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The Geometry of Special Relativity

1.1 Introduction

1.1.1 Classical Physical Systems

A classical1 physical system consists of three parts:

1. Four-dimensional spacetime: the arena of classical physics. We label a point

in spacetime (an “event”) by its coordinates:

xµ = (x0,xi) = (ct,x), (1.1)

where x0 represents the time (we’ll use units such that c = 1)2 and x the position.

Greek indices near the middle of the alphabet (λ,µ,ν, . . .) run from 0 to 3;

Roman indices near the middle (i,j,k, . . .) run from 1 to 3.

2. Particles and fields: the entities of classical physics.

(a) Particles: A particle is a structureless point object. Its location, x(t), as a

function of time, tells you everything there is to say about it (beyond fixed

properties such as mass and charge).3 In 4-vector notation we represent the

particle’s trajectory (its world line) by xµ(s), where s is any parameter

used to denote points along the curve (f (s) would do just as well, for any

monotonic function f ):

1 In this book “classical” means “pre-quantum”; it includes special relativity.
2 It’s easy to reinsert the c’s, when necessary, by dimensional analysis.
3 We could treat point objects with spin, but let’s keep things simple; in this course “particle” means spin 0.
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4 The Geometry of Special Relativity

(b) Fields: A field is a function of position and time:

ϕα(x). (1.2)

Here α labels the components: one of them, if the field is temperature; six

of them, in the case of electromagnetism. (In expressions like this x stands

for the four components of xµ.)

3. Dynamics: the laws of motion.

1.1.2 Symmetries

A symmetry is an operation that leaves an object or a system unchanged (invari-

ant). A square, for example, is invariant under rotations (about a perpendicular axis

through its center) by 90◦, or 180◦, or 270◦, or reflections (in either diagonal, or a

bisector of two opposite sides). Of particular importance to us are invariances of

the laws of motion,4 transformations that carry one possible motion into another.

We stipulate that an invariance must have a well-defined inverse.5

Mathematically, the invariances of a system form a group.

Definition: A group, G, is a set of elements (a,b,c, . . .) and a law of “multiplica-

tion,” with the following properties:

1. It is closed: if a and b are in G, so is their product, ab.

2. It is associative: a(bc) = (ab)c.

3. It contains a (unique) unit element, 1, such that 1a = a1 = a for every element a.

4. Each element a has a (unique) inverse, a−1, such that a−1a = aa−1 = 1.

4 The ancient Greeks thought symmetries pertain to the actual motion: celestial objects ought to move on
circles, because a circle is the most perfect (symmetrical) shape. But since the time of Newton we have
understood that the more significant invariances apply to the equations of motion, and hence to the collection
of all possible motions—the set of solutions to the equations of motion. The sun’s gravitational field is
spherically symmetric, but planetary orbits don’t directly exhibit that symmetry—they’re elliptical.

5 This restriction eliminates trivial possibilities such as mapping all points on a particle trajectory onto some
fixed point (sitting still at one point being—usually—a solution to the equations of motion). It is necessary in
order to ensure that the invariances form a group.

www.cambridge.org/9781316511725
www.cambridge.org


Cambridge University Press
978-1-316-51172-5 — Sidney Coleman's Lectures on Relativity
Edited by David J. Griffiths , David Derbes , Richard B. Sohn 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Introduction 5

For example, the real numbers (except 0), with multiplication defined in the usual

way, constitute an Abelian (commutative: ab = ba) group. Another group is the

set of permutations of three objects (this group is not Abelian). We are interested

here in the group of invariances of classical physics; “multiplication” in this context

means application of two transformations in succession.

Example 1.1

Imagine a quantum mechanical system with nondegenerate energy levels. The state of
the system at time t = 0 can be expanded in terms of the energy eigenstates:

|ψ(0)〉 =
∑

an |n〉, (1.3)

and at any later time

|ψ(t)〉 =
∑

ane
−iEnt/� |n〉. (1.4)

But the phase of |n〉 is arbitrary; physical predictions are unaffected by the transforma-
tion

|n〉 → eiθn |n〉, (1.5)

for any collection of real numbers θn (independent of position and time). This is a huge
invariance group, with an infinite number of parameters (if there are infinitely many
eigenstates). But for the most part it is a useless invariance, which does not help us to
solve the equations of motion.

So there exist trivial, accidental, or otherwise inconsequential invariances. One

particularly useful class consists of the geometrical invariances of space and time:

translations, rotations, dilations6 (stretching), and so on. Question: What is the

group of geometrical invariances of classical physics—the geometrical transfor-

mations that leave the laws of classical physics unchanged? A geometrical trans-

formation is a change of coordinates:

xµ → x ′µ = yµ(x). (1.6)

In the case of a particle trajectory,

xµ(s) → yµ(x(s)). (1.7)

Fields are more complicated, because not only do the components mix (if it’s a

vector field, and we’re performing a rotation, the x̂ component will pick up ŷ and

ẑ terms), but the argument (x) must be expressed in terms of the new coordinates

(y): schematically,

6 Eds. Coleman calls them “dilatations.” Presumably permute:dilate::permutation:dilatation. But most modern
authors use “dilation,” and “dilatation” seems unnecessarily awkward.
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6 The Geometry of Special Relativity

ϕα(x) → [ϕα(x)]′ = F [ϕβ(y−1(x))], (1.8)

where F is some function denoting the transformation (mixing) of the components

(ϕβ), and y−1 is the inverse of Eq. 1.6. In words, the new fields at point y are some

functions of the old fields at the point x that got mapped into y.

1.2 Poincaré Invariance

1.2.1 Geometrical Symmetries of Classical Physics

We’ll focus for the moment on the case of particles. If there were no laws of motion

(i.e. if every particle motion were possible), then any geometrical transformation

would be an invariance. We’ll whittle down this (huge) group by invoking some

actual laws of motion:

1. Newton’s first law. The allowed motions for a free particle are straight lines in

spacetime, so the invariance group must (at a minimum) take straight lines into

straight lines. One way to characterize a straight line is

xµ(s) = vµs + bµ, where vµ =
dxµ

ds
and bµ are constants, (1.9)

which is the general solution to the differential equation

d2xµ

ds2
= 0. (1.10)

But wait: we could have used a different parameterization (say, s3 instead of s);

then

xµ(s) = vµs3 + bµ. (1.11)

So Eq. 1.10 is not a reliable way to characterize straight lines—it’s sufficient,

but not necessary. Maybe a straight line satisfying 1.10 is transformed into a

straight line that doesn’t satisfy 1.10. In point of fact this worry is misguided: an

invariance that carries straight lines into straight lines automatically takes lin-

early parameterized straight lines 1.9 into linearly parameterized straight lines.

Proof: For transformations that carry straight lines into straight lines:

(a) Intersecting (or nonintersecting) straight lines go into intersecting (nonin-

tersecting) straight lines. If intersecting lines transformed into nonintersecting

lines, the transformation for the point of intersection would be ill defined, since

it would have to go to two different points—one on each line. And because we
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1.2 Poincaré Invariance 7

have stipulated that invariances have well-defined inverses, the same goes for

nonintersecting to intersecting.

(b) Planes go into planes. Let P be a point in the plane defined by intersecting lines

A and B (but not on either line), and draw a line from P intersecting A and B:

A

P
B

P’

B’

A’

This line transforms into a line intersecting A′ and B ′, so P ′ lies in the plane

defined by A′ and B ′.

(c) Parallel lines go into parallel lines. This follows from (a) and (b).

(d) Equidistant coplanar parallel lines go into equidistant coplanar parallel

lines. We know that coplanar parallel lines go into coplanar parallel lines,

but could it be that equidistant ones (a, b, c) go into nonequidistant ones

(a′, b′, c′)?

A B

a

b

c

D

C

B‘A‘

c‘
b‘

a‘

D‘

C‘

d

d‘

No: draw line A, and let the distance between its intersections with a and b be d.

Now draw line B, parallel to A, and construct lines C and D, passing through the

four intersections. By simple geometry, C and D are parallel (because a, b, and

c are equidistant), and d ′ = d. However, unless a′, b′, and c′ are also equidistant,

C′ and D′ will not be parallel, violating (c).

So the transformation x(s) → y(x(s)) takes equal intervals (x(s3)−x(s2) = x(s2)−

x(s1)) into equal intervals (y(s3) − y(s2) = y(s2) − y(s1)), preserving the linear

parameterization. QED
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8 The Geometry of Special Relativity

Under the transformation 1.6,

xµ → yµ(xν),

derivatives transform (by the chain rule)7 as

dxµ

ds
→

dyµ

ds
=

∂yµ

∂xν

dxν

ds
, (1.12)

d2xµ

ds2
→

d2yµ

ds2
=

∂yµ

∂xν

d2xν

ds2
+

∂2yµ

∂xν∂xλ

dxν

ds

dxλ

ds
. (1.13)

Because all straight lines (d2xµ/ds2 = 0) must transform into straight lines

(d2yµ/ds2 = 0), it follows that invariances consistent with Newton’s first law

satisfy

∂2yµ

∂xν ∂xλ
= 0 (1.14)

(for all µ,ν,λ). The general solution is a linear function of x:

yµ = Mµ
ν xν + bµ, (1.15)

where the 16 elements of Mµ
ν and the 4 components of bµ are constants. (As a

4 × 4 matrix, det M �= 0, since y(x) must have an inverse.) Newton’s first law

has reduced the geometrical invariances to a 20-parameter group, the inhomo-

geneous affine group (in four dimensions); with bµ = 0 it becomes the homo-

geneous affine group.

2. Constancy of the velocity of light. In empty space, light travels in straight lines,

and according to special relativity the speed of light (in vacuum) is a universal

constant, independent of the velocity of the source or the observer. If a light

signal travels from point x to point x′, departing at time t and arriving at time

t ′, then

7 We use the Einstein summation convention, whereby repeated indices are summed. Thus the third term in

Eq. 1.12 carries an implicit summation sign,
∑3

ν=0.
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1.2 Poincaré Invariance 9

c(t ′ − t) = |x′ − x|, (1.16)

or (setting c = 1)

(t ′ − t)2 = (x′ − x)2 =

3
∑

i=1

[(xi)′ − xi]2. (1.17)

Introducing the metric tensor8

gµν ≡

⎛

⎜

⎜

⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞

⎟

⎟

⎠

, (1.18)

we have

(x ′ − x)µgµν(x
′ − x)ν = 0. (1.19)

The constancy of the speed of light means that if x and x ′ satisfy Eq. 1.19, then

so too must the transformed coordinates y and y ′. What does this tell us about

M and b? Well,

xµ → yµ = Mµ
ν xν + aµ ⇒ (y ′ − y)µ = Mµ

ν(x
′ − x)ν, (1.20)

so

Mµ
κ(x

′ − x)κgµνM
ν
σ (x ′ − x)σ = 0, (1.21)

or

(x ′ − x)κ
[

Mµ
κ gµν Mν

σ

]

(x ′ − x)σ = 0. (1.22)

This must hold for any x and x ′ satisfying Eq. 1.19. It follows that9

Mµ
κ gµν Mν

σ = λgκσ (1.23)

for some constant λ; or, in matrix notation,10

MT gM = λg. (1.24)

8 Some authors use the other signature (−, + , + ,+); it doesn’t matter, as long as you are consistent.
9 Although 1.23 obviously guarantees 1.22, it is not so clear that it is required by 1.22. But remember that this

must hold for any x and x′ satisfying 1.19, and from this it is not hard to show that 1.23 is in fact necessary.
10 Reading left to right, the first index (whether up or down) is the row, and the second (up or down) is the

column. The significance of upness and downness will appear in due course. The superscript T denotes the

transpose: (MT )
µ

κ = M
µ

κ .

www.cambridge.org/9781316511725
www.cambridge.org


Cambridge University Press
978-1-316-51172-5 — Sidney Coleman's Lectures on Relativity
Edited by David J. Griffiths , David Derbes , Richard B. Sohn 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 The Geometry of Special Relativity

What sorts of transformations remain, after invoking Newton’s first law and

the constancy of the speed of light? We can factor the matrix M as follows:

M = M1M2, where M1 = | det M |1/4I and M2 =
M

| det M |1/4
(1.25)

(I is the unit matrix). Thus any M is the product of a pure dilation M1,

M1 = αI, so MT
1 gM1 = α2g and hence λ1 = α2, (1.26)

and a dilation-free term M2 with determinant ±1, for which

(det M2)(det g)(det M2) = λ4
2(det g) ⇒ λ4

2 = 1 ⇒ λ2 = ±1. (1.27)

Actually, the negative sign is impossible,11 so (in view of Eq. 1.26) λ = λ1λ2 is

in fact always positive.

3. Eliminating dilations. Question: Is our universe invariant under dilations?

Imagine performing the Cavendish experiment to measure the gravitational

force between two point masses:

F = G
m1m2

r2
, (1.28)

giving an acceleration to m1 in the amount

a1 = G
m2

r2
. (1.29)

Under a dilation (change of scale),

r → λr, t → λt, a → λ−1a. (1.30)

So if dilation doesn’t affect G or m2, then a1 goes like λ−1 but Gm2/r2 goes

like λ−2. Since G is a universal constant, it can’t depend on λ, and since there

is no mass continuum (no electron, for example, with slightly larger or smaller

mass), mass cannot depend continuously on λ. Conclusion: Our universe is not

invariant under dilations.12

11 This follows from Sylvester’s law of inertia; see, for instance, S. MacLane and G. Birkhoff, A Survey

of Modern Algebra, 3rd ed., Macmillan (1965) p. 254. In essence, if MT gM = −g then

Q ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2 = −(y0)2 + (y1)2 + (y2)2 + (y3)2, so there is a 3-dimensional

subspace (x0 = 0) in which Q < 0, and another 3-dimensional subspace (y0 = 0) in which Q > 0. But the
entire space has only four dimensions, so this is impossible.

12 This still leaves open the possibility of invariance under combined dilations and Lorentz transformations.
We’ll eliminate that option in Section 1.2.6.
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