
Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Software Engineering

Software engineering is as much about teamwork as it is about technology. This intro-
ductory textbook covers both. For courses featuring a team project, it offers tips and
templates for aligning classroom concepts with the needs of the students’ projects.
Students will learn how software is developed in industry by adopting agile methods,
discovering requirements, designing modular systems, selecting effective tests, and
using metrics to track progress. The book also covers the why’s behind the how-to’s,
to prepare students for advances in industry practices. The chapters explore ways of
eliciting what users really want, how clean architecture divides and conquers the inher-
ent complexity of software systems, how test coverage is essential for detecting the
inevitable defects in code, and much more. Ravi Sethi provides real-life case studies
and examples to demonstrate practical applications of the concepts. Online resources
include sample project materials for students, and lecture slides for instructors.

Ravi Sethi is Laureate Professor of Computer Science at the University of Arizona,
USA, and is an ACM fellow. He co-authored Compilers: Principles, Techniques, and
Tools, popularly known as the “dragon” book, and launched Avaya Labs.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Software Engineering

Basic Principles and Best Practices

RAVI SETHI

University of Arizona

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/highereducation/isbn/9781316511947
DOI: 10.1017/9781009051811

© Ravi Sethi 2023

This publication is in copyright. Subject to statutory exception and to the provisions
of relevant collective licensing agreements, no reproduction of any part may take
place without the written permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall 2023

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Sethi, Ravi Mohan, 1947-author.
Title: Software engineering : basic principles and best practices /

Ravi Sethi, University of Arizona.
Description: Cambridge, United Kingdom ; New York, NY : Cambridge

University Press, 2023. | Includes bibliographical references and index.
Identifiers: LCCN 2022034132 (print) | LCCN 2022034133 (ebook) |

ISBN 9781316511947 (hardback) | ISBN 9781009051811 (epub)
Subjects: LCSH: Software engineering.
Classification: LCC QA76.758 .S45834 2023 (print) | LCC QA76.758 (ebook) |

DDC 005.1–dc23/eng/20220822
LC record available at https://lccn.loc.gov/2022034132
LC ebook record available at https://lccn.loc.gov/2022034133

ISBN 978-1-316-51194-7 Hardback

Additional resources for this publication at www.cambridge.org/sethi.

Cambridge University Press & Assessment has no responsibility for the persistence
or accuracy of URLs for external or third-party internet websites referred to in this
publication and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Brief Contents

Preface page xv

1 Introduction 1

2 Software Development Processes 24

3 User Requirements 64

4 Requirements Analysis 100

5 Use Cases 125

6 Design and Architecture 142

7 Architectural Patterns 172

8 Static Checking 203

9 Testing 222

10 Quality Metrics 253

Appendix A Team Project 300

Notes 314
References 325
Index 337

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents

Preface xv

1 Introduction 1
1.1 What Is Software Engineering? 1

1.1.1 Definition of Software Engineering 2
1.1.2 A Tale of Two Companies 4

1.2 The Requirements Challenge 5
1.2.1 Identifying Users and Requirements 6
1.2.2 Dealing with Requirements Changes 7

1.3 Software Is Intrinsically Complex 8
1.3.1 Sources of Complexity 8
1.3.2 Architecture: Dealing with Program Complexity 9

1.4 Defects Are Inevitable 11
1.4.1 Fix Faults to Avoid Failures 11
1.4.2 Introduction to Testing 12
1.4.3 Black-Box and White-Box Testing 13

1.5 Balancing Constraints: The Iron Triangle 13
1.5.1 Scope. Cost. Time. Pick Any Two! 14

1.6 Social Responsibility 15
1.6.1 Case Study: The Volkswagen Emissions Scandal 15
1.6.2 The ACM Code 15
1.6.3 Case Study: The Therac-25 Accidents 16
1.6.4 Lessons for Software Projects 17

1.7 Conclusion 19
Further Reading 20
Exercises 20

2 Software Development Processes 24
2.1 Processes and Values Guide Development 24

2.1.1 What Is a Process? 25
2.1.2 Two Development Cultures: Plan versus Grow 26
2.1.3 Role Models: Unix Culture and Agile Values 28
2.1.4 Selecting a Process Model 30

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

viii Contents

2.2 Structuring Teamwork: The Scrum Framework 32
2.2.1 Overview of Scrum 32
2.2.2 Scrum Roles 34
2.2.3 Scrum Events 34
2.2.4 Scrum Artifacts 36
2.2.5 Summary 37

2.3 Agile Development: Extreme Programming 37
2.3.1 Listening to Customers: User Stories 38
2.3.2 Testing: Make It Central to Development 39
2.3.3 When to Design? 41
2.3.4 A Scrum+XP Hybrid 43
2.3.5 Summary 44

2.4 Limitations of Waterfall Processes 44
2.4.1 The Perils of Big-Bang Integration and Testing 45
2.4.2 The Waterfall Cost-of-Change Curve 46
2.4.3 Managing the Risks of Waterfall Processes 47
2.4.4 Summary 49

2.5 Levels of Design and Testing: V Processes 49
2.5.1 Overview of V Processes 50
2.5.2 Levels of Testing, from Unit to Acceptance 51
2.5.3 Summary 51

2.6 Additional Project Risks 51
2.6.1 Rough Risk Assessment 53
2.6.2 Netscape 3.0: A Successful Iterative Project 53
2.6.3 Netscape 4.0: A Troubled Project 54

2.7 Risk Reduction: The Spiral Framework 55
2.7.1 Overview of the Spiral Framework 56
2.7.2 Summary 58

2.8 Conclusion 58
Further Reading 60
Exercises 60

3 User Requirements 64
3.1 What Is a Requirement? 64

3.1.1 The Basic Requirements Cycle 65
3.1.2 Case Study: Requirements Challenges 66
3.1.3 Kinds of Requirements 67

3.2 Developing Requirements and Software 69
3.2.1 Agile Methods Validate Working Software 69
3.2.2 Case Study: An Agile Emphasis on Requirements 70
3.2.3 Plan-Driven Methods Validate a Specification 72

3.3 Eliciting User Needs 73
3.3.1 A Classification of Needs 73
3.3.2 Accessing User Needs 75

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents ix

3.3.3 Case Study: Intuit’s Design for Delight 76
3.4 Writing Requirements: Stories and Features 77

3.4.1 Guidelines for Effective User Stories 77
3.4.2 Guidelines for System Features 80
3.4.3 Perspective on User Stories 82

3.5 Writing User-Experience Scenarios 83
3.5.1 Guidelines for User-Experience Scenarios 83
3.5.2 Case Study: A Medical Scenario 84

3.6 Clarifying User Goals 85
3.6.1 Properties of Goals 86
3.6.2 Asking Clarifying Questions 87
3.6.3 Organizing Goals into Hierarchies 89
3.6.4 Contributing and Conflicting Goals 91

3.7 Identifying Security Attacks 93
3.7.1 Attack Trees: Think Like an Attacker 93
3.7.2 Finding Possible Attacks 93

3.8 Conclusion 95
Further Reading 97
Exercises 97

4 Requirements Analysis 100
4.1 A Checklist Approach 100
4.2 Relative Estimation: Iteration Planning 103

4.2.1 Anchoring Can Bias Decisions 103
4.2.2 Agile Story Points 104
4.2.3 Velocity of Work 106

4.3 Structured Group Consensus Estimates 106
4.3.1 Wideband Delphi and Planning Poker 107
4.3.2 The Original Delphi Method 108

4.4 Balancing Priorities 110
4.4.1 Must-Should-Could-Won’t (MoSCoW) Prioritization 110
4.4.2 Balancing Value and Cost 111
4.4.3 Balancing Value, Cost, and Risk 112

4.5 Customer Satisfiers and Dissatisfiers 113
4.5.1 Kano Analysis 114
4.5.2 Classification of Features 115
4.5.3 Life Cycles of Attractiveness 117
4.5.4 Degrees of Sufficiency 118

4.6 Plan-Driven Estimation Models 118
4.6.1 How Are Size and Effort Related? 119
4.6.2 The Cocomo Family of Estimation Models 121

4.7 Conclusion 122
Further Reading 122
Exercises 123

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

x Contents

5 Use Cases 125
5.1 Elements of a Use Case 125

5.1.1 Actors and Goals Outline a System 125
5.1.2 Flows and Basic Flows 127

5.2 Alternative Flows: Conditional Behaviors 127
5.2.1 Specific Alternative Flows 129
5.2.2 Extension Points 130
5.2.3 Bounded Alternative Flows 131

5.3 Writing Use Cases 132
5.3.1 A Template for Use Cases 133
5.3.2 From Actor Intentions to System Interactions 134
5.3.3 How to Build Use Cases 135

5.4 Use-Case Diagrams 136
5.4.1 Diagrams Highlight Goals and Actors 136

5.5 Relationships between Use Cases 137
5.5.1 Subflows 137
5.5.2 Inclusion of Use Cases 137
5.5.3 Extensions of Use Cases 138

5.6 Conclusion 139
Further Reading 140
Exercises 140

6 Design and Architecture 142
6.1 The Role of Architecture 142

6.1.1 What Is Architecture? 143
6.1.2 Design Includes Architecture 144
6.1.3 What Is a Good Software Architecture? 144

6.2 Designing Modular Systems 145
6.2.1 The Modularity Principle 145
6.2.2 Coupling and Cohesion 148
6.2.3 Design Guidelines for Modules 149

6.3 Class Diagrams 150
6.3.1 Representing a Class 150
6.3.2 Relationships between Classes 153

6.4 Architectural Views 156
6.4.1 The 4+1 Grouping of Views 156
6.4.2 Structures and Views 160

6.5 Describing System Architecture 162
6.5.1 Outline for an Architecture Description 162
6.5.2 System Overview of a Communications App 164
6.5.3 A Development View: Module Hierarchies 165

6.6 Conclusion 167
Further Reading 168
Exercises 168

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents xi

7 Architectural Patterns 172
7.1 Software Layering 172

7.1.1 The Layered Pattern 174
7.1.2 Design Trade-offs 176

7.2 Three Building Blocks 178
7.2.1 The Shared-Data Pattern 179
7.2.2 Observers and Subscribers 180

7.3 User Interfaces: Model-View-Controller 181
7.3.1 Design Decisions 182
7.3.2 The Basic Model-View-Controller Pattern 183
7.3.3 Keep Views Simple 185

7.4 Dataflow Architectures 186
7.4.1 Dataflow Pipelines 186
7.4.2 Dataflow Networks 189
7.4.3 Unbounded Streams 190
7.4.4 Big Dataflows 191

7.5 Connecting Clients with Servers 192
7.5.1 The Client-Server Pattern 193
7.5.2 Deploying Test Servers 194
7.5.3 The Broker Pattern 196

7.6 Families and Product Lines 197
7.6.1 Commonalities and Variabilities 197
7.6.2 Software Architecture and Product Lines 198
7.6.3 Economics of Product-Line Engineering 198

7.7 Conclusion 199
Further Reading 199
Exercises 200

8 Static Checking 203
8.1 Architecture Reviews 203

8.1.1 Guiding Principles for Architecture Reviews 204
8.1.2 Discovery, Deep-Dive, and Retrospective Reviews 206

8.2 Conducting Software Inspections 207
8.2.1 The Phases of a Traditional Inspection 207
8.2.2 Case Study: Using Data to Ensure Effectiveness 209
8.2.3 Organizing an Inspection 211

8.3 Code Reviews: Check Intent and Trust 212
8.3.1 Invested Expert Reviewers 212
8.3.2 Reviewing Is Done within Hours 213

8.4 Automated Static Analysis 214
8.4.1 A Variety of Static Checkers 215
8.4.2 False Positives and False Negatives 218

8.5 Conclusion 218

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xii Contents

Further Reading 220
Exercises 220

9 Testing 222
9.1 Overview of Testing 222

9.1.1 Issues during Testing 223
9.1.2 Test Selection 225
9.1.3 Test Adequacy: Deciding When to Stop 225
9.1.4 Test Oracles: Evaluating the Response to a Test 226

9.2 Levels of Testing 227
9.2.1 Unit Testing 228
9.2.2 Integration Testing 229
9.2.3 Functional, System, and Acceptance Testing 231
9.2.4 Case Study: Test Early and Often 232

9.3 Code Coverage I: White-Box Testing 233
9.3.1 Control-Flow Graphs 233
9.3.2 Control-Flow Coverage Criteria 235

9.4 Input Coverage I: Black-Box Testing 238
9.4.1 Equivalence-Class Coverage 239
9.4.2 Boundary-Value Coverage 240

9.5 Code Coverage II: MC/DC 241
9.5.1 Condition and Decision Coverage Are Independent 242
9.5.2 MC/DC Pairs of Tests 242

9.6 Input Coverage II: Combinatorial Testing 245
9.7 Conclusion 249
Further Reading 250
Exercises 250

10 Quality Metrics 253
10.1 Meaningful Metrics 253

10.1.1 Metrics Quantify Attributes 254
10.1.2 Selecting Useful Metrics 255
10.1.3 Goal-Directed Measurement 257

10.2 Software Quality 257
10.2.1 The Many Forms of Software Quality 258
10.2.2 Measuring Customer Support 260

10.3 Graphical Displays of Data Sets 261
10.3.1 Data Sets 261
10.3.2 Scales of Measurement 262
10.3.3 Bar Charts Display Data by Category 264
10.3.4 Gantt Charts Display Schedules 266

10.4 Product Quality: Measuring Defects 267
10.4.1 Severity of Defects 268
10.4.2 Defect-Removal Efficiency 268

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Contents xiii

10.4.3 Customer-Found Defects (CFDs) 270
10.4.4 CFDs Measure Installs, Not Quality 270

10.5 Ops Quality Improvement: A Case Study 272
10.5.1 How to Improve Software Quality 272
10.5.2 The Customer Quality Metric 274
10.5.3 Subgoals: Product and Process Improvement 275
10.5.4 Measuring Process Improvements 276

10.6 Data Dispersion: Boxplots and Histograms 277
10.6.1 Medians and Quartiles 277
10.6.2 Box Plots Summarize Data by Quartile 279
10.6.3 Histograms of Data Spread 280

10.7 Data Dispersion: Statistics 282
10.7.1 Variance from the Mean 282
10.7.2 Discrete Probability Distribution 284
10.7.3 Continuous Distributions 286
10.7.4 Introduction to Normal Distributions 286
10.7.5 Introduction to Student’s t-Distributions 287

10.8 Confidence Intervals 287
10.8.1 Definition of Confidence Interval 288
10.8.2 If the Population Standard Deviation Is Known 289
10.8.3 If the Population Standard Deviation Is Unknown 290

10.9 Simple Linear Regression 292
10.9.1 The Simpler Case: Line through the Origin 293
10.9.2 Ordinary Least-Squares Fit 294

10.10 Conclusion 296
Further Reading 298
Exercises 298

Appendix A Team Project 300
A.1 Overview 300

A.1.1 Goals for a Project 301
A.1.2 The Team Experience 302
A.1.3 Coupling the Classroom and Project Experiences 302

A.2 Project Proposal 304
A.3 Skeletal System: Status Report 1 306
A.4 Viable System: Status Report 2 308
A.5 Comprehensive Final Report 310

Notes 314
References 325
Index 337

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface

The selection of content for this book was guided by the following question: What do
software engineers really need to know about the subject to be productive today and
relevant tomorrow? The discipline continues to evolve, driven by new applications,
technologies, and development methods. There is every indication that the evolu-
tion will continue during an engineer’s career. The IEEE-ACM software engineering
curriculum guidelines stress continual learning:

Because so much of what is learned will change over a student’s professional career and only a
small fraction of what could be learned will be taught and learned at university, it is of paramount
importance that students develop the habit of continually expanding their knowledge.1

This book therefore focuses on basic principles and best practices. The emphasis is
not only on what works, but on why it works. The book includes real-world examples
and case studies, where possible. Some classic examples are included for perspective.

Principles endure while practices evolve as the assumptions behind them are reex-
amined. The principles in the book relate to the intrinsic properties of software and
human nature: software is complex, requirements change, defects are inevitable, teams
need coordination. Assumptions about how to deal with these intrinsic properties have
been tested over the years. Must testing follow coding? Not with test-driven develop-
ment. The distinction between development and maintenance blurs with an evolving
software code base. All assumptions have to be questioned to enable the pace of con-
tinuous deployment. What does not change is that design and architecture are the key
to managing complexity, iterative agile methods accommodate requirements changes,
validation and verification reduce defects, and a healthy balance of structure and
flexibility motivates teams and improves performance.

Content Organization and Coverage

This book is intended for a junior- or senior-level introductory course in software engi-
neering. Students are expected to have enough programming maturity to engage in a
team project. They are not expected to have any prior team experience.

The ACM-IEEE guidelines strongly recommend the inclusion of a significant
project in a software engineering course. First, systematic engineering methods are
intended for problems of complexity and scale. With a significant project, students

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xvi Preface

get to experience the benefits of engineering concepts and methods. Second, users
and teams bring a human dimension to the discipline. Working with a real customer
on a project suitable for a team of, say, four provides students with a team experi-
ence. Appendix A addresses the challenge of organizing a course with dual tracks for
concepts and a project. See also the brief comments in the following paragraphs.

The chapters in this book can be grouped as follows: getting started, what to build,
design and architecture, software quality, and metrics.

Getting Started: Chapters 1–2 Chapter 1 introduces key topics that are explored in
the rest of the book: requirements, software architecture, and testing. The chapter also
has a section on social responsibility and professional conduct.

Chapter 2 deals with processes, which orchestrate team activities. A team’s culture
and values guide activities that are not covered by the rules of a process. Process models
tend to focus on specific activities, leaving the rest to the team: Scrum focuses on
planning and review events, XP on development practices, V processes on testing,
and the Spiral Framework on risk reduction. The chapter discusses how a team can
combine best practices from these process models for its project.

What to Build? Chapters 3–5 Requirements development is iterative, with both
agile and plan-driven methods. The difference is that agile methods favor working
software to validate what to build, whereas plan-driven methods validate a specifica-
tion document. Chapter 3 deals with elicitation (discovery) of the wants and goals that
users communicate through their words, actions, and emotions. What users say can
differ from what they do and feel. To help clarify user goals, the chapter introduces
three classes of questions, aimed at identifying user motivations, solution options, and
goal quantification. User requirements can be recorded as user stories, system features,
or user-experience scenarios. Goal refinement techniques, covered with requirements,
also apply to security (attack trees) and measurement (metrics).

The requirements prioritization techniques in Chapter 4 include MoSCoW (must-
should-could-won’t), value-cost balancing, value-cost-risk assessment, and Kano
analysis. Kano analysis is based not only on what satisfies customers, but on what dis-
satisfies them. The chapter also includes estimation techniques based on story points
for agile methods and on Cocomo formal models for plan-driven methods. Anchoring,
which can bias estimates, is a phenomenon to be avoided during both individual and
group estimation.

Chapter 5 covers use cases. Use cases can be lightweight if they are developed
incrementally, starting with user goals, then adding basic flows, and finally alternative
flows as needed.

Design and Architecture: Chapters 6–7 Architecture is a subset of design, so the
following comments carry over to design. Software architecture, Chapter 6, is key to
managing the complexity of software. A modular system is built up from units such as
classes, so the chapter introduces UML (Unified Modeling Language) class diagrams
and includes guidelines for designing modular systems. For system architecture, the
chapter introduces views and how to describe a system in terms of key view(s).

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xvii

A pattern outlines a solution to a problem that occurs over and over again. Chapter 7
covers the following architectural patterns: layering, shared data, observer, publish-
subscribe, model-view-controller, client-server, and broker. Client–server architec-
tures enable new software to be deployed to a production system: a load balancer
directs some of the incoming traffic to the new software on a trial basis, until the new
software is ready to go into production. The ability to add new software to a production
system is needed for continuous deployment.

Software Quality: Chapters 8–10 The combination of reviews (architecture and
code), static analysis, and testing is much more effective for defect detection than any
of these techniques by themselves. Chapter 8 discusses reviews and static analysis.
The focus of the chapter is on static or compile-time techniques.

Chapter 9 is on testing, which is done by running code on specific test inputs.
A test set is considered good enough if it meets the desired coverage criteria. For
code coverage, the chapter includes statement, branch (decision), and MC/DC cov-
erage. For input-domain coverage, the chapter includes equivalence partitioning and
combinatorial testing.

The quality theme continues into Chapter 10, which applies metrics and measure-
ment to the goal of quality assessment and improvement. The chapter introduces six
forms of quality: functional, process, product, operations (ops), aesthetics, and cus-
tomer satisfaction. Ops quality refers to quality after a system is installed at a customer
site.

Metrics: Chapter 10 An alternative long title for this chapter is “the design and
use of metrics and measurement, with applications to software quality.” The chapter
has roughly three parts. The first part introduces the measurement process, the design
of useful metrics, and the graphical display of data sets. The second part deals with
metrics for product and ops quality. The third part introduces statistical techniques.
Boxplots, histograms, variance, and standard deviation summarize the dispersion of
values in data sets. The last two sections on confidence intervals and simple linear
regression are mathematical.

A Team Project: Appendix A The main challenge in a course with a concepts
track and a project track is that the two tracks have somewhat different objectives;
for example, the concepts track typically covers multiple process models, while a
project embraces a single process. In general, each of the two tracks has its own pace:
the concepts track takes many weeks to cover the what, why, and how of processes,
requirements, design, and testing, whereas some knowledge of all of these topics is
needed early, during the first iteration of a project.

The appendix discusses a hybrid approach, which aligns the tracks initially, while
teams are formed and projects are launched. Once the students have enough to start
their projects, the coupling between the tracks can be loosened so each track can
proceed at its own pace.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xviii Preface

Acknowledgments

My trial-by-software came when Harry Huskey handed me a full box of cards with
the assembly code for a compiler for HH-1, his Algol-like language. The code was the
only description for either the language or the compiler. Harry then left for a long trip,
after giving me free rein to see what I could do. Hello, summer job! The job was at
the end of my first year as an undergraduate at IIT Kanpur. At the time, the sum total
of my experience was a few short Fortran and assembly programs for the IBM 1620. I
spent a formative summer tracing through the code and doing peephole optimization.
In retrospect, it would have helped if I had clarified Harry’s requirements, tested after
every change, asked for a view of the system architecture, and so on.

Fast forward a dozen years to Bell Labs in New Jersey, where I had the good fortune
to join Doug McIlroy’s department in the Computer Science Research Center. In the
Center, Unix was about to be ported from one machine to another for the first time.
As a user, I came to appreciate the Unix tools culture, quick iterations, and continual
refinement of tools through user feedback. Steve Johnson once lamented “the inability
of users to see things” his way and added that “invariably, they were right!”

I also came to appreciate the challenges faced by the Switching business unit in
building 99.999 percent reliable telephone switches: each phone call was handled by
a concurrent process at each end. Their existing approach had a cast of thousands
using variants of waterfall processes. They managed the risks of waterfall methods
by freezing requirements and by rigorous continuous validation and verification.

In 2000, Avaya was spun off as a separate company and I went with it to build up
Avaya Labs Research. Half of the research staff came from Bell Labs, David Weiss
among them. David built up the software technology research department, together
with a small group called the Avaya Resource Center (ARC), which served as a bridge
to the R&D community in the business units. The mission for the department and
the ARC was to “Improve the state of software in Avaya and know it.” After David
retired, I got a chance to work directly with Randy Hackbarth and John Palframan from
the ARC and with Audris Mockus and Jenny Li from the research department. These
were the people behind the quality improvement effort described in Section 10.5. I am
grateful to them for their briefings and insights about software.

When I joined the University of Arizona in 2014, David generously shared the mate-
rials from his software engineering course at Iowa State University. At Arizona, I want
to thank Todd Proebsting and David Lowenthal for the opportunity to teach the senior
and graduate-level software engineering courses.

For this book, I would like to single out Jon Bentley, Audris Mockus, and Joann
Ordille for their insights, encouragement, and comments. Thanks also to the many
students in the software engineering courses. The Cambridge University Press team
has been most thorough. My thanks to the editors, Emily Watton and Lauren Cowles.
Emily’s ongoing suggestions have greatly improved the book. Most of all, I want to
thank Dianne and Alexandra. Alexandra took over the figures when I could no longer
do them.

www.cambridge.org/9781316511947
www.cambridge.org

