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An Introduction to Intuitionistic Logic

Michael Rathjen

1.1 Introduction

The constructive existence embodied in intuitionistic logic is very desirable in

mathematics as it supports the computational view of mathematics. For a classic-

ally trained mathematician, though, it is often not that easy to switch to a mode

of reasoning that maintains constructivity. For instance, arguing by making case

distinctions is an almost automatic habit in classical mathematics, but one that is

liable to introduce illegitimate employments of the law of excluded middle, LEM.

Several examples will be discussed in Section 1.2.

The main aim of this chapter is to present an informal and intuitive approach

to intuitionistic1 logic – also known as constructive logic – for the working con-

structive mathematician.2 The guiding idea is that this will be furnished via the

Brouwer–Heyting–Kolmogorov interpretation (henceforth the BHK-interpretation)

of the logical connectives and quantifiers. This is presented in Section 1.3.

Sometimes, however, uncertainties as to the constructive validity of an argument

might still arise as the BHK-interpretation is based on an unexplained notion of con-

structive function. Moreover, it can also be cumbersome to ascertain constructivity

of a mode of reasoning by means of the BHK-interpretation, or, venturing in the

other direction, to demonstrate that an argument doesn’t hold under an intuitionistic

lens. In such situations, a more formal approach may be called for. For this reason,

and for other equally important purposes, this chapter also features two formal proof

systems in Sections 1.4 and 1.5: Gentzen’s natural deductions and a Hilbert-style

calculus for intuitionistic predicate logic. In the natural deduction style of reasoning

there are no axioms, only rules of inference. This lack of axioms is compensated for

by having permission to introduce any formula as a hypothesis at any time. To be

able to get rid of such formulas at later stages in the proof, there are rules that allow

1 No pun intended.
2 There are several excellent introductions to intuitionistic logic; for example, [26, Chapter 2]. This one is for

the reader’s convenience, namely to have one to hand in the same volume.

3

www.cambridge.org/9781316510865
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51086-5 — Handbook of Constructive Mathematics
Edited by Douglas Bridges , Hajime Ishihara , Michael Rathjen , Helmut Schwichtenberg 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Michael Rathjen

one to discharge hypotheses. A Hilbert-style proof calculus, on the other hand, has

a number of axioms but few inference rules. The latter are, moreover, of a local

nature in that they do not involve the sometimes burdensome regime of tracking

open and discharged hypotheses over the entire proof. Both formalizations have im-

portant roles to play. Natural deductions beautifully exhibit the connection between

intuitionistic logic and computations known as the Curry–Howard correspondence

(or isomorphism) and the formulae-as-types interpretation, whereas a Hilbert-style

calculus is very useful in demonstrating that crucial concepts (e.g., realizability)

are preserved under intuitionistic logic. The Curry–Howard correspondence will be

briefly discussed in the final section, Section 1.7.

The penultimate section, Section 1.6 is devoted to Kleene’s 1945-realizability

of intuitionistic number theory (or Heyting arithmetic), HA. The concept and

technique of realizability is another nice illustration of the fact that intuitionistic

proofs encapsulate numerical information, and it reveals how it is extractable from

them. Furthermore, realizability bears out the fact that one option of instantiating

the unexplained notion of constructive function of the BHK-interpretation consists

in equating it with the notion of partial computable (= partial recursive = partial

Turing machine computable) function.

1.2 Constructive Existence

Constructive mathematics is both old and new for the reason that, with few ex-

ceptions, mathematicians thought constructively until the 1870s, that is, before the

set-theoretic shift initiated by Dedekind, Cantor, and others, while a substantial

development of modern mathematics from a constructive base (largely thought to

be impossible) had to await the work of Errett Bishop in the second half of the

twentieth century.

The meaning of ‘existence’ in mathematics in the first phase was essentially what

we equate with constructive existence nowadays. In general, the requirement for the

latter is the demand that E be respected:

(E) The correctness of an existential claim (∃x ∈ A)ϕ(x) is to be guaranteed

by warrants from which both an object x ∈ A and a further warrant for ϕ(x)
are constructible.

Or as Bishop ([2, p. 2]) put it:

When a man proves a positive integer to exist, he should show how to find it. If

God has mathematics of his own that needs to be done, let him do it himself.

The year 1888 saw Hilbert’s proof of the basis theorem (Gordan’s problem of

invariants). Hilbert demonstrated the existence of a finite basis via a proof by
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1 An Introduction to Intuitionistic Logic 5

contradiction. It is telling that he had to convince Cayley and Gordan that he had

really proved the theorem, since they, like other mathematicians, expected a solution

along the lines of E that exhibited a finite basis.3

The later part of the nineteenth century and the first part of the twentieth century

was a period of great advances in mathematics, but also one of uncertainty and

opposing views. A central role in the discussions about mathematical existence was

played by Zermelo’s proof that the reals can be well-ordered, presented at the Inter-

national Congress of Mathematicians in 1905. While many mathematicians were apt

to dismiss the paradoxes as peripheral to mathematics, contradictions of a somewhat

philosophical nature, Zermelo’s result concerned a core object of mathematics: R.

His proof notoriously used the axiom of choice, AC. While Zermelo argued that AC

was self-evident, it was also criticized as an excessively non-constructive principle

by some of the most distinguished analysts of the day.4 Zermelo’s proof furnishes

absolutely no idea as to how a well-ordering of R can be defined (let alone be

constructed). At the time it was natural to single out AC as the sole villain that

engenders undefinable mathematical entities. With the advent and tools of modern

mathematical logic, however, it emerged that the venerable logical principle (or

law) of excluded middle, φ ∨ ¬φ, suffices to produce such examples. For example,

one can produce existential statements of the form ∃x ⊆ R
2ϕ(x) that are provable

in pure logic with the aid of excluded middle, however, ZFC (Zermelo–Fraenkel

set theory with the axiom of choice), even when augmented by the generalized

continuum hypothesis, GCH, cannot prove that there is a definable such set.5 In

a similar vein, there are number-theoretic statements such that first-order number

theory PA (Peano arithmetic) proves ∃x θ(x) but for no term t does PA prove θ(t).

Brouwer made his famous criticism of the law of excluded middle, LEM, in

his 1907 dissertation [4] and his 1908 article ‘De onbetrouwbaarheid der logische

principes’6 [5]. He was not the first person, though, to raise doubts about its

validity. The German mathematician Paul du Bois-Reymond in his book [9] Die

allgemeine Functionentheorie from 1882 clearly separated actual infinities from

potential infinities and argued that the logic governing potential but non-actual

infinite sets would not countenance LEM.

Brouwer called his mathematics intuitionistic mathematics. The formal logic that

drops LEM and related principles such as the double negation shift ¬¬A → A is

3 Hence Gordan’s famous remark, ‘this is not mathematics, this is theology’, although later Gordan came to
appreciate ‘theology’ in mathematics.

4 At the end of a note sent to the Mathematische Annalen in December 1905, Borel writes about the axiom of
choice: ‘It seems to me that the objection against it is also valid for every reasoning where one assumes an

arbitrary choice made an uncountable number of times, for such reasoning does not belong in mathematics.’

([3, pp. 1251–1252]; translation by H. Jervell, cf. [16, p. 96]).
5 This means that for no set-theoretic formulas ψ(x) does one have ZFC+ GCH ⊢ ∃!x[x ⊆ R

2 ∧ ϕ(x) ∧
ψ(x)]. The latter follows from a result of Feferman [11] obtained by forcing in 1963.

6 The Unrealiability of the Logical Principles.
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called intuitionistic logic and sometimes constructive logic or Heyting’s predicate

calculus. The first name is well ingrained, but Brouwer did not develop intuitionistic

logic. The first explicit formulation of the laws of intuitionistic logic is due to the

Russian logician Kolmogorov [18]. Kolmogorov accepted Brouwer’s critique of

LEM when applied to infinite domains. He then took Hilbert’s formalization of

classical logic [13] as the starting point for his investigation, deselecting those

axioms that have validity only in the domain of the finitary. With the exception of

the axiom A → (¬A → B) (which is not valid in minimal logic), Kolmogorov

arrived at a complete formalization of intuitionistic logic. The main achievement of

his paper, though, was to prove that classical logic is translatable into intuitionistic

logic, thereby largely anticipating the independent discoveries of translations by

Gentzen and Gödel in 1933. The full formalization of intuitionistic logic was

obtained in 1930 by Heyting [12], who was unaware of Kolmogorov’s work.

Here is an example of a non-constructive existence proof that one finds in almost

every book and article concerned with constructive issues.7

Proposition 1.1 There exist irrational numbers α, β ∈ R such that αβ is rational.

Proof We know that
√
2 is irrational, and

√
2
√
2

is either rational or irrational.

If it is rational, let α := β :=
√
2. If not, put α :=

√
2
√
2

and β :=
√
2. Thus in

either case a solution exists.

This proof provides two pairs of candidates for solving the equation xy = z

with x and y irrational and z rational, without giving a means of determining

which. From a non-trivial result of Gelfand and Schneider, it is known that
√
2
√
2

is transcendental, and thus the second pair provides an explicit answer.

Similarly, classical proofs of disjunctions can be unsatisfactory. H. Friedman

pointed out that classically either e − π or e + π is a irrational number since

assuming that both e − π and e + π are rational entails the contradiction that e is

rational. But to this day we don’t know which of these numbers is irrational.

Another example is the standard proof of the Bolzano–Weierstraß Theorem.

Example 1.2 If S is an infinite subset of the closed interval [a, b], then [a, b]

contains at least one point of accumulation of S.

Proof We construct an infinite nested sequence of intervals [ai, bi] as follows.

Put a0 = a, b0 = b. For each i, consider two cases:

(i) if
[

ai,
1
2(ai + bi)

]

contains infinitely many points of S, put ai+1 = ai, bi+1 =
1
2(ai + bi);

7 Dummett [10] writes that this example is due to Peter Rososinski and Roger Hindley.
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1 An Introduction to Intuitionistic Logic 7

(ii) if
[

ai,
1
2(ai + bi)

]

contains only finitely many points of S, put ai+1 =
1
2(ai+

bi), bi+1 = bi.

With the help of LEM, it is plain that each interval [ai, bi] contains infinitely many

points of S. This being a sequence of nested intervals, (ai)i∈N converges to a point

every neighbourhood of which contains infinitely many points of S.

The foregoing proof specifies a ‘method’ which, in general, a constructivist

cannot carry out.

1.2.1 Counterexamples from Analysis

Certain basic principles of classical mathematics, which are taboo for the con-

structive mathematician, were called principles of omniscience by Bishop. They

can be stated in terms of binary sequences, where a binary sequence is a function

α : N → {0, 1}. Below, the quantifier ∀α is supposed to range over all binary

sequences and the variables n,m range over natural numbers. Let αn := α(n).

Definition 1.3 Limited Principle of Omniscience (LPO):

∀α [∃nαn = 1 ∨ ∀nαn = 0].

Weak Limited Principle of Omniscience (WLPO):

∀α [∀nαn = 0 ∨ ¬∀nαn = 0].

Lesser Limited Principle of Omniscience (LLPO):

∀α
(

∀n,m[αn = αm = 1 → n = m] → [∀nα2n = 0 ∨ ∀nα2n+1 = 0]
)

.

Theorem 1.4 The following implications hold constructively:

LPO ⇒ WLPO ⇒ LLPO. (1.1)

Proof The first implication is obvious. For the second, assume

∀n,m[αn = αm = 1 → n = m]. Applying WLPO to β(n) := α2n, we have

∀nβn = 0 or ¬∀nβn = 0. Clearly, the first case yields ∀nα2n = 0. So assume

¬∀nβn = 0. From α2k+1 = 1 one obtains βn = 0 for all n, contradicting

the latter assumption. Hence α2k+1 6= 1, whence α2k+1 = 0 for all k since

∀k [α2k+1 = 0 ∨ α2k+1 = 0].

Classically one has the principle

∀x, y ∈ R [x = y ∨ x 6= y].

This principle entails WLPO and is thus not acceptable constructively. Many well-

known theorems of classical analysis only require LPO or just WLPO. The story

www.cambridge.org/9781316510865
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51086-5 — Handbook of Constructive Mathematics
Edited by Douglas Bridges , Hajime Ishihara , Michael Rathjen , Helmut Schwichtenberg 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Michael Rathjen

with LLPO, though, is much more subtle.8 One of the best-known consequences of

LLPO is ∀x, y ∈ R [x ≤ y ∨ y ≤ x].

At this point it is worth mentioning that LPO is still much weaker than LEM.

Indeed, it is interesting to study semi-intuitionistic systems with LPO. Particularly

noteworthy seems to be the fact that adding LPO to constructive Zermelo–Fraenkel

set theory, CZF, does not change the proof-theoretic strength whereas adding LEM

to CZF yields classical ZF (for details see [21, Section 2.7] in this volume).

One way to refute all of these principles is via a recursive reading of the BHK-

interpretation.

1.3 The Brouwer–Heyting–Kolmogorov Interpretation

The difference between the classical and the intuitionistic understanding of the

logical connectives and quantifiers is partiularly well illuminated by the BHK-

interpretation, to which we turn next.

In a first approach, a mathematical assertion could be construed as a meaningful

statement describing a state of affairs, which traditionally is something that is

either true or false. In the case of mathematical statements involving quantifiers

ranging over infinite domains, however, by adopting such a view one is compelled to

postulate an objective transcendent realm of mathematical objects which determines

their meaning and truth value. Most schools of constructive mathematics reject such

an account as unconvincing. Kolmogorov observed that the laws of the constructive

propositional calculus become evident upon conceiving propositional variables as

ranging over problems or tasks. The constructivist’s restatement of the meaning of

the logical connectives is known as the BHK-interpretation. It is couched in terms

of an informal notion of proof. It is instructive to view such proofs as pieces of

evidence sometimes referred to as proof objects.

Definition 1.5

(i) p proves ϕ ∧ ψ iff p is pair 〈a, b〉, where a is proof for ϕ and b is proof for ψ.

(ii) p proves ϕ ∨ ψ iff p is pair 〈n, q〉, where n = 0 and q proves ϕ, or n = 1 and

q proves ψ.

(iii) p proves ϕ → ψ iff p is a function (or rule) which transforms any proof s of

ϕ into a proof p(s) of ψ.

(iv) p proves ¬ϕ iff p proves ϕ→ ⊥.

(v) p proves (∃x ∈ A)ϕ(x) iff p is a pair 〈a, q〉 where a is a member of the set A

and q is a proof of ϕ(a).

8 LPO and LLPO can be separated at the level of full intuitionistic Zermelo–Fraenkel. For this and more
references see [6, Section 9].
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1 An Introduction to Intuitionistic Logic 9

(vi) p proves (∀x ∈ A)ϕ(x) iff p is a function (rule) such that for each member a

of the set A, p(a) is a proof of ϕ(a).

(vii) p proves ⊥ is impossible, so there is no proof of ⊥.

Many objections can be raised against the above definition. The explanations

offered for implication and universal quantification are notoriously imprecise be-

cause the notion of function (or rule) is left unexplained. Another problem is that

the notions of set and set membership are in need of clarification. But in practice

these rules suffice to codify the arguments which mathematicians want to call con-

structive. Note also that the above interpretation (except for ⊥) does not address the

case of atomic formulas.

Definition 1.6 We say that a formula ϕ is valid under the BHK-interpretation, if

a construction (or proof object) p can be exhibited that is a proof of ϕ in the sense

of the BHK-interpretation.

Example 1.7 Here are some examples of the BHK-interpretation. We sometimes

use λ-notation for functions.

(i) The identity map, λx.x, is a proof of any proposition of the form ϕ→ ϕ since

(λx.x)(p) = p.

(ii) A proof of ϕ ∧ ψ → ψ ∧ ϕ is provided by the function f(〈a, b〉) = 〈b, a〉.
(iii) Perhaps a bit wondrous, but any function is a proof of ⊥ → ϕ as ⊥ has no

proof.

(iv) (∗) (ϕ → ψ) → [(ψ → θ) → (ϕ → θ)] is valid under the BHK-interpreta-

tion. Note that the latter entails as a special case the law of contraposition,

(ϕ→ ψ) → (¬ψ → ¬ϕ)

as ¬ϑ is ϑ→ ⊥. To find a BHK-proof of (∗), assume that f proves ϕ→ ψ, g

proves ψ → θ, and p proves ϕ. Then f(p) proves ψ, and hence g(f(p)) proves

θ. Consequently, λx.g(f(x)) proves ϕ → θ, and therefore λg.λx.g(f(x))

proves (ψ → θ) → (ϕ→ θ). Thus, λf.λg.λx.g(f(x)) is a proof of (∗).
(v) The law of excluded middle is not valid under any reasonable reading of the

BHK-interpretation. Given a sentence θ, we might not be able to find a proof

of θ nor a proof of ¬θ. Wondrously, the double negation of that principle is

valid under the BHK-interpretation. This may be seen as follows. Suppose

g proves ¬(ψ ∨ ¬ψ). One easily constructs functions f0 and f1 such that f0
transforms a proof of ψ into a proof of ψ ∨ ¬ψ and f1 transforms a proof of

¬ψ into a proof of ψ ∨ ¬ψ, respectively. Thus, λa.g(f0(a)) is a proof of ¬ψ
while λb.g(f1(b)) is a proof of ¬ψ → ⊥. Consequently, g(f1(λa.g(f0(a))))

is a proof of ⊥. As a result, λg.g(f1(λa.g(f0(a)))) proves ¬¬(ψ ∨ ¬ψ) for

any formula ψ.
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1.4 Natural Deductions

Constructive mathematics, just as classical mathematics, is mostly carried out in-

formally by humans. Going back to the BHK-interpretation provides a good tool

for testing whether a piece of mathematical reasoning holds under the constructive

lens. Still, it may be desirable and convenient to have a set of formal logical rules

available, should questions about the constructive validity of a proof be raised. Even

with the BHK-interpretation at one’s disposal, doubts can arise, due to BHK being

based on an unexplained notion of function.

This section presents two formal systems of axioms and rules for intuitionistic

logic, the natural deduction calculus invented by Gentzen and the intuitionistic

Hilbert-style calculus.

Definition 1.8 In the following it is assumed that we are given a language L of

predicate logic (also called first-order logic) with equality =. The logical primitives

are ∧,∨,→,⊥, ∀, ∃, where ⊥ stands for absurdity and the negation ¬ψ of a formula

ψ is defined by ψ → ⊥. Such a language is further specified by its constant,

function and relation symbols, together with their arities in the latter two cases.

It is convenient to use different symbols for free a, b, c, a0, a1, a2, . . . and bound

x, y, z, x0, x1, x2, x3, . . . variables.9

Terms are generated from constants and free variables via function symbols.

Bound variables aren’t terms. We use the convention that metavariables s, t, s0, s1, . . .

range over terms.

Formulas are then mostly defined as usual, the exception being the quantifiers.

It is convenient to use notations such as φ(), ψ(), θ(), . . . as metavariables ranging

over finite strings made up of symbols from L and a place-holder symbol ⋆, where

⋆ is assumed not to belong to L. They were called nominal forms by Schütte [23].

The purpose of these nominal forms is to describe substitutions succinctly. If s is

any string of symbols, φ(s) is obtained from φ() by replacing every occurrence

of ⋆ by s.

The formation rule for formulas commencing with a quantifier is the following.

If φ(a) is a formula with free variable a and x is a bound variable that does not

occur in φ(a), then ∀xφ(x) and ∃xφ(x) are formulas.

Note that in a formula, a bound variable x can only occur within the scope of a

quantifier ∀x or ∃x.

We say that the variable a is fully indicated in φ(a) if a does not occur in φ().

A closed formula is one without free variables.

9 Using different symbols for free and bound variables is not absolutely essential but it is extremely useful and
simplifies arguments a great deal. Terms can be freely substituted for both kinds of variables since variables
occurring in them are always free and thus cannot be captured by quantifiers.
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