
Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Introduction

Software engineering is the application of engineering methods to software devel-
opment and evolution. Its principles and practices address three fundamental goals:
discover user requirements, manage software complexity, and build quality products
and services. This chapter introduces the goals, their associated challenges, and how
to deal with the challenges.

The main requirements goal is to pin down what users really want, so develop-
ers know what to implement. The main complexity goal is to overcome the intrinsic
complexity of software, primarily through the design of modular systems. The main
quality goal is to build dependable systems, despite the inevitability of defects. Defects
are detected and removed by software checking and testing.

These software engineering goals are met by using systematic quantitative meth-
ods (processes) to organize development teams and their activities; see Chapter 2 for
processes. Teams must balance the scope (functionality) they deliver against budget,
schedule, and other external constraints. This chapter concludes with a brief discussion
of professional conduct and social responsibility.

This introductory chapter will enable the reader to:

• Describe approaches to addressing the fundamental software engineering
goals/challenges of identifying user requirements, managing software
complexity, and achieving product quality.

• Explain the elements of the ACM/IEEE Software Engineering Code of Ethics
and Professional Practice (short version).

1.1 What Is Software Engineering?

Most definitions of software engineering are variations on the theme of applying
engineering to software. In other words, they focus on the application of systematic
processes to create and maintain software products. Left unstated in most definitions
is the fact that engineering projects have customers (users) and face business and
regulatory constraints. As we shall see, customers and constraints are major driving
forces (drivers) for projects. The definition in this section includes them explicitly.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 1 Introduction

Figure 1.1 The arrows represent relationships between four pervasive drivers of software
projects: Customers, Processes, Products, and Constraints.

The definition therefore includes four key drivers: customers, processes, products, and
constraints.

This book uses the term development broadly to extend past initial development
to changes after a product is created. Initial development spills over into evolu-
tion/maintenance because products continue to be updated long after they are first
deployed. The distinction between development and evolution disappears with the
practice known as continuous deployment; see Example 1.1.

1.1.1 Definition of Software Engineering

Software engineering is the application of systematic, quantifiable processes to the
development and evolution of software products for customers, subject to cost,
schedule, and regulatory constraints.1

The arrows in Fig. 1.1 illustrate the relationships between the four key drivers in
the preceding definition. Customer needs are at the top in the figure – without them,
there would be no project. Customer needs drive the process activities that build the
product. Once built, the product must meet customer needs and satisfy any constraints
on the product, the process, or the project.

Driving Forces on Software Projects
The four key drivers in Fig. 1.1 are representative of the many forces that a project
must balance. The four key drivers appear in boldface in Fig. 1.2.

Customers and users belong in the same grouping of forces. In popular usage, the
target audience for a product is called “the customer” or “the user.” Both roles drive
requirements for what to build. We therefore use the two terms interchangeably, unless
there is a need to be specific about a role.

Processes and teams are closely tied, since processes organize teams and their
activities. Team skills belong in the same grouping.

Product is a convenient term for any deliverable from a software project. Examples
of products include software systems, services delivered from the cloud, test suites,

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.1 What Is Software Engineering? 3

Figure 1.2 Some of the many drivers that projects must balance. Key drivers are in bold.

and documentation. A deliverable can also be an event, such as a live demo at a
conference.

Products and technology are a natural fit. Technology takes two forms: (a) it is
delivered in the form of products, and (b) it is used in the form of tools to build products.

Constraints are external forces from the context of a project. For example, European
Union regulations prohibit products from exporting personal data. Cost, time, and legal
constraints are mentioned explicitly in the definition of software engineering. Projects
must also deal with ethical and social norms.

Box 1.1 Origins of the Term Software Engineering

Software engineering emerged as a distinct branch of engineering in the 1960s. The
term “software engineering” dates back to (at least) 1963–64. Margaret Hamilton,
who was with the Apollo space program, began using it to distinguish software
engineering from hardware and other forms of engineering. At the time, hardware
was precious: an hour of computer time cost hundreds of times as much as an hour
of a programmer’s time.2 Code clarity and maintainability were often sacrificed in
the name of efficiency. As the complexity and size of computer applications grew,
so did the importance of software.

Software engineering was more of a dream than a reality when the term was
chosen as the title of a 1968 NATO conference. The organizers, especially Fritz
Bauer, chose the title to be

provocative, in implying the need for software manufacture to be based on the types of the-
oretical foundations and practical disciplines, that are traditional in the established branches
of engineering.3

Since then, much has changed. On November 22, 2016, Margaret Hamilton was
awarded the Presidential Medal of Freedom for her (software) work leading up to
the Apollo missions.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 1 Introduction

1.1.2 A Tale of Two Companies

The key drivers – customers, processes, products, and constraints – are pervasive in the
sense that a significant change in any one of them can affect every aspect of a project.
The two examples that follow illustrate the far-reaching effects of forces related to
customer needs and regulatory constraints. The examples illustrate how different situ-
ations drive dramatically differing decisions, as measured by the pace of the projects.
One company chooses continuous deployment, the other chooses semiannual releases.

Example: Rapid Response to Customer Needs
In the following example, a technology company wants to respond rapidly to any
change in customer needs. This goal drives every aspect of the company, from the
development process to product design to organization structure to the reward system
for employees.

Example 1.1 In order to respond rapidly to customer suggestions and feedback, a tech
company updates its software frequently: it makes hundreds of changes a day to the
software on its main servers. Each change is small, but the practically “continuous”
small updates add up.

Each change is made by a small team that is responsible for “everything” about the
change: design, coding, testing, and then deploying the software directly on customer-
facing servers. The change cycle from concept to deployment takes just a few days.
There are multiple teams, working in parallel. Together, they make hundreds of updates
a day.

The cost of a misstep is low, since the company can trial an update with a few
customers and quickly roll back the update if there is a hitch. After a short trial period,
the updated software can be put into production for the entire customer base.

Every aspect of the preceding description is driven by the company’s desire to
respond rapidly to its customers. Rapid response implies that the cycle time from con-
cept to deployment must be very short. Developers are responsible for making and
deploying their changes directly onto live production servers, since there is no time for
a handoff to a separate operations team. The short cycle time also means that changes
are small, so work is broken down into small pieces that can be developed in parallel.
Management support is essential, especially if something goes wrong and an update
has to be rolled back.

In short, the company’s whole culture is geared to its responsiveness to customer
needs. ✷

Example: Regulations and the Pace of Deployment
In the following example, strict regulations on large banks ripple through the banks to
their suppliers. The cost of a misstep is high, so both the banks and their suppliers do
extensive testing. The time and cost of testing influence software release schedules.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 The Requirements Challenge 5

Example 1.2 A supplier of business software releases software semiannually, on a
schedule that is set by its large customers, including highly regulated investment banks.
Some of the bigger customers conduct their own rigorous acceptance tests in a lab,
before they deploy any software from a supplier. The trial-deploy cycle takes time and
resources, so the customers do not want small updates as soon as they are available;
they prefer semiannual releases.

The supplier’s development projects are geared to the customers’ preferred release
cycle. Since releases are relatively infrequent, they include more functionality to be
included and tested. Dedicated product managers stay in close touch with major cus-
tomers to ensure that a release includes what they want. ✷

Assessment: The Impact of a Change
What can we learn from Examples 1.1 and 1.2? Using the pace of release/deployment
as a measure, the examples illustrate the range of projects that software engineering can
handle. Both the tech company and the supplier of business software chose solutions
that were best for their specific situations.

Based on his experience with large-scale software systems at Google, Jeff Dean
advises that a tenfold change in any aspect of a project is a time to revisit the existing
solution: it may no longer work as well, or it may no longer work at all due to the
change. A hundredfold change may require an entirely new solution approach, perhaps
even a new organizational structure.4 There is well over a thousandfold difference in
the pace at which the companies in Examples 1.1 and 1.2 release/deploy software.

1.2 The Requirements Challenge

Consider the following scenario. A development team talks to customers to identify
their needs for a product. The developers then build a product to meet those needs, only
to find that the completed product does not meet customer expectations. What went
wrong? Customer needs “changed” while the developers were building the product.
With respect to Fig. 1.3, needs identified at the beginning of a cycle can differ from
needs at the end of the cycle.

A user requirement is a description of a customer/user need or want for a product.
The requirements challenge is to define a coherent set of requirements that meets user
expectations. There are two aspects to the challenge:

• Identify and prioritize user requirements that truly reflect user needs. The
challenges include multiple users with differing needs and communication gaps
between users and developers.

• Accommodate changes in user requirements. Users can change their minds, either
because they are uncertain or because of some unexpected external event.

The requirements challenge is also referred to as the problem of changing require-
ments.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 1 Introduction

Figure 1.3 The cycle represents the iterative nature of product development based on customer
needs.

1.2.1 Identifying Users and Requirements

To identify the requirements for a product, we can begin with the following questions:

• Who is the customer? There will likely be multiple classes of users, each with their
own needs and goals.

• What do users really want? There can be gaps between what users are willing and
able to communicate and what developers are able to grasp.

• Are there any external factors? Changes in external conditions can have
repercussions on the project.

Any one of these situations can result in a mismatch between customer expectations
and a snapshot of needs at the start of a project.

Who Is the Customer?
Different users can have different, perhaps conflicting, needs and goals for a project.
These differences have to be identified, reconciled, and prioritized into a coherent set
of requirements. If any class of users is missed or inadequately represented, the require-
ments will not match the needs and goals of the user community. The mismatch can
result in later changes to the requirements. Part of the problem is that it may not be
possible to satisfy all users.

Example 1.3 The makers of a speech-therapy app found a creative way of meeting
the differing needs of two classes of users: parents and children. What was the prob-
lem? Market testing with a prototype revealed that parents really wanted the program
for their children, but found it frustratingly hard to use. Children, meanwhile, had no
trouble using the program but could not be bothered with it. They found it annoyingly
like a lesson.

The two classes of users were therefore frustrated parents and annoyed children.
Their differing needs were addressed by changing the program so it was easier to use
for parents and was more like a game for children.5 ✷

The term “stakeholder” is sometimes applied to a class of users. In general, a
stakeholder is anyone with a stake in a project. Stakeholders include developers and
marketers. For requirements, the focus is on users and their needs.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 The Requirements Challenge 7

What Do Users Really Want?
What customers say they want can differ from what will satisfy them. There may also
be needs that they are unable to articulate. Even if they did know their needs, they may
have only a general “I’ll know it when I see it” sense of how a product can help them.

Example 1.4 Netflix is known for its video and on-demand services. Their experience
with their recommender system is as follows:

Good businesses pay attention to what their customers have to say. But what customers ask for
(as much choice as possible, comprehensive search and navigation tools, and more) and what
actually works (a few compelling choices simply presented) are very different.6 ✷

Uncertainty about user needs is a known unknown, which means that we know that
there is a requirement, but have yet to converge on exactly what it is. Uncertainty can
be anticipated when proposing a solution or design.

Unexpected Requirements Changes
Unexpected changes are unknown unknowns: we do not even know whether there
will be a change. Here are some examples:

• A competitor suddenly introduces an exciting new product that raises customer
expectations.

• The customer’s organization changes business direction, which prompts changes
in user requirements.

• Design and implementation issues during development lead to a reevaluation of
the project.

• The delivered product does what customers asked for, but it does not have the
performance that they need.

Requirements changes due to external factors can lead to a project being redirected
or even canceled.

1.2.2 Dealing with Requirements Changes

Changes in customer needs and requirements have repercussions for the development
process and for the product, because of the relationships shown in Fig. 1.3. We have
no control over changes in customer needs, but there are two things we can do.

1. Do as good a job as possible of identifying and analyzing user requirements.
Requirements development is a subject in its own right; see Chapter 3.

2. Use a development process that accommodates requirements changes during devel-
opment. In effect, iterative and agile processes go through the cycle in Fig. 1.3
repeatedly, evolving the product incrementally. Each iteration revisits customer
needs to keep the product on track to meeting customer expectations when it is
completed.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 1 Introduction

1.3 Software Is Intrinsically Complex

Let us call a piece of software complex if it is hard to understand, debug, and modify.
Complexity due to poorly written code is incidental to the problem that the code is sup-
posed to address. Meanwhile, if well-written code is hard to understand, its complexity
is due to the algorithm behind the code. This algorithmic complexity will remain even
if we rewrite the code or use another programming language, because it is intrinsic to
the problem; that is, it is due to the nature of the problem.7

We focus on intrinsic complexity. Architecture is a primary tool for managing
software complexity. A software architecture partitions a problem into simpler sub-
problems. Layered architectures are used often enough that we introduce them in this
section.

1.3.1 Sources of Complexity

The two main sources of complexity are scale and the structure/behavior distinction.

• Scale Program size is an indicator of the scale of a problem. A large software
system can have tens of millions of lines of code. Sheer size can make a system
hard to understand.

• Structure versus Behavior Here, structure refers to the organization of the code
for a system. Behavior refers to what the code does when it is run. The challenge is
that behavior is invisible, so we do not deal directly with it. We read and write code
and have to imagine and predict how the code will behave when the code is run.

Example 1.5 As a toy example of the distinction between structure and behavior,
consider the following line from a sorting program:

do i = i+1; while (a[i] < v);

In order to understand the behavior of this loop, we need to build a mental model of
the flow of control through the loop at run time. The behavior depends on the values
of i, the elements of the array a, and v when the loop is reached. Control flows some
number of times through the loop before going on to the next line. If any of these values
changes, the number of executions of the loop could change.

The structure of this loop identifies the loop body and the condition for staying in
the loop. The behavior of the loop is characterized by the set of all possible ways that
control can flow through the loop. ✷

The single well-structured do-while loop in the preceding example was convenient
for introducing the distinction between program structure and run-time behavior. Com-
plexity grows rapidly as we consider larger pieces of code; it grows rapidly as decisions

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.3 Software Is Intrinsically Complex 9

are added, as objects are defined, as messages flow between parts of a program, and
so on.

To summarize, scale and the predictability of run-time behavior are significant
contributors to software complexity.

1.3.2 Architecture: Dealing with Program Complexity

Informally, a software architecture defines the parts and the relationships among the
parts of a system. In effect, an architecture partitions a system into simpler parts that
can be studied individually, separately from the rest of the system. (See Chapter 6 for
a more precise definition of architecture.)

In this section, the parts are modules, where each module has a specific responsibil-
ity and a well-defined interface. Modules interact with each other only through their
interfaces. The complexity of understanding the whole system is therefore reduced
to that of understanding the modules and their interactions. For the interactions,
it is enough to know the responsibilities of the modules and their interfaces. The
implementation of the responsibilities can be studied separately, as needed.

What is inside a module? The program elements in a module implement its respon-
sibility and services. As long as its interface remains the same, the internal code for
the module can be modified without touching the rest of the system. A module can be
anything from the equivalent of a single class to a collection of related classes, meth-
ods, values, types, and other program elements. This concept of module is language
independent. (Modules are closer to packages in Java than they are to classes.)

For more information about modules, see Chapter 6. In particular, modules can be
nested; that is, a module can have submodules. For example, a user-interface module
may have submodules for handling text, images, audio, and video – these are all needed
for a user interface.

Layered Architectures
For examples, let us turn from a general discussion of architecture to a specific form:
layered architectures, which are widely used. In a layered architecture, modules are
grouped into sets called layers. The layers are typically shown stacked, one on top of
the other. A key property of layered architectures is that modules in an upper layer may
use modules in the layer immediately below. Modules in a lower layer know nothing
about modules in the layers above them.

Example 1.6 The layered architecture in Fig. 1.4 is a simplified version of the archi-
tecture of many apps. At the top of the diagram is the Presentation layer, which
manages the user interface. Below it is the Domain layer, which handles the business of
the app. In a ride-sharing app, the Domain layer would contain the rules for matching
riders and drivers. Next is the Service Access layer, which accesses all the persistent
data related to the app; for example, customer profiles and preferences. At the bottom,
the Platform layer is for the frameworks and the operating system that support the app.

www.cambridge.org/9781316511947
www.cambridge.org

Cambridge University Press & Assessment
978-1-316-51194-7 — Software Engineering
Ravi Sethi
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 1 Introduction

Figure 1.4 A simplified version of the layered architecture of many apps. Boxes represent
layers containing modules, and dashed arrows represent potential dependencies between
modules in an upper layer on modules in a layer just below.

The dashed arrows represent the may-use relation. Modules in the Presentation
layer may use modules in the Domain layer, but not vice versa; that is, modules in
the Domain layer may not use modules in the Presentation layer. Similar comments
apply to the other layers. By design, all the arrows are down arrows from one layer to
the layer immediately below it.. ✷

The arrows in Fig. 1.4 are included simply to make the may-use relationships
explicit. Vertical stacking of layers can convey the same information implicitly. From
now on, such down arrows will be dropped from layered diagrams. By convention, if
layer A is immediately above layer B in a diagram, modules in the upper layer A may
use modules in the lower layer B.

Example: Modules from an App
The next example is about the modules in a specific app that has a layered architecture
like the one in Fig. 1.4.

Example 1.7 A local pool-service company has technicians who go to customer
homes to maintain their swimming pools.8 Each technician has an assigned route
that changes by day of the week. At each home along their route, the technicians
jot down notes for future reference. The company wants to replace its current paper-
based system with a software system that will support a mobile app for technicians
and a web interface for managers. Managers would use the web interface to set and
assign routes to technicians. Technicians would use the mobile app for individualized
route information, data about each pool along the route, and some customer account
information.

The main modules in the solution correspond to the layers in Fig. 1.4.

www.cambridge.org/9781316511947
www.cambridge.org

