HANDBOOK OF CONSTRUCTIVE MATHEMATICS

Constructive mathematics – mathematics in which 'there exists' always means 'we can construct' – is enjoying a renaissance. Fifty years on from Bishop's groundbreaking account of constructive analysis, constructive mathematics has spread out to touch almost all areas of mathematics and to have profound influence in theoretical computer science. This handbook gives the most complete overview of modern constructive mathematics, with contributions from leading specialists surveying the subject's myriad aspects. Major themes include: constructive algebra and geometry, constructive analysis, constructive topology, constructive logic and foundations of mathematics, and computational aspects of constructive mathematics. A series of introductory chapters provides graduate students and other newcomers to the subject with foundations for the surveys that follow. Edited by four of the most eminent experts in the field, this is an indispensable reference for constructive mathematicians and a fascinating vista of modern constructivism for the increasing number of researchers interested in constructive approaches.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the **Encyclopedia of Mathematics and Its Applications** cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit

www.cambridge.org/mathematics

- 135 V. Berthé and M. Rigo (eds.) Combinatorics. Automata and Number Theory
- 136 A. Kristály, V. D. Radulescu and C. Varga Variational Principles in Mathematical Physics, Geometry, and Economics
- 137 J. Berstel and C. Reutenauer Noncommutative Rational Series with Applications
- 138 B. Courcelle and J. Engelfriet Graph Structure and Monadic Second-Order Logic
- 139 M. Fiedler Matrices and Graphs in Geometry
- 140 N. Vakil Real Analysis through Modern Infinitesimals
- 141 R. B. Paris Hadamard Expansions and Hyperasymptotic Evaluation
- 142 Y. Crama and P. L. Hammer Boolean Functions
- 143 A. Arapostathis, V. S. Borkar and M. K. Ghosh Ergodic Control of Diffusion Processes
- 144 N. Caspard, B. Leclerc and B. Monjardet Finite Ordered Sets
- 145 D. Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations 146 G. Dassios Ellipsoidal Harmonics
- 147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory
- 148 L. Berlyand, A. G. Kolpakov and A. Novikov Introduction to the Network Approximation Method for Materials Modeling
- 149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation
- 150 J. Borwein et al. Lattice Sums Then and Now
- 151 R. Schneider Convex Bodies: The Brunn–Minkowski Theory (Second Edition)
- 152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)
- 153 D. Hofmann, G. J. Seal and W. Tholen (eds.) Monoidal Topology
- 154 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras I: The Vidav–Palmer and Gelfand– Naimark Theorems
- 155 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)
- 156 L. W. Beineke and R. J. Wilson (eds.) with B. Toft Topics in Chromatic Graph Theory
- 157 T. Mora Solving Polynomial Equation Systems III: Algebraic Solving
- 158 T. Mora Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond
- 159 V. Berthé and M. Rigo (eds.) Combinatorics, Words and Symbolic Dynamics
- 160 B. Rubin Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis
- 161 M. Ghergu and S. D. Taliaferro Isolated Singularities in Partial Differential Inequalities
- 162 G. Molica Bisci, V. D. Radulescu and R. Servadei Variational Methods for Nonlocal Fractional Problems
- 163 S. Wagon The Banach-Tarski Paradox (Second Edition)
- 164 K. Broughan Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents
- 165 K. Broughan Equivalents of the Riemann Hypothesis II: Analytic Equivalents
- 166 M. Baake and U. Grimm (eds.) Aperiodic Order II: Crystallography and Almost Periodicity
- M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras II: Representation Theory and the 167 Zel'manov Approach
- 168 A. Yu. Khrennikov, S. V. Kozyrev and W. A. Zúñiga-Galindo Ultrametric Pseudodifferential Equations and Applications
- 169 S. R. Finch Mathematical Constants II
- 170 J. Krajícek Proof Complexity
- 171 D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen Quasi-Hopf Algebras
- 172 P. McMullen Geometric Regular Polytopes
- 173 M. Aguiar and S. Mahajan Bimonoids for Hyperplane Arrangements
- 174 M. Barski and J. Zabczyk Mathematics of the Bond Market: A Lévy Processes Approach
- 175 T. R. Bielecki, J. Jakubowski and M. Niewcglowski Structured Dependence between Stochastic Processes
- 176 A. A. Borovkov, V. V. Ulyanov and Mikhail Zhitlukhin Asymptotic Analysis of Random Walks: Light-Tailed Distri-
- butions 177 Y.-K. Chan Foundations of Constructive Probability Theory
- 178 L. W. Beineke, M. C. Golumbic and R. J. Wilson (eds.) Topics in Algorithmic Graph Theory
- 179 H.-L. Gau and P. Y. Wu Numerical Ranges of Hilbert Space Operators
- 180 P. A. Martin Time-Domain Scattering
- 181 M. D. de la Iglesia Orthogonal Polynomials in the Spectral Analysis of Markov Processes
- 182 A. E. Brouwer and H. Van Maldeghem Strongly Regular Graphs
- 183 D. Z. Arov and O. J. Staffans Linear State/Signal Systems
- 184 A. A. Borovkov Compound Renewal Processes
- 185 D. Bridges, H. Ishihara, M. Rathjen and H. Schwichtenberg (eds.) Handbook of Constructive Mathematics

Encyclopedia of Mathematics and its Applications

Handbook of Constructive Mathematics

Edited by

DOUGLAS BRIDGES

University of Canterbury

HAJIME ISHIHARA

Japan Advanced Institute of Science and Technology

MICHAEL RATHJEN University of Leeds

HELMUT SCHWICHTENBERG

Ludwig Maximilian University of Munich

Cambridge University Press & Assessment 978-1-316-51086-5 — Handbook of Constructive Mathematics Edited by Douglas Bridges , Hajime Ishihara , Michael Rathjen , Helmut Schwichtenberg Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316510865 DOI: 10.1017/9781009039888

© Cambridge University Press and Assessment 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-316-51086-5 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Ι	List o	f Contributors	<i>page</i> xiv
F	Prefa	ce	xvi
	Part	I Introductory	
L.	An I	ntroduction to Intuitionistic Logic	3
	Mich	ael Rathjen	3
	1.1	Introduction	3
	1.2	Constructive Existence	4
	1.3	The Brouwer–Heyting–Kolmogorov Interpretation	8
	1.4	Natural Deductions	10
	1.5	A Hilbert-Style System for Intuitionistic Logic	14
	1.6	Realizability	15
	1.7	The Curry–Howard Correspondence	17
	Refe	rences	18
	An I	ntroduction to Constructive Set Theory: An Appetizer	20
	Mich	ael Rathjen	20
	2.1	Introduction	20
	2.2	The Axiomatic Framework	23
	2.3	Elementary Mathematics in CZF	26
	2.4	The Development of Set Theory in CZF	37
	2.5	Large Sets in CZF	43
	2.6	Axioms of Choice in Constructive Set Theory	45
	2.7	CZF and the Limited Principle of Omniscience	51
	2.8	Models of CZF and Axiomatic Freedom	52
	Refe	rences	56

References

vi		Contents	
3	Bishop's Mathematics: A Philosophical Perspective Laura Crosilla		
	3.1	Introduction	61
	3.2	Bishop on Brouwer	62
	3.3	Brouwer's Mathematics	63
	3.4	Persuasion and Dialogue	66
	3.5	Formalisation	68
	3.6	Philosophy	70
	3.7	Traditional Philosophical Arguments for Intuitionistic Logic	73
	3.8	Philosophical Objections	75
	3.9	Too Strong	78
	3.10	Concluding Remarks	80
	Ackn	owledgements	84
	Refer	ences	84

Part II Algebra and Geometry

4	Alge	bra in Bishop's style: A Course in Constructive Algebra	93
	Henri Lombardi		
	4.1	Introduction	93
	4.2	Revisiting Bishop's Set Theory	95
	4.3	The Corpus of Classical Abstract Algebra Treated in the Book	99
	4.4	Principal Ideal Domains	99
	4.5	Factorization Problems	101
	4.6	Noetherian Rings, Primary Decompositions and the Principal	
		Ideal Theorem	103
	4.7	Wedderburn Structure Theorem for Finite-Dimensional	
		k-Algebras	108
	4.8	Dedekind Domains	111
	Ackr	nowledgements	112
	Refe	rences	112
5	Con	structive Algebra: The Quillen–Suslin Theorem	114
	Ihse	n Yengui	114
	5.1	Introduction	114
	5.2	Quillen's Proof of Serre's Problem	116
	5.3	Suslin's Proof of Serre's Problem	134
	Refe	rences	146

	Contents	vii
6	 Constructive Algebra and Point-Free Topology <i>Thierry Coquand</i> 6.1 Introduction 6.2 Zariski Spectrum 6.3 Minimal and Maximal Primes 6.4 Forcing over a Site 6.5 Concluding Remarks <i>References</i> 	150 150 151 153 156 161 162
7	Constructive Projective GeometryMark Mandelkern7.1Introduction7.2Real Projective Plane7.3Projective ExtensionsReferences	168 168 169 189 195
8	 Part III Analysis Elements of Constructive Analysis <i>Hajime Ishihara</i> 8.1 Introduction 8.2 Real Numbers 8.3 Metric Spaces 8.4 Normed Linear Spaces <i>References</i> 	201 201 201 202 207 213 219
9	Constructive Functional AnalysisHajime Ishihara9.1Introduction9.2Preliminaries9.3Completeness9.4Convexity9.5Duality in Hilbert SpacesReferences	221 221 221 222 226 235 245 252
10	 Constructive Banach Algebra Theory <i>Robin S. Havea and Douglas Bridges</i> 10.1 Introduction 10.2 Preliminaries 10.3 The Spectral Mapping Theorem 10.4 Approximating the State Space 10.5 Hermitian and Positive Elements 	255 255 255 256 260 266 273

References

284

viii	Contents	
11	Constructive Convex Optimisation	286
	Josef Berger and Gregor Svindland	286
	11.1 Introduction	286
	11.2 Some Definitions and Notation	286
	11.3 Convexity and Existence of Infima and Minima	288
	11.4 Convexity and Brouwer's Fan Theorem	290
	11.5 Lemmas of the Alternative and Consequences	294
	References	301
12	Constructive Mathematical Economics	302
	Matthew Hendtlass and Douglas Bridges	302
	12.1 Introduction	302
	12.2 Preference and Utility	302
	12.3 Demand Functions	311
	12.4 Economic Equilibrium	314
	12.5 Game Theory	325
	References	330
13	A Leisurely Random Walk Down the Lane of a Constructive	
	Theory of Stochastic Processes	333
	Yuen-Kwok Chan	333
	13.1 Stochastic Process, in a Nutshell	333
	13.2 Constructive Mathematics, in a Nutshell	339
	13.3 Stochastic Processes, in a Bigger Nutshell	346
	13.4 Constructive Theory of Stochastic Processes, in an Even	
	Bigger Nutshell	349
	13.5 Concluding Remarks	355
	References	355

Part IV Topology

14]	Bases	s of Pseudocompact Bishop Spaces	359
	Iosif .	Petrakis	359
	14.1	The Problem of Constructivising General Topology	359
	14.2	Overview of Recent Work on Bishop Spaces	365
	14.3	Structure of the Technical Part of this Chapter	366
	14.4	Basic Notions in the Theory of Bishop Spaces	367
	14.5	Bases of Bishop Spaces	374
	14.6	The First Base Theorem	377
	14.7	The Second Base Theorem	379
	14.8	Applications of the Second Base Theorem	382
	14.9	Concluding Remarks	389

		Contents	ix
	Ackn	owledgements	391
	Refer	rences	391
15	Bish	op Metric Spaces in Formal Topology	395
	Tatsu	iji Kawai	395
	15.1	Introduction	395
	15.2	Formal Topology	397
	15.3	Functorial Embedding of Locally Compact	
		Metric Spaces	401
	15.4	Located Subsets in Formal Topology	407
	15.5	Pointfree Characterisation of Compact	
		Metric Spaces	414
	15.6	Pointfree Characterisation of Locally Compact Metric Spaces	416
	15.7	Beyond Locally Compact Metric Spaces	421
	15.8	Related Works	423
	Refer	rences	423
16	Subs	paces in Pointfree Topology: Towards a New Approach to	
	Meas	sure Theory	426
	Fran	cesco Ciraulo	426
	16.1	Introduction	426
	16.2	Pointfree Parts of the Real Line	427
	16.3	A Measure on σ -Sublocales	434
	16.4	The Pointfree Approach to the Real Line	441
	16.5	Concluding Remarks	442
	Refer	rences	443
17	Synt	hetic Topology	445
	Davo	rin Lešnik	445
	17.1	Introduction	445
	17.2	Topological Properties	452
	17.3	Principles	462
	Refer	rences	481
18	Apar	tness on Lattices and Between Sets	483
	Doug	alas Bridges	483
	18.1	Introduction	483
	18.2	Lattices	484
	18.3	Apartness on Frames	490
	18.4	Frame Topologies	492
	18.5	Join Homomorphisms and Continuity	496

х		Contents	
	18.6	Set–Set Pre-apartness	501
	18.7	Strong and Uniform Continuity	504
	18.8	Compactness	508
	18.9	Concluding Remarks	511
	Ackne	owledgement	511
	Refer	ences	511
	Part	V Logic and Foundations	
19	Cour	ntable Choice	515
	Fred	Richman	515
	19.1	Axioms of Choice	515
	19.2	Living without Countable Choice	517
	19.3	The Fundamental Theorem of Algebra	518
	19.4	Completions	519
	19.5	The Ascending Tree Condition	520
	19.6	Bishop's Principle and the λ -Technique	521
	Refer	ences	523
20	The I	Minimalist Foundation and Bishop's Constructive	
	Math	nematics	525
	Mari	a Emilia Maietti and Giovanni Sambin	525
	20.1	Introduction	525
	20.2	Why Adopt a Minimalist Foundation?	528
	20.3	The Minimalist Foundation	530
	20.4	Why Adopting the Pointfree Approach to Develop Topology	
		in MF?	543
	20.5	Extending MF with choice principles	555
	20.6	Concluding Remarks	557
	Ackne	owledgements	558
	Refer	ences	558
21	Ident	tity, Equality, and Extensionality in Explicit Mathematics	564
	Gerh	ard Jäger	564
	21.1	Introduction	564
	21.2	The Basic Axiomatic Operational Framework	565
	21.3	Adding Elementary Classes	569
	21.4	About Some Ontological Aspects of EC and EC ⁺	572
	21.5	Abstract Data Structures	575
	21.6	The Number Systems \mathbb{N} , \mathbb{Z} , and \mathbb{Q} as Abstract Data Structures	577
	21.7	Representing the Real Numbers	580
	Refer	ences	582

Cambridge University Press & Assessment 978-1-316-51086-5 — Handbook of Constructive Mathematics Edited by Douglas Bridges , Hajime Ishihara , Michael Rathjen , Helmut Schwichtenberg Frontmatter <u>More Information</u>

	Contents	xi
22	Inner and Outer Models for Constructive Set Theories	584
	Robert S. Lubarsky	584
	22.1 Introduction	584
	22.2 Heyting Models, or Constructive Forcing	586
	22.3 Kripke Models	594
	22.4 Heyting–Kripke Models	611
	22.5 Classical Outer Models	616
	22.6 Inner Models	619
	22.7 A Final Example	624
	References	633
23	An Introduction to Constructive Reverse Mathematics	636
	Hajime Ishihara	636
	23.1 Introduction	636
	23.2 A Formal System	637
	23.3 Continuity Properties	642
	23.4 Compactness Properties	648
	23.5 The Monotone Completeness Theorem	653
	23.6 Concluding Remarks	656
	References	658
24	Systems for Constructive Reverse Mathematics	661
	Takako Nemoto	661
	24.1 Introduction	661
	24.2 Preliminary	663
	24.3 Function-Based Language and Systems	669
	24.4 Base Theory with the Strength of ACA_0	682
	24.5 Base Theory with the Strength of RCA_0	689
	24.6 Base Theory with the Strength of RCA_0^*	690
	24.7 Appendix: Proof of Lemma 24.27 and Lemma 24.28	693
	References	698
25	Brouwer's Fan Theorem	700
	Josef Berger	700
	25.1 Introduction	700
	25.2 Notation	701
	25.3 The Weak König Lemma	702
	25.4 The Fan Theorem	705
	25.5 The Uniform Continuity Theorem	707
	25.6 The Fan Theorem for c-sets	709
	References	711

Cambridge University Press & Assessment
978-1-316-51086-5 – Handbook of Constructive Mathematics
Edited by Douglas Bridges , Hajime Ishihara , Michael Rathjen , Helmut Schwichtenberg
Frontmatter
More Information

xii	Contents	
	Part VI Aspects of Computation	
26	Computational Aspects of Bishop's Constructive Mathematics	715
	Helmut Schwichtenberg	715
	26.1 Partial Continuous Functionals	716
	26.2 A Term Language for Computable Functionals	724
	26.3 A Theory of Computable Functionals	727
	26.4 Computational Content of Proofs	734
	26.5 Applications	747
	References	747
27	Application of Constructive Analysis in Exact Real Arithmetic	749
	Kenji Miyamoto	749
	27.1 Introduction	749
	27.2 Preliminaries	751
	27.3 Applications	761
	27.4 Concluding Remarks	773
	References	774
28	Efficient Algorithms from Proofs in Constructive Analysis	777
	Mark Bickford	777
	28.1 Introduction	777
	28.2 Representation of Real Numbers	779
	28.3 Nuprl Representation of Real Numbers	781
	28.4 Some Type Theory	786
	28.5 Extracts of Proofs by Induction	788
	28.6 Inverse, Division, and Computation	790
	28.7 Completeness	792
	28.8 Constructing <i>k</i> th Roots	793
	28.9 Computing Power Series	797
	$28.10 \sin(x), \cos(x), \text{ and } e^x$	798
	28.11 $\ln(x)$ and $\arcsin(x)$	799
	28.12 Computing π and $\arctan(x)$	801
	28.13 Constructive Content of Brouwer's Principles	803
	28.14 Concluding Remarks	804
29	On the Computational Content of Choice Principles	806
	Ulrich Berger and Monika Seisenberger	806
	29.1 Introduction	806
	29.2 A Semi-constructive System with Computational Content	807
	29.3 Realizable and Unrealizable Choice Principles	812

	Contents	xiii
29.4	Countable Choice and Classical Logic	818
29.5	Conclusion	821
Refer	rences	822
Inday		876
29.5 Reference Index	Conclusion rences	821 822 826

Contributors

Josef Berger Department of Mathematics, University of Munich Ulrich Berger Department of Computer Science, Swansea University Mark Bickford Department of Computer Science, Cornell University **Douglas Bridges** School of Mathematics & Statistics, University of Canterbury Yuen-Kwok Chan Mortgage Analytics, Citigroup (retired) Francesco Ciraulo Department of Mathematics, University of Padua Thierry Coquand Computer Science Department, University of Gothenburg Laura Crosilla Department of Philosophy, IFIKK, University of Oslo Robin S. Havea Tonga Campus, University of the South Pacific Matthew Hendtlass School of Mathematics & Statistics, University of Canterbury Hajime Ishihara School of Information Science, Japan Advanced Institute of Science and Technology Gerhard Jäger Institute of Computer Science, University of Bern Tatsuji Kawai Japan Advanced Institute of Science and Technology, Asahidai Davorin Lešnik Faculty of Mathematics and Physics, University of Ljubljana Henri Lombardi Department of Mathematics, University of Franche-Comté Robert S. Lubarsky Department of Mathematical Sciences, Florida Atlantic University Maria Emilia Maietti Department of Mathematics, University of Padua Mark Mandelkern Department of Mathematics, New Mexico State University Kenji Miyamoto Mathematics Institute, Ludwig Maximilian University of Munich Takako Nemoto Department of Architectural Design, Hiroshima Institute of Technology **Iosif Petrakis** Mathematics Institute, Ludwig Maximilian University of Munich Michael Rathien Department of Pure Mathematics, University of Leeds Fred Richman Department of Mathematics, Florida Atlantic University Giovanni Sambin Department of Mathematics, University of Padua

List of Contributors

XV

Helmut Schwichtenberg Mathematics Institute, Ludwig Maximilian University of Munich

Monika SeisenbergerDepartment of Computer Science, Swansea UniversityGregor SvindlandInstitute of Actuarial and Financial Mathematics, Leibniz

University Hanover

Ihsen Yengui Department of Mathematics, University of Sfax

Preface

Constructive mathematics, in which 'there exists' is interpreted strictly as 'we can find/construct/compute', can be traced back at least to Kronecker and was first taken up systematically by Brouwer [6] and his 'intuitionist' followers. For various reasons, Brouwer's intuitionistic mathematics (INT), other than its underlying intuitionistic logic, garnered relatively little interest outside parts of Europe. In the Soviet Union in the late 1940s, A. A. Markov began a research programme on recursive constructive mathematics (RUSS), in which 'constructive' was interpreted as 'applying recursion theory and intuitionistic logic to analysis'. Markov's programme, too, failed to convince mathematicians, other than logicians, that it had much significance for the working mathematician.

The tipping point for constructive mathematics was the publication, in 1967, of Errett Bishop's groundbreaking monograph *Foundations of Constructive Analysis* [3], in which, confounding the predictions of Hilbert and the majority of active research mathematicians, he presented a fully algorithmic development of deep analysis, including functional analysis and measure theory. Moreover, he did so in the natural style of an analyst, resorting to neither the non-classical principles of Brouwer nor Markov's framework of recursion theory. The key to his development was the use of intuitionistic logic and an informal set theory (one formalisation of which is described in Chapter 2), the former capturing the Brouwer–Heyting–Kolmogorov (BHK) interpretation of the logical connectives and quantifiers; this meant that his work read like normal analysis rather than mathematical logic.

In a certain sense, intuitionistic logic, which is discussed in Chapter 1, is weaker than classical logic: with the former one cannot prove, for example, the law of excluded middle, De Morgan's law, or even the seemingly trivial limited principle of omniscience, which states that for every binary sequence, either all the terms are 0 or else there exists a term equal to 1. However, as the Curry–Howard isomorphism shows, we can ensure constructivity in mathematics by using intuitionistic

Cambridge University Press & Assessment 978-1-316-51086-5 — Handbook of Constructive Mathematics Edited by Douglas Bridges, Hajime Ishihara, Michael Rathjen, Helmut Schwichtenberg Frontmatter More Information

Preface

xvii

logic. Moreover, we can extract programs from intuitionistic-logic-based proofs (see Part IV).

In the 50-plus years since the appearance of his book, there has been considerable progress in the continuing development of Bishop's analysis [4, 8, 10]; but the constructive banner has also been raised by algebraists [11, 13], topologists [5, 14], researchers into formal set- and type-theoretic foundations for Bishop-style mathematics (BISH) ([1, 2, 12], Chapter 2), and computer scientists working on program extraction from proofs in BISH [7, 15]. Following the initiative of Veldman [17] and Ishihara [9], there is now also a substantial body of research in constructive reverse mathematics, in which theorems and principles of classical, intuitionistic, and (constructive) recursive mathematics are classified constructively by those principles that are necessary and sufficient additions to BISH in order to derive them (see Chapters 23 and 24).

There is another aspect of constructive mathematics that is increasingly regarded as a *sine qua non*: predicativity. This means ensuring that we avoid self-referential, or *impredicative*, definitions such as

$$A \equiv \{n \in \mathbf{N} : \forall S \subset \mathbf{N} \,\phi(S, n)\},\$$

in which the criterion for membership of n in the definiendum A involves universal quantification over all subsets of \mathbf{N} , including A itself. In the past three decades there has been increasing research activity in *formal topology* [14], with its emphasis on predicativity and point-free constructive mathematics. Formal-topological methods are being applied far more widely than the word topology would suggest, with a considerable body of research into point-free methods in analysis (see Chapters 15–17). More recently, the late Fields Medallist Vladimir Voyevodsky introduced homotopy type theory, an approach to constructive mathematics that has attracted a great deal of attention. However, given the length of our Handbook, we refer our readers to the comprehensive treatise *Homotopy Type Theory: Univalent Foundations of Mathematics* [16] for more information on Voyevodsky's approach.

The aim of this Handbook is two-fold:

- to provide an accessible introduction to constructive mathematics its foundations (Parts I and V), its practice within mathematics itself (Parts II–IV), and its significance for computation (Part VI);
- to demonstrate how far mathematics can be developed with the requirements of constructivity and predicativity.

We hope that our compilation will encourage mathematicians of all persuasions to appreciate the power, subtlety, and growing reach of the constructive mathematical enterprise.

xviii

Preface

Acknowledgements

The editors wish to thank the following.

- Iosif Petrakis, for initiating the handbook project and assisting with its development.
- The anonymous referees of our chapters.
- Tom Harris and David Tranah, from Cambridge University Press, for their patient guidance over the preparation and production of the Handbook.
- The Hausdorff Research Institute of Mathematics, Bonn, for the Trimester *Types, Sets and Constructions* (May–August, 2018).
- The European Union, for the projects *Computing with Infinite Data* (2017–2021) and *Correctnesss by Construction* (2014–2017).
- The Japan Society for the Promotion of Science, Core-to-Core Program (A. Advanced Research Networks), for the project *Mathematical Logic and its Applications* (2015–2020).
- The John Templeton Foundation, for the project A New Dawn of Intuitionism: Mathematical and Philosophical Advances (2017–2020).

References

- [1] Aczel, P., and Rathjen, M. 2001. *Notes on Constructive Mathematics*. Technical report 40. Royal Swedish Academy of Sciences.
- [2] Alps, R. A., and Bridges, D. S. *Morse Set Theory as a Foundation for Constructive Mathematics*. Monograph in preparation.
- [3] Bishop, E. 1967. *Foundations of Constructive Analysis*. New York: McGraw-Hill.
- [4] Bridges, D. S., and Vîţă, L. S. 2006. *Techniques of Constructive Analysis*. Springer.
- [5] Bridges, D. S., and Vîţă, L. S. 2011. Apartness and Uniformity: A Constructive Development. CiE series Theory and Applications of Computability. Springer-Verlag.
- [6] Brouwer, L. E. J. 1907. Over de Grondslagen der Wiskunde. PhD Thesis, University of Amsterdam.
- [7] Constable, R. L., et al. 1986. *Implementing Mathematics with the NUPRL Proof Development System*. Englewood Cliffs, New Jersey: Prentice-Hall.
- [8] Ishihara, H. 2001. Locating subsets of a Hilbert space. Proc. Amer. Math. Soc., 129(5), 1385–2390.
- [9] Ishihara, H. 2005. Constructive reverse mathematics: compactness properties. Pages 245–267 of: *From Sets and Types to Topology and Analysis*. Oxford Logic Guides, vol. 48. Oxford: Clarendon Press.

Preface

- [10] Ishihara, H., and Vîţă, L. S. 2003. Locating subsets of a normed space. Proc. Amer. Math. Soc., 131(10), 3231–3239.
- [11] Lombardi, H., and Quitté, C. 2011. Algèbre Commutative, Méthodes constructives (Modules projectifs de type fini). Montrouge, France: Calvage et Mounet. English translation, with additions and corrections: Commutative Algebra, Constructive Methods (Finitely Generated Projective Modules), Springer-Verlag, 2015.
- [12] Martin-Löf, P. 1998. An intuitionistic theory of types. Pages 127–172 of: *Twenty-five Years of Constructive Type Theory*. Oxford Logic Guides, vol. 36. Oxford: Clarendon Press.
- [13] Mines, R., Richman F., and Ruitenburg, W. 1988. *A Course in Constructive Algebra*. Universitext. Heidelberg: Springer-Verlag.
- [14] Sambin, G. 2023. Positive Topology and the Basic Picture. New Mathematics Emerging from Dynamic Constructivism. Oxford Logic Guides. Oxford: Oxford University Press. (In the press.)
- [15] Schwichtenberg, H. 2009. Program extraction in constructive analysis. Pages 255–275 of: *Logicism, Intuitionism, and Formalism What has Become of them?* Synthese Library, vol. 341. Berlin: Springer-Verlag.
- [16] Univalent Foundations Program. 2013. *Homotopy Type Theory: Univalent Foundations of Mathematics*. Princeton, New Jersey: Institute for Advanced Study. Available at https://homotopytypetheory.org/book.
- [17] Veldman, W. 2001. Brouwer's Fan Theorem as an axiom and as a contrast to Kleene's Alternative. Arch. Math. Logic, 5–6, 621–693.

xix