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Introduction

The top 1% of the population controls 35% of the wealth. On Twitter, the top
2% of users send 60% of the messages. In the health care system, the treatment
for the most expensive fifth of patients create four-fifths of the overall cost.
These figures are always reported as shocking, as if the normal order of things
has been disrupted, as if [it] is a surprise of the highest order. It’s not. Or rather,
it shouldn’t be.
– Clay Shirky, in response to the question “What scientific concept would
improve everybody’s cognitive toolkit?” [194]

Introductory probability courses often leave the impression that the Gaussian distribution is
what we should expect to see in the world around us. It is referred to as the “Normal” distri-
bution after all! As a result, statistics like the ones in the quote above tend to be treated as
aberrations, since they would never happen if the world were Gaussian. The Gaussian distri-
bution has a “scale,” a typical value (the mean) around which individual measurements are
centered and do not deviate from by too much. For example, if we consider human heights,
which are approximately Gaussian, the average height of an adult male in the US is 5 feet 9
inches and most people’s heights do not differ by more than 10 inches from this. In contrast,
there are order-of-magnitude differences between individuals in terms of wealth, Twitter
followers, health care costs, and so on.

However, order-of-magnitude differences like those just mentioned are not new and should
not be surprising. Over a century ago, Italian economist Vilfredo Pareto discovered that the
richest 20 percent of the population controlled 80 percent of the property in Italy. This is
now termed the “Pareto Principle,” aka the “80-20” rule and variations of this principle have
shown up repeatedly in widely disparate areas in the time since Pareto’s discovery. For exam-
ple, in 2002 Microsoft reported that 80 percent of the errors in Windows are caused by 20
percent of the bugs [188], and similar versions of the Pareto principle apply (though not
always with 80/20) to many aspects of business, for example, most of the profit is made from
a small percentage of the customers and most of the sales are made by a small percentage of
the sales team.

Statistics related to the Pareto principle make for compelling headlines, but they are typ-
ically an indication of something deeper. When we see such figures, it is likely that there
is not a Gaussian distribution underlying them, but rather a heavy-tailed distribution is the
reason for the “surprising” statistics. The most celebrated such distribution again carries Vil-
fredo Pareto’s name: the Pareto distribution. Heavy-tailed distributions such as the Pareto
distribution are just as prominent as (if not more so than) the Gaussian distribution and
have been observed in hundreds of applications in physics, biology, computer science, the
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2 Introduction

social sciences, and beyond over the past century. Some examples include the sizes of cities
[92, 163], the file sizes in computer systems and networks [52, 146], the size of avalanches
and earthquakes [109, 144], the length of protein sequences in genomes [130, 145], the size
of meteorites [13, 162], the degree distribution of the web graph [36, 116], the returns of
stocks [49, 94], the number of copies of books sold [14, 110], the number of households
affected during blackouts in power grids [114], the frequency of word use in natural language
[77, 227], and many more.

Given the breadth of areas where heavy-tailed phenomena have been observed, one might
guess that, by now, observations of heavy-tailed phenomena in new areas are expected – that
heavy tails are treated as more normal than the Normal. After all, Pareto’s work has been
widely known for more than a century. However, despite a century of experience, statistics
related to the Pareto Principle and, more broadly, heavy-tailed distributions are still typically
presented as surprising curiosities – anomalies that could not have been anticipated. Even
in scientific communities, observations of heavy-tailed phenomena are often presented as
mysteries to be explained rather than something to be expected a priori. In many cases, there
is even a significant amount of controversy and debate that follows the identification of
heavy-tailed phenomena in data.

Surprising? Mysterious? Controversial?
Given the century of mathematical and statistical work around heavy tails, it certainly should
not be the case that heavy tails are surprising, mysterious, and controversial. In fact, there
are many reasons why one should expect to see heavy-tailed distributions arise. Perhaps the
main reason why they are still viewed as surprising is that the version of the central limit
theorem taught in introductory probability courses gives the impression that the Gaussian
will occur everywhere. However, this introductory version of the central limit theorem does
not tell the whole story. There is a “generalized” version of the central limit theorem that
states that either the Gaussian or a heavy-tailed distribution will emerge as the limit of sums
of random variables. Unfortunately, the technical nature of this result means it rarely features
in introductory courses, which leads to unnecessary surprises about the presence of heavy-
tailed distributions. Going beyond sums of random variables, when random variables are
combined in other natural ways (e.g., products or max/min) heavy tails are even more likely
to emerge, whereas the Gaussian distribution is not.

So heavy-tailed phenomena should not be considered surprising. What about mysterious?
The view of heavy tails as mysterious is, to some extent, a consequence of unfamiliarity.
People are familiar with the Gaussian distribution because of its importance in introductory
probability courses, and when something emerges that has qualitatively and quantitatively
different properties it seems mysterious and counter-intuitive. The Pareto Principle is one
illustration of the counterintuitive properties that make heavy-tailed distributions seem mys-
terious, but there are many others. For example, while the Gaussian distribution has a clear
“scale” – most samples will be close to the mean – samples from heavy-tailed distributions
frequently differ by orders of magnitude and may even be “scale free” (e.g., in the case of
the Pareto distribution). Another example is that, while the moments (the mean, variance,
etc.) of the Gaussian distribution are all finite, it is not uncommon to see data that fits a
heavy-tailed distribution having an infinite variance, or even an infinite mean! For example,
the degree distribution of many complex networks tends to have a tail that matches that of
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Introduction 3

a Pareto with infinite variance (see, for example, [23]). This can potentially lead to mind-
bending challenges when trying to apply statistical tools, which often depend on averages
and variances.

The combination of surprise and mystery that surrounds heavy-tailed phenomena means
that there is often considerable excitement that follows the discovery of data that fits a heavy-
tailed distribution in a new field. Unfortunately, this excitement often sparks debate and
controversy – often enough that an unfortunate pattern has emerged. A heavy-tailed phe-
nomenon is discovered in a new field. The excitement over the discovery leads researchers
to search for heavy tails in other parts of the field. Heavy tails are then discovered in many
settings and are claimed to be a universal property. However, the initial excitement of dis-
covery and lack of previous background in statistics related to heavy tails means that the first
wave of research identifying heavy tails uses intuitive but flawed statistical tools. As a result,
a controversy emerges – which settings where heavy tails have been observed really have
heavy tails? Are they really universal? Over time, more careful statistical analyses are used,
showing that some places really do exhibit heavy tails while others were false discoveries.
By the end, a mature view of heavy tails emerges, but the whole process can take decades.

At this point, the pattern just described has been replicated in many areas, including
computer science [68], biology [119], chemistry [160], ecology [10], and astronomy [216].
Maybe the most prominent example of this story is still ongoing in the area of network
science. Near the turn of the century, the study of complex networks began to explode in
popularity due to the growing importance of networks in our lives and the increasing ease
of gathering data about large networks. Initial results in the area were widely celebrated and
drove an enormous amount of research to look at the universality of scale-free networks.
However, as the field matured and the statistical tools became more sophisticated, it became
clear that many of the initial results were flawed. For example, claims that the internet graph
[80] and the power network [24] are heavy-tailed were refuted [4, 222], among others. This
led to a controversy in the area that continues to this day, 20 years later [37, 212].

Demystifying Heavy Tails
The goal of this book is to demystify heavy-tailed phenomena. Heavy tails are not
anomalies – and their emergence should not be surprising or controversial either! Heavy
tails are an unavoidable part of our lives, and viewing statistics like the ones that started
this chapter as anomalies prevents us from thinking clearly about the world around us. Fur-
ther, while properties of heavy-tailed phenomena like the Pareto Principle may initially make
heavy-tailed distributions seem counterintuitive, they need not be. This book strives to pro-
vide tools and techniques that can make heavy tails as easy and intuitive to reason about as the
Gaussian, to highlight when one should expect the emergence of heavy-tailed phenomena,
and to help avoid controversy when identifying heavy tails in data.

Because of the ubiquitousness and seductive nature of heavy-tailed phenomena, they are
a topic that has permeated wide ranging fields, from astronomy and physics, to biology and
physiology, to social science and economics. However, despite their ubiquity, they are also,
perhaps, one of the most misused and misunderstood mathematical areas, shrouded in both
excitement and controversy. It is easy to get excited about heavy-tailed phenomena as you
start to realize the important role they play in the world around us and become exposed to
the beautiful and counterintuitive properties they possess. However, as you start to dig into
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the topic, it quickly becomes difficult. The mathematics that underlie the analysis of heavy-
tailed distributions are technical and advanced, often requiring prerequisites of graduate-level
probability and statistics courses. This is the reason why introductory probability courses
typically do not present much, if any, material related to heavy-tailed distributions. If they are
mentioned, they are typically used as examples illustrating that “strange” things can happen
(e.g., distributions can have an infinite mean). Thus, a scientist or researcher in a field outside
of mathematics who is interested in learning more about heavy tails may find it difficult, if
not impossible, to learn from the classical texts on the topic.

It is exactly this difficulty that led us to write this book. In this book we hope to introduce
the fundamentals of heavy-tailed distributions using only tools that one learns in an intro-
ductory probability course. The book intentionally does not spend much time on describing
the settings where heavy tails arise – there are simply too many different areas to do justice
to even a small subset of them. Instead, we assume that if you have found your way to this
book, then heavy tails are important to you. Given that, our goal is to provide an introduction
to how to think about heavy tails both intuitively and mathematically.

The book is divided into three parts, which focus on three foundational guiding questions.

● Part I: Properties. What leads to the counterintuitive properties of heavy-tailed phenom-
ena?

● Part II: Emergence. Why do heavy-tailed phenomena occur so frequently in the world
around us?

● Part III: Estimation. How can we identify and estimate heavy-tailed phenomena using
data?

In Part I of the book we provide insight into some of most mysterious and elegant prop-
erties of heavy-tailed distributions, connecting these properties to formal definitions of
subclasses of heavy-tailed distributions. We focus on three foundational properties: “scale-
invariance” (aka, scale-free), the “catastrophe principle,” and “increasing residual life.”
We illustrate that these properties provide qualitatively different behaviors than what is
seen under light-tailed distributions like the Gaussian, and provide intuition underlying
the properties. The three chapters that make up Part I strive to demystify some of the
particularly exotic properties of heavy-tailed distributions and to provide a clear view of
how these properties interact with each other and with the broader class of heavy-tailed
distributions.

In Part II of the book we explore simple laws that can “explain” the emergence of heavy-
tailed distributions in the same way that the central limit theorem “explains” the prominence
of the Gaussian distribution. We study three foundational stochastic processes in order to
understand when one should expect the emergence of heavy-tailed distributions as opposed to
light-tailed distributions. Our discussions in the three chapters that make up Part II highlight
that heavy-tailed distributions should not be viewed as anomalies. In fact, heavy tails should
not be surprising at all; in many cases they should be treated as something as natural as, if
not more natural than, the emergence of the Gaussian distribution.

In Part III of this book we focus on the statistical tools used for the estimation of heavy-
tailed phenomena. Unfortunately, there is no perfect recipe for “properly” detecting and
estimating heavy-tailed distributions in data. Our treatment, therefore, seeks to highlight a
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1.1 Defining Heavy-Tailed Distributions 5

handful of important approaches and to provide insight into when each approach is appropri-
ate and when each may be misleading. Combined, the chapters that make up Part III highlight
a crucial point: one must proceed carefully when estimating heavy-tailed phenomena in real-
world data. It is naive to expect to estimate exact heavy-tailed distributions in data. Instead,
a realistic goal is to estimate the tail of heavy-tailed phenomena. Even in doing this, one
should not rely on a single method for estimation. Instead, it is a necessity to build confidence
through the use of multiple, complementary estimation approaches.

1.1 Defining Heavy-Tailed Distributions
Before we tackle our guiding questions, we start with the basic question: What is a heavy-
tailed distribution?

One of the reasons for the mystique that surrounds heavy-tailed distributions is that
if you ask five people from different communities this question, you are likely to get
five different answers. Depending on the community, the term heavy-tailed may be used
interchangeably with terms like scale-free, power-law, fat-tailed, long-tailed, subexponen-
tial, self-similar, stable, and others. Further, the same names may mean different things to
different communities!

Sometimes the term “heavy-tailed” is used to refer to a specific distribution such as the
Pareto or the Zipf distribution. Other times, it is used to identify particular properties of a
distribution, such as the fact that it is scale-free, has an infinite (or very large) variance, a
decreasing failure rate, and so on. As a result, there is often a language barrier when dis-
cussing heavy-tailed distributions that stems from different associations with the same terms
across communities.

Hopefully, reading this book will equip you to navigate the zoo of terminology related to
heavy-tailed distributions. Each of the terms mentioned earlier does have a concrete, precise,
established mathematical definition. It is just that these terms are often used carelessly, which
leads to confusion. It will take us most of the book to get through the definitions of all
the terms mentioned in the previous paragraph, but we start in this section by laying the
foundation – defining the term “heavy-tailed” and discussing some of the most celebrated
examples.

The term “heavy-tailed” is inherently relative – heavier than what? A Gaussian distribution
has a heavier tail than a Uniform distribution, and an Exponential distribution has a heavier
tail than a Gaussian distribution, but neither of these is considered “heavy-tailed.” Thus, the
key feature of the definition is the comparison point chosen.

The comparison point that is used to define the class of heavy-tailed distributions is the
Exponential distribution. That is, a distribution is considered to be heavy-tailed if it has a
heavier tail than any Exponential distribution. Formally, this is stated in terms of the cumula-
tive distribution function (c.d.f.)F of a random variableX , that is,F (x) = Pr (X ≤ x), and
the complementary cumulative distribution function (c.c.d.f.) F̄ , that is, F̄ (x) = 1− F (x).

Definition 1.1 A distribution function F is said to be heavy-tailed if and only if, for all
µ > 0,

lim sup
x→∞

1− F (x)

e−µx
= lim sup

x→∞

F̄ (x)

e−µx
= ∞.
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6 Introduction

(a) Linear scale (b) Log scale

Figure 1.1 Contrasting heavy-tailed and light-tailed distributions: The plots show
the c.c.d.f. of the exponential distribution (with mean 1) and a heavy-tailed Pareto
distribution (with minimal value xm = 1, scale parameter α = 2). While the
contrast in tail behavior is difficult to discern on a linear scale (Fig. (a)), it is quite
evident when the probabilities are plotted on a logarithmic scale (Fig. (b)).

Otherwise, F is light-tailed. A random variable X is said to be heavy-tailed (light-tailed) if
its distribution function is heavy-tailed (light-tailed).

Note that the definition of heavy-tailed distributions given above applies to the right tail of
the distribution, that is, it is concerned with the behavior of the probability of taking values
larger than x as x → ∞. In some applications, one might also be interested in the left tail.
In such cases, the definition of heavy-tailed can be applied to both the right tail (without
change) and the left tail (by considering the right tail of −X).

The definition of heavy-tailed is, in some sense, natural. It looks explicitly at the “tail” of
the distribution (i.e., the c.c.d.f. F̄ (x)), and it is easy to see from the definition that the tails
of distributions that are heavy-tailed are “heavier” (i.e., decay more slowly) than the tails of
distributions that are light-tailed; see Figure 1.1.

The particular choice of the Exponential distribution as the boundary between heavy-tailed
and light-tailed may, at first, seem arbitrary. In fact, without detailed study of the class
of heavy-tailed distributions, it is difficult to justify this particular choice. But, as we will
see throughout this book, the Exponential distribution serves to separate two classes of dis-
tributions that have qualitatively different behavioral properties and require fundamentally
different mathematical tools to work with.

To begin to examine the distinction between heavy-tailed and light-tailed distributions,
it turns out to be useful to consider two alternative, but equivalent, definitions of “heavy-
tailed.”

Lemma 1.2 Consider a random variableX . The following statements are equivalent.

(i) X is heavy-tailed.
(ii) The moment generating functionM(s) := E [esX ] = ∞ for all s > 0.

(iii) lim infx→∞ − log Pr(X>x)

x
= 0.
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1.1 Defining Heavy-Tailed Distributions 7

The proof of this lemma provides useful intuition about heavy-tailed distribution; however,
before proving this result, let us interpret the two new, equivalent definitions of heavy-tailed
that it provides.

First, consider (ii), which states that a random variable is heavy-tailed if and only if its
moment generating function M(s) := E [esX ] is infinite for all s > 0. This definition high-
lights that heavy-tailed distributions require a different analytic approach than light-tailed
distributions. For light-tailed distributions the moment generating function often provides
an important tool for characterizing the distribution. It can be used to derive the moments of
the distribution, but it also can be inverted to characterize the distribution itself. Further, it is
a crucial tool for analysis because of the simplicity of handling convolutions via the moment
generating function, for example, when deriving concentration inequalities such as Chernoff
bounds. In contrast, the definition given by (ii) shows that such techniques are not applicable
for heavy-tailed distributions.

Next, consider (iii), which states that a random variable X is heavy-tailed if and only
if the log of its tail, log Pr (X > x), decays sublinearly. This again highlights that heavy-
tailed distributions require a different analytic approach than light-tailed distributions. In
particular, when studying the tail of light-tailed distributions it is common to use concentra-
tion inequalities such as Chernoff bounds, which inherently have an exponential decay. As
a result, such bounds focus on determining the optimal decay rate, which is characterized
by deriving a maximal µ such that Pr (X > x) ≤ Ce−µx. However, the definition given
by (iii) highlights that the maximum possible µ for heavy-tailed distributions is zero, and so
fundamentally different analytic approaches must be used.

To build more intuition on the relationship between these three equivalent definitions of
“heavy-tailed,” as well as to get practice working with the definitions, it is useful to consider
the proof of Lemma 1.2.

Proof of Lemma 1.2 To prove Lemma 1.2, we need to show the equivalence of each of the
three definitions of heavy-tailed. We do this by showing that (i) implies (ii), that (ii) implies
(iii), and finally that (iii) implies (i).

(i) ⇒ (ii). Suppose that X is heavy-tailed, with distribution F. By definition, this
implies that for any s > 0, there exists a strictly increasing sequence (xk)k≥1 satisfying
limk→∞ xk = ∞, such that

lim
k→∞

esxk F̄ (xk) = ∞. (1.1)

We can now bound E [esX ] as follows.

E
[

esX
]

=

∫ ∞

0

esxdF (x)

≥
∫ ∞

xk

esxdF (x)

≥ esxk F̄ (xk).

Since the above inequality holds for all k, it now follows from (1.1) that E [esX ] = ∞.
Therefore, Condition (i) implies Condition (ii).
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8 Introduction

(ii) ⇒ (iii). Suppose that X satisfies Condition (ii). For the purpose of obtaining a
contradiction, let us assume that Condition (iii) does not hold. Since − log Pr(X>x)

x
≥ 0,

this means that

lim inf
x→∞

− log Pr (X > x)

x
> 0.

The above statement implies that there exist µ > 0 and x0 > 0 such that

− log Pr (X > x)

x
≥ µ ⇐⇒ Pr (X > x) ≤ e−µx ∀ x ≥ x0. (1.2)

Now, pick s such that 0 < s < µ. We may now bound the moment generating function
of X at s as follows:

M(s) = E
[

esX
]

=

∫ ∞

0

Pr
(

esX > x
)

dx

=

∫ esx0

0

Pr
(

esX > x
)

dx+

∫ ∞

esx0

Pr
(

X >
log(x)

s

)

dx.

Here, we have used the following representation for the expectation of a nonnegative
random variable Y : E [Y ] =

∫∞

0
Pr (Y > y) dy. While the first term above can be

bounded from above by esx0 , we may bound the second using (1.2), since x ≥ esx0 is
equivalent to log(x)/s ≥ x0.

M(s) ≤ esx0 +

∫ ∞

esx0

e−µ
log(x)

s dx

= esx0 +

∫ ∞

esx0

x−µ/sdx.

Since µ/s > 1, we have
∫∞

1
x−µ/sdx < ∞, which implies that M(s) < ∞, giving

us a contradiction. Therefore, Condition (ii) implies Condition (iii).

(iii) ⇒ (i). Suppose that the random variable X, having distribution F, satisfies
Condition (iii). Thus, there exists a strictly increasing sequence (xk)k≥1 satisfying
limk→∞ xk = ∞, such that

lim
k→∞

− log F̄ (xk)

xk

= 0.

Given µ > 0, this in turn implies that there exists k0 ∈ N such that

− log F̄ (xk)

xk
< e−

µ
2 ∀ k > k0

⇐⇒ F̄ (xk) > e−
µxk
2 ∀ k > k0

⇐⇒ F̄ (xk)

e−µxk
> e

µxk
2 ∀ k > k0.

The last assertion above implies that limk→∞
F̄ (xk)

e−µxk
=∞, which implies lim supx→∞

F̄ (x)

e−µx =∞. Since this is true for any µ> 0, we conclude that Condition (iii) implies
Condition (i).
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1.2 Examples of Heavy-Tailed Distributions
We now have three equivalent definitions of heavy-tailed distributions and, through the
proof, we understand how these three definitions are related. But, even with these restate-
ments, the definition of heavy-tailed is still opaque. It is difficult to get behavioral intuition
about the properties of heavy-tailed distributions from any of the definitions. Further, it is
very hard to see much about what makes heavy-tailed distributions have the mysterious
properties that are associated with them using these definitions alone.

In part, this is due to the breadth of the definition of heavy-tailed. The important proper-
ties commonly associated with heavy-tailed distributions, such as scale invariance, infinite
variance, the Pareto principle, etc., do not hold for all heavy-tailed distributions; they hold
only for certain subclasses of heavy-tailed distributions.

As a result, it is important to build intuition for the class of heavy-tailed distributions by
looking at specific examples. That is the goal of the remainder of this chapter. In particular,
we focus in detail on the Pareto distribution, the Weibull distribution, and the LogNormal
distribution with the goal of providing both the mathematical formalism for these distribu-
tions and some insight in their important properties and applications. Additionally, we briefly
introduce some of the other important examples of heavy-tailed distributions that come up
frequently in applications, including the Cauchy, Fréchet, Lévy, Burr, and Zipf distributions.

Perhaps the most important thing to keep in mind as you read these sections is the contrast
between the properties of the heavy-tailed distributions that we discuss and the properties
of light-tailed distributions, such as the Gaussian and Exponential distributions, with which
you are likely more familiar. To set the stage, we summarize the important formulas for these
two distributions next.

The Gaussian Distribution
The Gaussian distribution, also called the Normal distribution or the bell curve, is perhaps
the most widely recognized distribution and is extremely important in statistics and beyond.
It is defined using two parameters, the mean µ and the variance σ2, and is expressed most
conveniently through its probability density function (p.d.f.), f(x), or its moment generating
function (m.g.f.), M(s). Given a random variable Z ∼ Gaussian(µ, σ), we have

fZ(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 ,

MZ(s) = E[esZ ] = eµs+
1
2σ

2s2 .

Since MZ(s) < ∞ for all s > 0, it follows that the Gaussian distribution is light-tailed.
The light-tailedness of the Gaussian distribution can also be deduced directly by bounding
its c.c.d.f. (see Exercise 2).

The particular Gaussian distribution with zero mean and unit variance (µ = 0, σ = 1) is
commonly referred to as the standard Gaussian.

The Exponential Distribution
The Exponential distribution is a widely known and broadly applicable distribution that
serves as the light-tailed distribution on the boundary between light-tailed and heavy-tailed
distributions. It is a nonnegative distribution defined in terms of one parameter: λ, which is
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10 Introduction

referred to as the “rate” since the mean of the distribution is 1/λ. Given a random variable
X ∼ Exponential(λ), the p.d.f., c.c.d.f., and m.g.f., can be expressed as

fX(x) = λe−λx (x ≥ 0),

F̄ (x) = e−λx (x ≥ 0),

MX(s) =
1

(1− s/λ)
(s < λ).

Note that the tail of the Exponential distribution is heavier than that of the Gaussian because
e−x goes to zero more slowly than e−x2 . Additionally, unlike the Gaussian, the moment
generating function is not finite everywhere.

1.2.1 The Pareto Distribution
Vilfredo Pareto originally presented the Pareto distribution, and introduced the idea of the
Pareto Principle, in the study of the allocation of wealth. But since then, it has been used
as a model in numerous other settings, including the sizes of cities, the file sizes in com-
puter systems and networks, the price returns of stocks, the size of meteorites, casualties
and damages due to natural disasters, frequency of words, and many more. It is perhaps the
most celebrated example of a heavy-tailed distribution, and as a result, the term Pareto is
sometimes, unfortunately, used interchangeably with the term heavy-tailed.

Formally, a random variable X follows a Pareto(xm, α) distribution if

Pr (X ≥ x) = F̄ (x) =

(

x

xm

)−α

, for α > 0, x ≥ xm > 0.

Here, α is the shape parameter of the distribution and is also commonly referred to as the
tail index, while xm is the minimum value of the distribution, that is, X ≥ xm. Given the
c.c.d.f. above, it is straightforward to differentiate and obtain the p.d.f.

f(x) =
αxα

m

xα+1
, x ≥ xm.

It is easy to see from the c.c.d.f. that the Pareto is heavy-tailed. In particular, using
Definition 1.1, we can compute

lim sup
x→∞

F̄ (x)

e−µx
= lim sup

x→∞

(xm

x

)α

eµx = ∞, (1.3)

since the exponential eµx grows more quickly than the polynomial xα.
This highlights the key contrast between the Pareto distribution and common light-tailed

distributions like the Gaussian and Exponential distributions: the Pareto tail decays poly-
nomially, as x−α, instead of exponentially (as e−µx) in the case of the Exponential, or
superexponentially (as e−x2/2σ2) in the case of the Gaussian. As a consequence, large values
are much more likely to occur under a Pareto distribution than under a Gaussian or Expo-
nential distribution. For example, you are much more likely to meet someone whose income
is 10 times the average than someone whose height is 10 times the average.

This contrast is present visually too. Figure 1.2 shows that the tail of the Pareto is consid-
erably heavier. The figure illustrates the p.d.f. and c.c.d.f. of the Pareto for different values of
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