

Index

 A, \rightarrow longitudinal integral of Rchange in the set of base unit vectors, 29, 72, 80, 104, 119, 128, 132, 143, 147 a_c , \rightarrow correlation length of RACF, → auto-correlation function closure relation, 67 A_H , \rightarrow longitudinal integral of R_H coda interferometry, 9 a_{Hc} , \rightarrow correlation length of R_H coda waves, 1 a^{-1} , \rightarrow corner wavenumber of P coda attenuation, 7 A_L , \rightarrow longitudinal integral of R_L coda normalization, 4, 7 α , \rightarrow P-wave velocity common decay curve, 1, 4 aligned line cracks, 156 cross-correlation analysis, 9 analytic signal, 87 duration magnitude, 2 angular brackets, 16, 46 isotropic scattering model, 7 single back-scattering model, 2, 61 angular spectrum function, ASF scalar waves, 53 temporal change in coda attenuation, 10 uniform distribution, 4, 136 vector waves, 118 angular spectrum function, spectrum division, ASF^L coefficient of variation, CV, 32 scalar waves, 131 comparison of MC and analytic solution vector waves, 146 anisotropic scattering, Legendre, 74 anisotropy of randomness, 156 isotropic scattering, Fourier, 31 ASF, \rightarrow angular spectral function isotropic scattering, Legendre, 70 attenuation factor, 7 Markov app., 83 auto-correlation function, 45, 46 comparison of MC and FD scalar waves, Born app., 91 basalt and harzburgite, 157 scalar waves, spectrum division, 138 basic scattering pattern, $X_*^{**}(\theta, \phi)$, 102 vector waves, Born app., 116 β , \rightarrow S-wave velocity vector waves, spectrum division, 151 Bethe-Salpeter equation, 58, 65 consolidation process, 156 Birch's law, 102 continuity equation, 35, 95 body force, 94 convolution, 16, 38, 56, 78 body-Rayleigh wave coupling, 155 \otimes_s , \rightarrow convolution in space Boltzmann transport equation, 58 \otimes_{st} , \rightarrow convolution in space and time Born approximation \otimes_t , \rightarrow convolution in time applicable condition, 44 corner wavenumber, a^{-1} , 11, 47 scalar waves, 39 correlation length, a_c , 47, 125, 141 vector waves, 94, 97 cr, $\rightarrow \varepsilon_H^2 a_{Hc}^2 l_0^2$ for vector and $\varepsilon_H^2 a_{Hc}^2 k_0^2$ for scalar, Bourret approximation, 65 spectrum division $<\cdots>$, \rightarrow ensemble average cracks and voids, 156 cumulative distribution function, CDF, 26, 81 c, \rightarrow radius of a high velocity sphere cut-off angle, 123, 140 cascade, 13 CV, \rightarrow coefficient of variation CDF, → cumulative distribution function CDF^{-1} , \rightarrow inverse function of CDFdelta function, 19, 38, 59, 94

172

Index 173

delta function in solid angle space, δ_{Ω} , 60	equivalent body force, δf_i , 96
δf_i , \rightarrow equivalent body force	ergodic, 46
ΔL , \rightarrow side length of the cubic receiver of MC	Error function, 27, 81, 120
simulation	η , \rightarrow tuning parameter of the spectrum division
Δr , \rightarrow thickness of the receiver shell of MC simulation	$\{e_{\theta}, e_{\phi}, e_r\}, \rightarrow$ set of base unit vectors in spherical
Δt , \rightarrow time step of MC simulation	coordianates
Δt_{FD} , \rightarrow time step of FD simulation	Euler-Gamma constant, 130
Δx , \rightarrow volume of receiver cube in MC simulation	e_{υ} , \rightarrow polarization direction of scattered S wave
Δx_{FD} , \rightarrow grid spacing of FD simulation differential scattering cross-section, 17, 35	$e_{\nu_{Rad}}$, \rightarrow polarization direction of radiated S wave from the PSD source
scalar waves, Born, 40, 49	exchanged wavenmuber, 105
vector waves, Born, 104	exchanged wavenumber, 39, 49, 98
diffusion approximation, 50, 62	$\{e_x, e_y, e_z\}, \rightarrow$ set of Cartesian base unit vectors
diffusion equation, 63	expansion formula of Bessel function, 129
diffusion regime, 25, 64, 84	exponential distribution, 27
diffusivity	exponential-type random media, 47
anisotropic, 63	exponential-type fandom media, 47
isotropic, 25	f, \rightarrow scattering amplitude of scalar waves or
digital recording system, 3	frequency
directional distribution of energy density, M , 58	far field, 39
discrete sine transform, DST, 23, 70	fast Fourier transform, FFT, 23, 85
dissipation of energy, 13	f^B , \rightarrow scalar Born scattering amplitude
$\frac{d\sigma}{d\Omega}$, \rightarrow differential scattering cross-section	F_*^{B**} , \rightarrow vector Born scattering coefficient
$d\Omega$, \rightarrow discrete sine transform	FD, → finite difference simulation
duration magnitude, 1	FD simulation scheme
Dyson equation, 65	scalar waves, 89
2 your equation, or	vector waves, 114
E, \rightarrow energy density	f^E , \rightarrow scalar Eikonal scattering amplitude
effective isotropic scattering coefficient, 64	Feynman and Kac formula, 84
effective scattering cross-section, 43	FFT, → fast Fourier transform
Eikonal approximation, 52	finite difference simulation, FD, 8, 85, 89, 114, 151
scalar waves, 40	forward scattering, 43
vector waves, 117	Fourier integral, 22
Eikonal approximation, spectrum division	Fourier transform, 15, 22, 23, 42, 70
scalar waves, 128, 131	fractal, 156
vector waves, 145	fractional fluctuation, 34
elastic medium	fractional mass-density fluctuation, 45
homogeneous, 94	fractional velocity fluctuation, 45
inhomogeneous, 95	Fraunhofer zone, 39
elliptic theta function, 78	Fresnel integral, 43
energy conservation, 35, 62	Fresnel zone, 41
scalar waves, 79	
vector waves, 95	G , \rightarrow Green's function
energy density, 18	G_0 , \rightarrow direct propagator with scattering loss
scalar waves, 35, 87	g_0 , \rightarrow total scattering coefficient
vector waves, 95, 97	G_1 , \rightarrow Green's function, single scattering
energy flux density, 18	approximation
energy flux density vector	$G_{\underline{w}0,ik}$, \rightarrow vector-wave Green's function
scalar waves, 35	$G_{w0,ik}^{F*}$, \rightarrow vector-wave far-field Green's function
vector waves, 95, 97	G_{w0} , \rightarrow scalar-wave Green's function
ensemble, 46	Γ_2 , \rightarrow two-frequency mutual coherence function,
ensemble average, 16, 45, 46	TFMCF
envelope broadening, 5, 8, 78, 84	$\Gamma_{\perp}, \rightarrow \text{MCF}$ at different x_{\perp}
characteristic time, 78	Γ_{ω} , \rightarrow MCF at different ω
ε , \rightarrow velocity anomaly, or RMS fractional fluctuation,	Gaussian random variable, 52, 131
$\sqrt{R(0)}$	Gaussian-type random media, 48
ε_H , \to RMS fractional fluctuation $\sqrt{R_H(0)}$	G_{Dif} , \rightarrow Green's function, truncated diffusion solution
equipartition state, 9	generation of a random number, ~, 26

174 Index

geometrical ray theory, 119 G_H , \rightarrow propagator in a homogeneous medium G_i , $\rightarrow i$ -th comp. vector Green's function for energy density g_{iso} , \rightarrow isotropic scattering coefficient g_l , \rightarrow effective scattering coefficient using the cut-off angle G_M , \rightarrow Markov Green's function G_{M0} , \rightarrow Markov Green's function without travel-time fluctuation G_{Pa} , \rightarrow Green's function for isotropic scattering, Paasschens approximation Green's function Markov approximation, 77 scalar waves, 38 vector waves, 94 G_s , \rightarrow convolution of G and the source time function s $g(\theta)$, \rightarrow scattering coefficient $g_*^{**}(\theta, \phi), \rightarrow$ vector scattering coefficient high wavenumber spectral component, 124, 140 high-frequency energy radiation, 33 high-velocity sphere, 35, 42 \mathcal{H}, \rightarrow Hilbert transform Hilbert transform, 87 Hurst exponent, 48 hybrid MC simulation with the spectrum division scalar waves, 124 vector waves, 140 I, \rightarrow wave intensity igneous rocks, 157 imaginary Error function, 88 impedance, 101 independent scattering assumption scalar waves, 64 vector waves, 107 independent scattering assumption, spectrum division scalar waves, 127 vector waves, 143 instantaneous amplitude, A_{inst} , 87 integral-differential equation, 62 intensity scalar waves, 56, 77, 87 intrinsic absorption, 7 intrinsic absorption Q_I^{-1} , 11, 33, 155 inverse transform sampling method, 26, 71, 80 isotropic differential scattering cross-section, 19 isotropic radiation, 28, 59 isotropic scattering coefficient, 7, 10, 19 isotropic scattering medium, 19 isotropic scattering model, 19 coefficient of variation, 32

 J_i , \rightarrow energy flux density vector Jordan's lemma, 59

 k_0 , \rightarrow scalar wavenumber or vector P-wavenumber

Kolmogorov spectrum, 13, $\overline{48}$ l_0 , \rightarrow vector S-wavenumber
Lagrange derivative, 59
Lamé coefficients, 94, 95 λ , \rightarrow Lame coefficient, or wavelength λ_S , \rightarrow S-wavelength
Legendre expansion method, 66, 74
Legendre polynomials, 36
linear polarization of S-wave, 103, 143
linear relation among three fractional fluctuations, 101
lithosphere, 11, 102
longitudinal integral of R, A, 53, 77
longitudinal integral of R, A, 129
low wavenumber spectral component, 125, 141 M, \rightarrow directional distribution of energy density $m \rightarrow$ wavenumber

 κ , \rightarrow order of von Kármán-type random media

 $m. \rightarrow$ wavenumber M_0 , \rightarrow moment function \dot{M}_0 , \rightarrow moment rate function marble cake mantle model, 157 Markov approximation, 8, 77 characteristic time, 78 Markov Green's function, 77, 83 Mars-quake, 8 MC, → Monte Carlo simulation MC simulation isotropic scattering, 29 scalar waves, Born app., 72 scalar waves, Eikonal app., 81 scalar waves, spectrum division, 132 vector waves, Born app., 111 vector waves, spectrum division, 147 MCF, → mutual coherence function mean free path, 18, 27, 50 mean free time, 18, 27, 50 mean square velocity amplitude, 4 MFP, → mean free path MFT, → mean free time modified Bessel function, 47 moment rate function, \dot{M}_0 , 115 moment tensor, M_{pq} , 109 Monte Carlo simulation, 29, 72, 81 Moon, 11, 33 Moonguake, 2 moving base unit vectors, 29, 104 moving time average, 87 M_{pq} , \rightarrow moment tensor MS, → mean square MS fractional velocity fluctuation, ε^2 , 11 μ , \rightarrow Lame coefficient or $\cos \psi$

Multi-scaling method, 58

mutual coherence function Γ_{\perp} , 52, 131 Γ_{ω} , 55

multiple isotropic scattering model, 21, 33 multiple lapse-time window analysis, 7, 33

Index 175

probabilistic interpretation, 71, 108 n, \rightarrow number density of scatterers narrow ray-bending angle, 42 probability density function, PDF, 26, narrow-angle ray-bending, 42 narrow-angle ray-bending, spectrum division probability integral transform, 26 scalar waves, 132 probability of scattering occurrence, 71 vector waves, 146 Probit function, 27 $\{n_1, n_2, n_3\}, \rightarrow$ set of moving base unit vectors projection approximation, 41, 52, 80, 118 normal distribution, 55, 131, 132 prolate spheroidal coordinates, 20, 61 propagation velocity, 18 ν , \rightarrow ratio of mass fractional fluctuation to velocity fractional fluctuation PS scattering, 97 PSD source, \rightarrow point shear dislocation source number density, 18, 19 PSDF, → power spectral density function pseudo-random number generator, 16, 26 optical theorem, 43 p_X , \rightarrow probability density function Paasschens approximation, 25 parabolic approximation, 8, 40, 77 q, \rightarrow direction of energy flux density Q_c^{-1} , $\rightarrow \text{coda } Q^{-1}$ Q_I^{-1} , $\rightarrow \text{intrinsic } Q^{-1}$ partial integration, 98 PDF, \rightarrow probability density function, PDF narrow ray-bending angles, 80, quadratic form, 130 118 quasi-monochromatic wave, 77 PSD radiation angles, 111 Quaternary volcano, 7 scattering angle, 71 travel distance fluctuation, 81, 120 R, \rightarrow auto-correlation function PDF, spectrum division radar equation, 2 narrow ray-bending angle, scalar waves, 132 radiated energy narrow ray-bending angle, vector waves, 146 PSD source, 111 scattering angles, scalar waves, 128 radiation pattern scattering angles, vector waves, 145 isotropic source, 28 travel distance fluctuation, scalar waves, 132 PSD source, 110 travel distance fluctuation, vector waves, 147 radiative transfer equation, RTE, 9 peak delay time, 5, 78 radiative transfer theory, RTT, 2, 58 P_H , \rightarrow high wavenumber component of P random elastic media, 9, 93 phase shift, 44, 126, 141 random fractional velocity fluctuation, 11 $\Phi(\phi)$, \rightarrow PDF of angle ϕ random function, 46 ϕ_R , \rightarrow random phase random media, 44, 46, 48 exponential-type, 47, 51, 74, 76 P_L , \rightarrow long wavenumber component of PGaussian-type, 8, 48, 52, 54, 78, 80, 83 point shear dislocation source, PSD, 93, 109 point-like scatterer, 17 realization, 85, 86 Poisson solid, 101 von Kármán-type, 11, 47, 50, 64, 79, 85, 124 polarization direction of radiated S wave, e_{Rad} , 110 random number, 26 random phase, $\phi_R(m)$, 85 polarization direction of scattered S waves, e_{ν} , 103 power spectral density function, 2, 11, 12, 45, 47 Rayleigh distribution, 54, 118, 131, 146 power-law decay, 11, 12, 47, 157 realization of random media, 89 power-law spectral range, 124 recurrence formula, 37, 68 Pr, \rightarrow probability recurrent scattering, 64 PRNG, → pseudo-random number generator reference wavenumber isotropic radiation angles, 28 S wave, 140 narrow ray-bending angle, 80 scalar waves, 124 scattering angle, 72, 108, 109 refractive index, 13 shot time, 27 rejection sampling method, 26, 71, 108 travel distance fluctuation, 81, 120 RG_{st}^* , \rightarrow PRNG of shot time PRNG, spectrum division R_H , \rightarrow high wavenumber component of Rnarrow ray-bending angles, scalar waves, 132 ρ , \rightarrow mass density narrow ray-bending angles, vector waves, 147 Ricker wavelet, 88 R_L , \rightarrow long wavenumber component of Rscattering angles, scalar waves, 128 RMS, → root mean square scattering angles, vector waves, 145 travel distance fluctuation, scalar waves, 132 RMS velocity amplitude, 5, 114, 116, travel distance fluctuation, vector waves, 147 151

176 Index

RTE, \rightarrow radiative transfer equation scalar waves, 62 scalar waves, spherical, 66 vector waves, 93 $RG_{\theta,\phi}^{**}$, \rightarrow PRNG of scattering angles (θ, ϕ) RTT, \rightarrow radiative transfer theory scalar wave equation homogeneous, 38 inhomogeneous, 34 scattering amplitude scalar waves, 35-37 scalar waves, Born, 39, 40, 99 scalar waves, Eikonal, 42 vector waves, Born, 97, 98 scattering angle, 17, 60 scattering attenuation, 8 scattering coefficient, 18 scalar waves, Born, 49, 50, 61, 64, 71 vector waves, Born, 105 scattering coefficient, spectrum division scalar waves, 126, 127 vector waves, 141 scattering medium, 18 scattering occurrence, 27 sedimentation process, 156 seismic moment function, M_0 , 109 s^G , \rightarrow Gaussian source time function σ_0 , \rightarrow total scattering cross-section simultaneous linear equations, 70 single back-scattering model, 21, 61 single scattering approximation anisotropic, 60 isotropic, 19 single scattering ray path, 60 site amplification factor, 7 source radiation energy, 8 source time function, 71 delta, 23 Gaussian, 23, 27 Küpper, 115 Ricker, 88 spatial average, over-bar, 45 spatial gird spacing of FD simulation, 114 specific intensity, 59 spectral envelope, 12 spectrum division scalar waves, 123 vector waves, 140 spherical Bessel function, 15, 36 spherical coordinates, 99 spherical harmonic closure relation, 60 spherical trigonometry, 65 spherical-shell receiver window, 30, 73, 82, 133 spherically symmetric system, 65 s^{PSD} , \rightarrow PSD source time function s^R , \rightarrow Ricker source time function

ST, → stochastic test function stationary random function, 46 statistical characterization, 46 stochastic ray-path method, 84 stochastic test function, ST, 27 stress tensor, 95 subscript tr, \rightarrow transport scattering subscript/superscript H, → high-wavenumber component subscript/superscript L, → long-wavenumber component superscript iso, → isotropic scattering superscript B, → Born approximation superscript E, → Eikonal approximation superscript G, \rightarrow Gaussin-type superscript PP, → vector PS scattering superscript PS, → vector PS scattering superscript SP, → vector SP scattering superscript SS, → vector SS scattering surface topography, 13 tectonic stress, 156 $\Theta(\theta)$, \rightarrow PDF of angle θ

TFMCF, → two-frequency mutual coherence function three-component velocity seismogram envelopes, three-component velocity seismograms, 2 $T_{ii}(\theta, \phi)$, \rightarrow rotation matrix time step of FD simulation, Δt_{FD} , 115 t_M , \rightarrow characteristic time of the Markov approximation torsional rotation, 103, 110, 143 total scattering coefficient vector waves, Born, 106 scalar waves, Born, 50 total scattering coefficient, spectrum division scalar waves, 126 vector waves, 143 total scattering cross-section, 17, 37 analytic solution, 37 scalar waves, Born, 40 scalar waves, Eikonal, 44 transform matrix, T_{ij} , 29 transform matrix, U_{ij} , 104 transport mean free path, 50 transport mean free time, 50, 63 transport scattering coefficient, 11, 63 scalar waves, Born, 50 scalar waves, spectrum division, 126 transverse coordinate, 40 transverse Laplacian, 77 travel distance fluctuation scalar waves, 81 vector waves, 119 travel distance fluctuation

SS scattering amplitude, 103

Index 177

tuning parameter, ζ or η scalar waves, 125 vector waves, 141 turbulence air, 13 turbulent atmosphere, 2 two-frequency mutual coherence function, TFMCF, 77

 u, \rightarrow scalar wave $U_{ij}(\theta, \phi), \rightarrow$ torsional rotation matrix Uniform[0,1], \rightarrow uniform PRNG between 0 and 1 v, \rightarrow torsional rotation angle u^R, \rightarrow Ricker source time function in the wave domain u_i, \rightarrow displacement vector

 V_0 , \rightarrow average propagation velocity vector wave equation homogeneous elastic medium, 94 inhomogeneous elastic medium, 95

velocity seismograms, 3 volcanic fields, 4, 33 volcanism, 157 von Kármán-type random media, 47 V(x), \rightarrow inhomogeneous velocity

 W, \rightarrow total radiated energy well logs, 2, 46, 101 W_P, \rightarrow total radiated P-energy W_S, \rightarrow total radiated S-energy w_t^*, \rightarrow travel-time fluctuation w_z^*, \rightarrow travel-distance fluctuation

 X_*^{**} , \rightarrow basic scattering pattern $\xi(x)$, \rightarrow random function

 $Z^{**}_{\theta,\phi}, \to \text{PDF}$ of vector scattering angles (θ,ϕ) $\zeta, \to \text{tuning parameter of the spectrum}$ division