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Software engineering is as much about teamwork as it is about technology. This intro-
ductory textbook covers both. For courses featuring a team project, it offers tips and
templates for aligning classroom concepts with the needs of the students’ projects.
Students will learn how software is developed in industry by adopting agile methods,
discovering requirements, designing modular systems, selecting effective tests, and
using metrics to track progress. The book also covers the why’s behind the how-to’s,
to prepare students for advances in industry practices. The chapters explore ways of
eliciting what users really want, how clean architecture divides and conquers the inher-
ent complexity of software systems, how test coverage is essential for detecting the
inevitable defects in code, and much more. Ravi Sethi provides real-life case studies
and examples to demonstrate practical applications of the concepts. Online resources
include sample project materials for students, and lecture slides for instructors.

Ravi Sethi is Laureate Professor of Computer Science at the University of Arizona,
USA, and is an ACM fellow. He co-authored Compilers: Principles, Techniques, and
Tools, popularly known as the “dragon” book, and launched Avaya Labs.
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Preface

The selection of content for this book was guided by the following question: What do
software engineers really need to know about the subject to be productive today and
relevant tomorrow? The discipline continues to evolve, driven by new applications,
technologies, and development methods. There is every indication that the evolu-
tion will continue during an engineer’s career. The IEEE-ACM software engineering
curriculum guidelines stress continual learning:

Because so much of what is learned will change over a student’s professional career and only a
small fraction of what could be learned will be taught and learned at university, it is of paramount
importance that students develop the habit of continually expanding their knowledge.1

This book therefore focuses on basic principles and best practices. The emphasis is
not only on what works, but on why it works. The book includes real-world examples
and case studies, where possible. Some classic examples are included for perspective.

Principles endure while practices evolve as the assumptions behind them are reex-
amined. The principles in the book relate to the intrinsic properties of software and
human nature: software is complex, requirements change, defects are inevitable, teams
need coordination. Assumptions about how to deal with these intrinsic properties have
been tested over the years. Must testing follow coding? Not with test-driven develop-
ment. The distinction between development and maintenance blurs with an evolving
software code base. All assumptions have to be questioned to enable the pace of con-
tinuous deployment. What does not change is that design and architecture are the key
to managing complexity, iterative agile methods accommodate requirements changes,
validation and verification reduce defects, and a healthy balance of structure and
flexibility motivates teams and improves performance.

Content Organization and Coverage

This book is intended for a junior- or senior-level introductory course in software engi-
neering. Students are expected to have enough programming maturity to engage in a
team project. They are not expected to have any prior team experience.

The ACM-IEEE guidelines strongly recommend the inclusion of a significant
project in a software engineering course. First, systematic engineering methods are
intended for problems of complexity and scale. With a significant project, students
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xvi Preface

get to experience the benefits of engineering concepts and methods. Second, users
and teams bring a human dimension to the discipline. Working with a real customer
on a project suitable for a team of, say, four provides students with a team experi-
ence. Appendix A addresses the challenge of organizing a course with dual tracks for
concepts and a project. See also the brief comments in the following paragraphs.

The chapters in this book can be grouped as follows: getting started, what to build,
design and architecture, software quality, and metrics.

Getting Started: Chapters 1–2 Chapter 1 introduces key topics that are explored in
the rest of the book: requirements, software architecture, and testing. The chapter also
has a section on social responsibility and professional conduct.

Chapter 2 deals with processes, which orchestrate team activities. A team’s culture
and values guide activities that are not covered by the rules of a process. Process models
tend to focus on specific activities, leaving the rest to the team: Scrum focuses on
planning and review events, XP on development practices, V processes on testing,
and the Spiral Framework on risk reduction. The chapter discusses how a team can
combine best practices from these process models for its project.

What to Build? Chapters 3–5 Requirements development is iterative, with both
agile and plan-driven methods. The difference is that agile methods favor working
software to validate what to build, whereas plan-driven methods validate a specifica-
tion document. Chapter 3 deals with elicitation (discovery) of the wants and goals that
users communicate through their words, actions, and emotions. What users say can
differ from what they do and feel. To help clarify user goals, the chapter introduces
three classes of questions, aimed at identifying user motivations, solution options, and
goal quantification. User requirements can be recorded as user stories, system features,
or user-experience scenarios. Goal refinement techniques, covered with requirements,
also apply to security (attack trees) and measurement (metrics).

The requirements prioritization techniques in Chapter 4 include MoSCoW (must-
should-could-won’t), value-cost balancing, value-cost-risk assessment, and Kano
analysis. Kano analysis is based not only on what satisfies customers, but on what dis-
satisfies them. The chapter also includes estimation techniques based on story points
for agile methods and on Cocomo formal models for plan-driven methods. Anchoring,
which can bias estimates, is a phenomenon to be avoided during both individual and
group estimation.

Chapter 5 covers use cases. Use cases can be lightweight if they are developed
incrementally, starting with user goals, then adding basic flows, and finally alternative
flows as needed.

Design and Architecture: Chapters 6–7 Architecture is a subset of design, so the
following comments carry over to design. Software architecture, Chapter 6, is key to
managing the complexity of software. A modular system is built up from units such as
classes, so the chapter introduces UML (Unified Modeling Language) class diagrams
and includes guidelines for designing modular systems. For system architecture, the
chapter introduces views and how to describe a system in terms of key view(s).
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Preface xvii

A pattern outlines a solution to a problem that occurs over and over again. Chapter 7
covers the following architectural patterns: layering, shared data, observer, publish-
subscribe, model-view-controller, client-server, and broker. Client–server architec-
tures enable new software to be deployed to a production system: a load balancer
directs some of the incoming traffic to the new software on a trial basis, until the new
software is ready to go into production. The ability to add new software to a production
system is needed for continuous deployment.

Software Quality: Chapters 8–10 The combination of reviews (architecture and
code), static analysis, and testing is much more effective for defect detection than any
of these techniques by themselves. Chapter 8 discusses reviews and static analysis.
The focus of the chapter is on static or compile-time techniques.

Chapter 9 is on testing, which is done by running code on specific test inputs.
A test set is considered good enough if it meets the desired coverage criteria. For
code coverage, the chapter includes statement, branch (decision), and MC/DC cov-
erage. For input-domain coverage, the chapter includes equivalence partitioning and
combinatorial testing.

The quality theme continues into Chapter 10, which applies metrics and measure-
ment to the goal of quality assessment and improvement. The chapter introduces six
forms of quality: functional, process, product, operations (ops), aesthetics, and cus-
tomer satisfaction. Ops quality refers to quality after a system is installed at a customer
site.

Metrics: Chapter 10 An alternative long title for this chapter is “the design and
use of metrics and measurement, with applications to software quality.” The chapter
has roughly three parts. The first part introduces the measurement process, the design
of useful metrics, and the graphical display of data sets. The second part deals with
metrics for product and ops quality. The third part introduces statistical techniques.
Boxplots, histograms, variance, and standard deviation summarize the dispersion of
values in data sets. The last two sections on confidence intervals and simple linear
regression are mathematical.

A Team Project: Appendix A The main challenge in a course with a concepts
track and a project track is that the two tracks have somewhat different objectives;
for example, the concepts track typically covers multiple process models, while a
project embraces a single process. In general, each of the two tracks has its own pace:
the concepts track takes many weeks to cover the what, why, and how of processes,
requirements, design, and testing, whereas some knowledge of all of these topics is
needed early, during the first iteration of a project.

The appendix discusses a hybrid approach, which aligns the tracks initially, while
teams are formed and projects are launched. Once the students have enough to start
their projects, the coupling between the tracks can be loosened so each track can
proceed at its own pace.
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