements 64
3.1 What Is a Requirement? 64

3.1.1 The Basic Requirements Cycle 65
3.1.2 Case Study: Requirements Challenges 66
3.1.3 Kinds of Requirements 67

3.2 Developing Requirements and Software 69
3.2.1 Agile Methods Validate Working Software 69
3.2.2 Case Study: An Agile Emphasis on Requirements 70
3.2.3 Plan-Driven Methods Validate a Specification 72

3.3 Eliciting User Needs 73
3.3.1 A Classification of Needs 73
3.3.2 Accessing User Needs 75

www.cambridge.org/9781316511947
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents ix

3.3.3 Case Study: Intuit’s Design for Delight 76
3.4 Writing Requirements: Stories and Features 77

3.4.1 Guidelines for Effective User Stories 77
3.4.2 Guidelines for System Features 80
3.4.3 Perspective on User Stories 82

3.5 Writing User-Experience Scenarios 83
3.5.1 Guidelines for User-Experience Scenarios 83
3.5.2 Case Study: A Medical Scenario 84

3.6 Clarifying User Goals 85
3.6.1 Properties of Goals 86
3.6.2 Asking Clarifying Questions 87
3.6.3 Organizing Goals into Hierarchies 89
3.6.4 Contributing and Conflicting Goals 91

3.7 Identifying Security Attacks 93
3.7.1 Attack Trees: Think Like an Attacker 93
3.7.2 Finding Possible Attacks 93

3.8 Conclusion 95
Further Reading 97
Exercises 97

4 Requirements Analysis 100
4.1 A Checklist Approach 100
4.2 Relative Estimation: Iteration Planning 103

4.2.1 Anchoring Can Bias Decisions 103
4.2.2 Agile Story Points 104
4.2.3 Velocity of Work 106

4.3 Structured Group Consensus Estimates 106
4.3.1 Wideband Delphi and Planning Poker 107
4.3.2 The Original Delphi Method 108

4.4 Balancing Priorities 110
4.4.1 Must-Should-Could-Won’t (MoSCoW) Prioritization 110
4.4.2 Balancing Value and Cost 111
4.4.3 Balancing Value, Cost, and Risk 112

4.5 Customer Satisfiers and Dissatisfiers 113
4.5.1 Kano Analysis 114
4.5.2 Classification of Features 115
4.5.3 Life Cycles of Attractiveness 117
4.5.4 Degrees of Sufficiency 118

4.6 Plan-Driven Estimation Models 118
4.6.1 How Are Size and Effort Related? 119
4.6.2 The Cocomo Family of Estimation Models 121

4.7 Conclusion 122
Further Reading 122
Exercises 123

www.cambridge.org/9781316511947
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Contents

5 Use Cases 125
5.1 Elements of a Use Case 125

5.1.1 Actors and Goals Outline a System 125
5.1.2 Flows and Basic Flows 127

5.2 Alternative Flows: Conditional Behaviors 127
5.2.1 Specific Alternative Flows 129
5.2.2 Extension Points 130
5.2.3 Bounded Alternative Flows 131

5.3 Writing Use Cases 132
5.3.1 A Template for Use Cases 133
5.3.2 From Actor Intentions to System Interactions 134
5.3.3 How to Build Use Cases 135

5.4 Use-Case Diagrams 136
5.4.1 Diagrams Highlight Goals and Actors 136

5.5 Relationships between Use Cases 137
5.5.1 Subflows 137
5.5.2 Inclusion of Use Cases 137
5.5.3 Extensions of Use Cases 138

5.6 Conclusion 139
Further Reading 140
Exercises 140

6 Design and Architecture 142
6.1 The Role of Architecture 142

6.1.1 What Is Architecture? 143
6.1.2 Design Includes Architecture 144
6.1.3 What Is a Good Software Architecture? 144

6.2 Designing Modular Systems 145
6.2.1 The Modularity Principle 145
6.2.2 Coupling and Cohesion 148
6.2.3 Design Guidelines for Modules 149

6.3 Class Diagrams 150
6.3.1 Representing a Class 150
6.3.2 Relationships between Classes 153

6.4 Architectural Views 156
6.4.1 The 4+1 Grouping of Views 156
6.4.2 Structures and Views 160

6.5 Describing System Architecture 162
6.5.1 Outline for an Architecture Description 162
6.5.2 System Overview of a Communications App 164
6.5.3 A Development View: Module Hierarchies 165

6.6 Conclusion 167
Further Reading 168
Exercises 168

www.cambridge.org/9781316511947
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents xi

7 Architectural Patterns 172
7.1 Software Layering 172

7.1.1 The Layered Pattern 174
7.1.2 Design Trade-offs 176

7.2 Three Building Blocks 178
7.2.1 The Shared-Data Pattern 179
7.2.2 Observers and Subscribers 180

7.3 User Interfaces: Model-View-Controller 181
7.3.1 Design Decisions 182
7.3.2 The Basic Model-View-Controller Pattern 183
7.3.3 Keep Views Simple 185

7.4 Dataflow Architectures 186
7.4.1 Dataflow Pipelines 186
7.4.2 Dataflow Networks 189
7.4.3 Unbounded Streams 190
7.4.4 Big Dataflows 191

7.5 Connecting Clients with Servers 192
7.5.1 The Client-Server Pattern 193
7.5.2 Deploying Test Servers 194
7.5.3 The Broker Pattern 196

7.6 Families and Product Lines 197
7.6.1 Commonalities and Variabilities 197
7.6.2 Software Architecture and Product Lines 198
7.6.3 Economics of Product-Line Engineering 198

7.7 Conclusion 199
Further Reading 199
Exercises 200

8 Static Checking 203
8.1 Architecture Reviews 203

8.1.1 Guiding Principles for Architecture Reviews 204
8.1.2 Discovery, Deep-Dive, and Retrospective Reviews 206

8.2 Conducting Software Inspections 207
8.2.1 The Phases of a Traditional Inspection 207
8.2.2 Case Study: Using Data to Ensure Effectiveness 209
8.2.3 Organizing an Inspection 211

8.3 Code Reviews: Check Intent and Trust 212
8.3.1 Invested Expert Reviewers 212
8.3.2 Reviewing Is Done within Hours 213

8.4 Automated Static Analysis 214
8.4.1 A Variety of Static Checkers 215
8.4.2 False Positives and False Negatives 218

8.5 Conclusion 218

www.cambridge.org/9781316511947
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Contents

Further Reading 220
Exercises 220

9 Testing 222
9.1 Overview of Testing 222

9.1.1 Issues during Testing 223
9.1.2 Test Selection 225
9.1.3 Test Adequacy: Deciding When to Stop 225
9.1.4 Test Oracles: Evaluating the Response to a Test 226

9.2 Levels of Testing 227
9.2.1 Unit Testing 228
9.2.2 Integration Testing 229
9.2.3 Functional, System, and Acceptance Testing 231
9.2.4 Case Study: Test Early and Often 232

9.3 Code Coverage I: White-Box Testing 233
9.3.1 Control-Flow Graphs 233
9.3.2 Control-Flow Coverage Criteria 235

9.4 Input Coverage I: Black-Box Testing 238
9.4.1 Equivalence-Class Coverage 239
9.4.2 Boundary-Value Coverage 240

9.5 Code Coverage II: MC/DC 241
9.5.1 Condition and Decision Coverage Are Independent 242
9.5.2 MC/DC Pairs of Tests 242

9.6 Input Coverage II: Combinatorial Testing 245
9.7 Conclusion 249
Further Reading 250
Exercises 250

10 Quality Metrics 253
10.1 Meaningful Metrics 253

10.1.1 Metrics Quantify Attributes 254
10.1.2 Selecting Useful Metrics 255
10.1.3 Goal-Directed Measurement 257

10.2 Software Quality 257
10.2.1 The Many Forms of Software Quality 258
10.2.2 Measuring Customer Support 260

10.3 Graphical Displays of Data Sets 261
10.3.1 Data Sets 261
10.3.2 Scales of Measurement 262
10.3.3 Bar Charts Display Data by Category 264
10.3.4 Gantt Charts Display Schedules 266

10.4 Product Quality: Measuring Defects 267
10.4.1 Severity of Defects 268
10.4.2 Defect-Removal Efficiency 268

www.cambridge.org/9781316511947
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi 
Table of Contents
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents xiii

10.4.3 Customer-Found Defects (CFDs) 270
10.4.4 CFDs Measure Installs, Not Quality 270

10.5 Ops Quality Improvement: A Case Study 272
10.5.1 How to Improve Software Quality 272
10.5.2 The Customer Quality Metric 274
10.5.3 Subgoals: Product and Process Improvement 275
10.5.4 Measuring Process Improvements 276

10.6 Data Dispersion: Boxplots and Histograms 277
10.6.1 Medians and Quartiles 277
10.6.2 Box Plots Summarize Data by Quartile 279
10.6.3 Histograms of Data Spread 280

10.7 Data Dispersion: Statistics 282
10.7.1 Variance from the Mean 282
10.7.2 Discrete Probability Distribution 284
10.7.3 Continuous Distributions 286
10.7.4 Introduction to Normal Distributions 286
10.7.5 Introduction to Student’s t-Distributions 287

10.8 Confidence Intervals 287
10.8.1 Definition of Confidence Interval 288
10.8.2 If the Population Standard Deviation Is Known 289
10.8.3 If the Population Standard Deviation Is Unknown 290

10.9 Simple Linear Regression 292
10.9.1 The Simpler Case: Line through the Origin 293
10.9.2 Ordinary Least-Squares Fit 294

10.10 Conclusion 296
Further Reading 298
Exercises 298

Appendix A Team Project 300
A.1 Overview 300

A.1.1 Goals for a Project 301
A.1.2 The Team Experience 302
A.1.3 Coupling the Classroom and Project Experiences 302

A.2 Project Proposal 304
A.3 Skeletal System: Status Report 1 306
A.4 Viable System: Status Report 2 308
A.5 Comprehensive Final Report 310

Notes 314
References 325
Index 337

www.cambridge.org/9781316511947
www.cambridge.org

