Contents

Preface
ix

Part I Special Relativity
3

1. The Geometry of Special Relativity
1.1 Introduction
1.1.1 Classical Physical Systems
1.1.2 Symmetries
1.2 Poincaré Invariance
1.2.1 Geometrical Symmetries of Classical Physics
1.2.2 Active and Passive Transformations
1.2.3 Minkowski Space
1.2.4 Topological Structure of the Lorentz Group
1.2.5 Rotations and Boosts
1.2.6 Simultaneous Dilations and Lorentz Transformations
1.3 Time Dilation and Lorentz Contraction
1.3.1 Arc Length and Proper Time
1.3.2 Time Dilation
1.3.3 Lorentz Contraction
1.4 Examples and Paradoxes
1.4.1 The Time Dilation Paradox
1.4.2 The Twin Paradox
1.4.3 Doppler Shift
1.4.4 The Bandits and the Train
1.4.5 The Prisoner’s Escape
1.4.6 The Moving Cube
1.4.7 Tachyons
20
21
22
23
25
27
27
28
29
32
2 Relativistic Mechanics
 2.1 Tensor Formalism 34
 2.2 Conservation Laws 39
 2.2.1 Conservation Laws Depending Only on Velocity 40
 2.2.2 Conservation Laws Including Position 45
 2.3 Lagrangian Particle Mechanics 48
 2.4 Lagrangian Field Theory 51
 2.4.1 Internal Symmetries and Conservation Laws 52
 2.4.2 Invariance Under the Poincaré Group 55
 2.4.3 Symmetrization of the Stress Tensor 58

3 Relativistic Electrodynamics
 3.1 Lagrangian Formulation 63
 3.1.1 The Free Maxwell Field 63
 3.1.2 Maxwell Field with Source 66
 3.2 Potentials and Fields of a Point Charge 68
 3.2.1 The Action for a Point Charge 68
 3.2.2 Green’s Function for the Wave Equation 70
 3.2.3 “In” and “Out” Fields 75
 3.3 Radiation from a Point Charge 76
 3.3.1 The Liénard–Wiechert Potential 76
 3.3.2 The Fields of a Point Charge 78
 3.4 Regularization and Renormalization 80
 3.4.1 Particle Motion with Radiation Reaction 84
 3.4.2 Conservation of Energy 89
 3.4.3 Hyperbolic Motion 90

Part II General Relativity

4 The Principle of Equivalence 95
 4.1 Gravitational and Inertial Mass 95
 4.2 The Eötvös Experiment 96
 4.3 Gravitation and Geometry 97
 4.4 The Equivalence Principle Revisited 98

5 Differential Geometry 100
 5.1 Manifolds 100
 5.1.1 Vectors 102
 5.1.2 Exterior Calculus 104
 5.1.3 Tensor Densities 109
 5.2 Affine Spaces 115
 5.2.1 Affine Connections 115
Table of Contents

5.2.2 How $\tilde{\Gamma}$ Transforms 116
5.2.3 Parallel Transport of Tensors and Tensor Densities 118
5.2.4 Covariant Derivatives 119

5.3 Riemannian Manifolds 121
5.3.1 Relation between Affine Connection and Metric 123
5.3.2 Symmetries of the Riemann Tensor 124
5.3.3 Flatness and Curvature 127

6 Gravity 132
6.1 Motion in Curved Spacetime 132
6.1.1 Program for a Theory of Gravity 132
6.1.2 Classical Equations in Covariant Form 132
6.1.3 Tidal Forces 137
6.2 The Gravitational Field 138
6.2.1 Einstein’s Equation in Empty Space 138
6.2.2 Alternative Theories 142
6.2.3 The Source of Gravity 143
6.2.4 Action Principle Formulation 144
6.3 Linearized Gravity 150
6.3.1 Simplifying the Field Equation 150
6.3.2 Recovering Newton’s Law 151
6.3.3 Gravity Waves 154

7 The Schwarzschild Solution 162
7.1 Isometries 162
7.2 The Exterior Solution 166
7.3 Classic Tests of General Relativity 170
7.3.1 Precession of the Perihelion of Mercury 171
7.3.2 Bending of Starlight 176
7.3.3 Gravitational Redshift 179
7.3.4 What Do They Really Test? 180
7.4 The Interior Solution 184
7.5 The Schwarzschild Singularity 191
7.5.1 Kruskal Coordinates 193
7.5.2 Geometry of the Equatorial Surface 195
7.5.3 Tidal Stress near $r = 0$ 197

8 Conservation and Cosmology 200
8.1 Conservation Laws 200
8.1.1 Scalar Conservation Laws 200
8.1.2 The Energy–Momentum Pseudotensor 201
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>The Universe at Large</td>
<td>203</td>
</tr>
<tr>
<td>8.2.1</td>
<td>General Principles</td>
<td>204</td>
</tr>
<tr>
<td>8.2.2</td>
<td>The Robertson–Walker Metric</td>
<td>208</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Redshift and Luminosity</td>
<td>209</td>
</tr>
<tr>
<td>8.3</td>
<td>General Relativity and Cosmology</td>
<td>210</td>
</tr>
<tr>
<td>8.3.1</td>
<td>The Friedman Universe</td>
<td>210</td>
</tr>
<tr>
<td>8.3.2</td>
<td>The Cosmological Constant</td>
<td>214</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Singularities in the Robertson–Walker Metric</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Afterword</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Appendix A</td>
<td>Compendium of Formulas</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Final Exams</td>
<td>230</td>
</tr>
<tr>
<td>B.1</td>
<td>Final Exam, 1966</td>
<td>230</td>
</tr>
<tr>
<td>B.2</td>
<td>Final Exam, 1969</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>234</td>
</tr>
</tbody>
</table>