Modern Information Optics with MATLAB

Modern Information Optics with MATLAB is an easy-to-understand course book and is based on the authentic lectures and detailed research, conducted by the authors themselves, on information optics, holography, and MATLAB. This book is the first to highlight the incoherent optical system, provide up-to-date, novel digital holography techniques, and demonstrate MATLAB codes to accomplish tasks such as optical image processing and pattern recognition. This title is a comprehensive introduction to the basics of Fourier optics as well as optical image processing and digital holography. This is a step-by-step guide that details the vast majority of the derivations, without omitting essential steps, to facilitate a clear mathematical understanding. This book also features exercises at the end of each chapter, providing hands-on experience and consolidating the understanding. This book is an ideal companion for graduates and researchers involved in engineering and applied physics, as well as those interested in the growing field of information optics.

Yaping Zhang is Professor and Director of Yunnan Provincial Key Laboratory of Modern Information Optics, Kunming University of Science and Technology. Professor Zhang is an academic leader in optics in Yunnan Province and a member of the Steering Committee on Opto-Electronic Information Science and Engineering, Ministry of Education, China.

Ting-Chung Poon is Professor of Electrical and Computer Engineering at Virginia Tech, USA. Professor Poon is Fellow of the Institute of Electrical and Electronics Engineers (IEEE), the Institute of Physics (IOP), Optica, and the International Society for Optics and Photonics (SPIE). He also received the 2016 SPIE Dennis Gabor Award.
Modern Information Optics with MATLAB

YAPING ZHANG
Kunming University of Science and Technology

TING-CHUNG POON
Virginia Polytechnic Institute and State University
To my parents, my husband, and my daughter
Yaping Zhang

To my grandchildren, Gussie, Sofia, Camden, and Aiden
Ting-Chung Poon
Contents

Preface

1 Gaussian Optics and Uncertainty Principle
 1.1 Gaussian Optics
 1.1.1 Ray Transfer Matrices
 1.1.2 Ray Tracing through a Thin Lens
 1.2 Resolution, Depth of Focus, and Depth of Field
 1.2.1 Circular Aperture
 1.2.2 Annular Aperture
 1.3 Illustrative Examples
 1.3.1 Three-Dimensional Imaging through a Single-Lens Example
 1.3.2 Angle of Spread from a Slit Example

2 Linear Invariant Systems and Fourier Analysis
 2.1 Signals and Systems
 2.1.1 Signal Operations
 2.1.2 Some Useful Signal Models
 2.1.3 Linear and Time-Invariant Systems
 2.1.4 Impulse Responses
 2.1.5 Frequency Response Functions
 2.2 Fourier Analysis
 2.2.1 Fourier Series
 2.2.2 Fourier Transform
 2.3 Fourier Analysis in Two Dimensions
 2.3.1 The Two-Dimensional Fourier Transform
 2.3.2 Calculation Examples of Some 2-D Fourier Transforms
 2.3.3 Properties of the Fourier Transform
 2.3.4 2-D Convolution, Correlation, and Matched Filtering

3 Wave Propagation and Wave Optics
 3.1 Maxwell’s Equations
 3.2 Vector Wave Equations
 3.3 Traveling-Wave Solutions and the Poynting Vector
 3.4 Fourier Transform-Based Scalar Diffraction Theory
 3.4.1 Huygens’ Principle
Contents

3.4.2 Fresnel Diffraction and Fraunhofer Diffraction 93
3.4.3 Phase Transforming Property of an Ideal Lens 97
3.5 Gaussian Beam Optics 105
3.5.1 q-Transformation and Bilinear Transformation 108
3.5.2 Examples on the Use of the Bilinear Transformation 111

4 Spatial Coherent and Incoherent Optical Systems 119
4.1 Temporal Coherence and Spatial Coherence 119
4.2 Spatial Coherent Image Processing 124
4.2.1 Pupil function, Coherent Point Spread Function, and Coherent Transfer Function 124
4.2.2 Coherent Image Processing Examples 127
4.3 Spatial Incoherent Image Processing 132
4.3.1 Intensity Point Spread Function and Optical Transfer Function 132
4.3.2 Incoherent Image Processing Examples 134
4.4 Scanning Image Processing 139
4.4.1 Coherent Imaging 141
4.4.2 Incoherent Imaging 142
4.5 Two-Pupil Synthesis of Optical Transfer Functions 143

5 Principles of Coherent Holography 151
5.1 Fresnel Zone Plate as a Point-Source Hologram 151
5.1.1 On-axis Recording 151
5.1.2 Off-axis Recording 159
5.2 Three-Dimensional Holographic Imaging 163
5.2.1 Recording and Reconstruction 164
5.2.2 Lateral and Longitudinal Holographic Magnifications 167
5.3 Types of Holograms 169
5.3.1 Gabor Hologram and On-axis Hologram 169
5.3.2 Fourier Hologram 174
5.3.3 Image Hologram 176
5.3.4 Complex Spatial Filtering and Joint Transform Correlation 178

6 Digital Holography 190
6.1 Coherent Digital Holography 190
6.1.1 CCD Limitations 190
6.1.2 Optical Recording of Digital Holograms 194
6.2 Modern Digital Holographic Techniques 198
6.2.1 Phase-Shifting Holography 198
6.2.2 Optical Scanning Holography in Coherent Mode 204
6.3 Incoherent Holography 212
6.3.1 Optical Scanning Holography in Incoherent Mode 212
6.3.2 Fresnel Incoherent Correlation Holography 218
Contents

6.3.3 Coded Aperture Imaging and Coded Aperture Correlation Holography (COACH) 223
6.3.4 Pre-processing in Optical Scanning Holography 230
6.4 Computer-Generated Holography 235
6.4.1 Point-Based Approach 236
6.4.2 Polygon-Based Approach 243

7 Spatial Light Modulators for Processing Optical Information 260
7.1 Information Processing with Acousto-Optic Modulators 260
7.1.1 The Acousto-Optic Effect 260
7.1.2 Raman–Nath and Bragg Diffraction 272
7.1.3 Typical Applications of the Acousto-Optic Effect 281
7.2 Information Processing with Electro-Optic Modulators 289
7.2.1 Polarization of Light 290
7.2.2 Index Ellipsoid and Birefringent Wave Plates 294
7.2.3 The Electro-Optic Effect 298
7.2.4 Electro-Optic Intensity Modulation and Phase Modulation 302
7.3 Information Processing and Display with Liquid Crystal Cells 305
7.3.1 Liquid Crystals 305
7.3.2 Phase Modulation and Intensity Modulation Using Liquid Crystal Cells 306

Index 317
Preface

This book covers the basic principles used in information optics including some of its modern topics such as incoherent image processing, incoherent digital holography, modern approaches to computer-generated holography, and devices for optical information processing in information optics. These modern topics continue to find a niche in information optics.

This book will be useful for engineering or applied physics students, scientists, and engineers working in the field of information optics. The writing style of the book is geared toward juniors, seniors, and first-year graduate-level students in engineering and applied physics. We include details on most of the derivations without omitting essential steps to facilitate a clear mathematical development as we hope to build a strong mathematical foundation for undergraduate students. We also include exercises, challenging enough for graduate students, at the end of each chapter.

In the first three chapters of the book, we provide a background on basic optics including ray optics, wave optics, and important mathematical preliminaries for information optics. The book then extensively covers topics of incoherent image processing systems (Chapter 4), digital holography (Chapter 5), including important modern development on incoherent digital holography, and computer-generated holography (Chapter 6). In addition, the book covers in-depth principles of optical devices such as acousto-optic and electro-optic modulators for optical information processing (Chapter 7).

The material covered is enough for a one-semester course (Chapters 1–5) with course titles such as Fourier optics, holography, and modern information optics or a two-course sequence with the second course covering topics from Chapters 6 to 7 (with a brief review of Chapters 3 through 5). Example of a course title would be optical information processing. An important and special feature of this book is to provide the reader with experience in modeling the theory and applications using a commonly used software tool MATLAB®. The use of MATLAB allows the reader to visualize some of the important optical effects such as diffraction, optical image processing, and holographic reconstructions.

Our vision of the book is that there is an English and Chinese version of this book that are printed together as a single textbook. It is the first of its kind in textbooks and a pioneering project. Information optics is a growing field, and there is an enormous need for pioneering books of this kind. A textbook like this will allow students and scholars to appreciate the much-needed Chinese translation of English technical
terms, and vice versa. The textbook also provides them with professional and techni-
cal translation in the area of information optics.

We would like to thank Jung-Ping Liu for his help on writing some of the MAT-
LAB codes. Also thanks are extended to Yongwei Yao, Jingyuan Zhang, and Houxin
Fan for drafting some initial figures used in the book and, last but not least, Christina
Poon for reading parts of the manuscript and providing suggestions for improvements.

Yaping Zhang would like to thank her parents, her husband, and her daughter (Xinyi
Xu) whose encouragement and support have enabled her to fulfill her dreams. In par-
icular, she wishes to express her appreciation to her collaborator, Professor Poon, for
his professional knowledge and language polishing that made the book more readable
for users, and resulted in the publication of Modern Information Optics. Working with
Professor Poon on this project was a great pleasure and resulted in further growth in
her professional experience.

Ting-Chung Poon is greatly indebted to his parents, whose moral encouragement
and sacrifice have enabled him to fulfill his dreams and further his achievements.
They shall be remembered forever.