The Origins of Modern Science

The Origins of Modern Science is the first synthetic account of the history of science from Antiquity through the Scientific Revolution in many decades. Providing readers of all backgrounds and students of all disciplines with the tools to study science like a historian, Ofer Gal covers everything from Pythagorean mathematics to Newton's *Principia*, through Islamic medicine, medieval architecture, global commerce and magic. Richly illustrated throughout, scientific reasoning and practices are introduced in accessible and engaging ways with an emphasis on the complex relationships between institutions, beliefs and political structures and practices. Readers gain valuable new insights into the role played by science both in history and in the world today, placing the crucial challenges to science and technology of our time within their historical and cultural context.

Ofer Gal is Professor of History and Philosophy of Science at the University of Sydney and has been teaching the history of science for over a quarter century. He has won numerous prizes and has published monographs, edited volumes and articles, especially about early modern physical sciences, but also on global knowledge, eighteenth-century chemistry and various philosophical issues.
The Origins of Modern Science
From Antiquity to the Scientific Revolution

Ofer Gal University of Sydney
For Yi
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cathedrals</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>The Cathedral</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ways of Knowing</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Tensions and Compromises</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Conclusion: Reflections on the History of Knowledge</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Discussion Questions</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Suggested Readings</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Greek Thought</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Knowing-About as Know-How</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Plato and the Culture of Theory</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Parmenides' Problem and Its Import</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Aristotle and the Science of Common Sense</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Discussion Questions</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Suggested Readings</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>The Birth of Astronomy</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Looking Up</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Making the Phenomena</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Making Time</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Saving the Phenomena</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>The Moving Earth Hypothesis</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>The Legacy of Greek Astronomy: Ptolemy’s Orbs</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Discussion Questions</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Suggested Readings</td>
<td>100</td>
</tr>
</tbody>
</table>
Contents

4 Medieval Learning
101
- The Decline of Greek Knowledge
101
- The Encyclopedic Tradition
105
- Christianity and Learnedness
110
- The University
119
- Muslim Science
129
- Discussion Questions
137
- Suggested Readings
137

5 The Seeds of Revolution
139
- Monotheism and Pagan Science
139
- The Renaissance
146
- The Movable Press and Its Cultural Impact
153
- Global Knowledge
159
- Global Institutions of Knowledge
167
- Conclusion
172
- Discussion Questions
174
- Suggested Readings
174

6 Magic
176
- Spectator vs. Participant Knowledge
176
- Magical Cosmogonies
182
- Magical Epistemology
189
- Magical Cosmologies
195
- Scientific Magic
197
- Magic and the New Science
203
- Conclusion
211
- Discussion Questions
213
- Suggested Readings
213

7 The Moving Earth
215
- Introduction
215
- The Copernican Revolution
219
- After Copernicus
228
- Kepler and the Physicalization of the Heavens
234
- Galileo and the Telescope
244
- The Galileo Affair: The Church Divorces Science
249
- Conclusion
255
- Discussion Questions
258
- Suggested Readings
258
8 Medicine and the Body
Harvey and the Circulation of the Blood 261
The Learned Tradition 266
The Healing Tradition 279
The New Medicine and the New Body 289
The Rise of Anatomy 297
Conclusion: Tradition, Innovation and the New Body 305
Discussion Questions 306
Suggested Readings 306

9 The New Science 308
Galileo’s Mechanical World 308
Descartes and the Mechanical Philosophy 323
Founding the New Science 328
The Experimental Legacy 338
Conclusion: The Independent Life of the Instrument 345
Discussion Questions 347
Suggested Readings 347

10 Science’s Cathedral 350
The Two Savants 350
The Correspondence: Forging a New Question 355
Setting the Question Right 363
Conclusion: The New Celestial Mechanics 367
Coda: The Principia 371
Discussion Questions 380
Suggested Readings 380

Index 382
Figures

1.1 Chartres Cathedral, southern façade. agefotostock / Alamy Stock Photo.

1.3 Chartres Cathedral, front façade. traumlichtfabrik / Moment / Getty Images.

1.5 Left: the scratch plough (Morgan Library & Museum. MS M.399, fol. 10v. Purchased by J. Pierpont Morgan (1837–1913), 1910). Right: the horse-drawn plough (Wellcome Collection. Attribution 4.0 International (CC BY 4.0)).

1.6 Twelfth-century Gothic arches and vaults, Wells Cathedral. Michael D Beckwith / Pixabay.

1.7 Weight distribution in the Roman arch. Illustration by Cindy Hodoba Eric ©.

1.8 Left: the Colosseum, Rome (putative3 / Pixabay). Right: Pont du Guard, France (Paul Harrison / Pixabay).

1.10 Left: a cinqfoil, Cordoba Mezquita. Right: dome of the cathedral on top of the mosque. Images original to the author.

List of Figures

2.1 Diagram representing the discovery of the “Higgs Boson” at the CERN particle accelerator. Fermi National Accelerator Laboratory, “Updated Combination of CDF and DØ’s Searches for Standard Model Higgs Boson Production with up to 10.0 fb⁻¹ of Data, Preliminary Results” (https://tevnphwg.fnal.gov/results/SM_Higgs_Summer_12/, June 2012). 36

2.3 Pythagorean mathematical regularities. Illustration by Cindy Hodoba Eric ©. 40

2.4 Pythagorean classes of numbers and the relations between them. Illustration by Cindy Hodoba Eric ©. 41

2.5 Proofs of the first Pythagorean theorem (left) and the third (right). Illustrations by Cindy Hodoba Eric ©. 41

2.6 The Rhind Papyrus, c. 1650 BC. DEA PICTURE LIBRARY / De Agostini / Getty Images. 43

3.1 The sky dome, as it would have looked above Jerusalem on August 3, 70 CE. Illustration by Cindy Hodoba Eric ©. 70

3.2 The motion of the Sun and stars across the sky dome (Northern Hemisphere). Illustration by Cindy Hodoba Eric ©. 70

3.3 The Two Spheres model of the cosmos. Illustration by Cindy Hodoba Eric ©. 72

3.4 The celestial motions according to the two spheres model. Illustration by Cindy Hodoba Eric ©. 73

3.5 The Zodiac. Sixth-century mosaic in Beit Alpha, Israel. IAISI / Moment / Getty Images. 77

3.6 Retrograde motion. Image by Tunç Tezel ©. 80

3.8 A seventh-century BCE Babylonian table recording lunar longitudes. Courtesy of The British Museum, Library of Ashurbanipal K.90 (AN851897001) (CC BY-NC-SA 4.0). 82

3.9 The constellations, as they could have been observed from Jerusalem on August 3, 70 CE. Illustration by Cindy Hodoba Eric ©. 84
xii List of Figures

3.11 Illustration of Eudoxus' system of rotating spheres (left) and the way it explains retrograde motion (right). By Cindy Hodoba Eric ©. 88

3.12 The Antikythera Mechanism. José Antonio Peñas / Science Photo Library. 89

3.13 Aristarchus' calculations of the relative sizes of the Moon and the Earth from a copy of his *On the Sizes and Distances* (Greece, c. 10 CE). Abbus Acastra / Alamy Stock Photo. 91

3.15 The Ptolemaic System and its geometrical tools. Illustration by Cindy Hodoba Eric ©. 97

4.1 Raphael's *The school of Athens* fresco, 550 × 770 cm, 1509e1511. Stanza della Segnatura, Apostolic Palace, Vatican City Italy. Leemage / UIG via Getty Images, 102

4.3 A unicorn from a Dutch edition of Pliny's *Natural* (Handelene van de Natuere (Amsterdam, 1644). 12 / Universal Images Group / Getty Images. 107

4.5 Depiction of a scriptorium, in a fifteenth-century manuscript. BN, Paris, France. Leemage / Corbis / Getty Images. 112

4.6 Verge-and-foliot escapement. Illustration by David Penney ©. 116

4.7 A medieval diagram of Hellenistic astronomy. Abbo of Fleury, *Opinion concerning the System of the Spheres* (c. 945/950–1004). By permission of University of Glasgow Library, Special Collections. 117

4.8 Left: a fifteenth-century lectura at the University of Bologna. Leemage / Universal Images Group / Getty Images. Right: a sixteenth-century disputations from the *Statutes Book of the Collegium Sapientiae*. By permission of Albert-Ludwigs-Universität Freiburg. 123
List of Figures

4.9 An illumination from the didactic poem *Der Wälische Gast* (c. 1100–1200), representing the university curriculum’s seven liberal arts. Interfoto / Alamy Stock Photo. 124

4.10 Annotated page of Johannes de Sacrobosco, *De Sphaera Mundi* (Venice, c. 1230 copy). Thomas Fisher Rare Book Library, University of Toronto. 126

4.11 Two heavily annotated multilingual fourteenth-century manuscript leaves. MSS Misc 1832, Fragment of Two Medical Treatises, Stanford University. Courtesy of the Department of Special Collections, Stanford University Libraries. 128

4.12 A modern and fourteenth-century diagram of the Tusi Couple. Left: illustration by Cindy Hodoba Eric ©. Right: FLHC 49 / Alamy Stock Photo. 133

4.13 The observatory in Galata, Constantinople. From an illuminated manuscript (c. 1754). Universal History Archive / Getty Images. 135

5.3 Piero della Francesca’s *Ideal City* (c. 1470). © Arte et Immagini srl / CORBIS / Corbis via Getty Images. 152

5.5 The punch, matrix and mold of the movable press. Theodore de Vinne, *The Invention of Printing* (New York: Francis and Hart, 1876). Reproduced with permission of the Rare Books and Special Collections Library, The University of Sydney. 155

5.7 The table of contents of Petrus Rams, *Dialectica libri duo* (Frankfurt: Andera Wechelius, 1594). Reproduced with permission of the Rare Books and Special Collections Library, The University of Sydney. 158
List of Figures

6.2 The twenty-two letters of the Hebrew Alphabet in Elijah ben Solomon Zalman’s interpretation of Sefer Yetzira (c. 1700–1800). By permission of the National Library of Israel.

6.3 A diagram of the ten Sefirot. Moshe Cordovero, Pardes Rimonim (Orchard of Pomegranates) (1592). By permission of the National Library of Israel.

6.4 A page from a Latin translation of Ghāyat al-Hakīm, Picatrix (c. 900–1000 CE), Biblioteka Jagiellonska, Jagiellonian University in Krakow, Ms. BJ 793, f. 189v.

6.5 The frontispiece of a printed edition of Witelo, Perspectiva (or Opticae libri decem, c. 1270) (Nuremberg: Io Petreius, 1535). By permission of the Max Planck Institute for the History of Science, Berlin.

6.6 The “Philosophical Tree” produced by Lawrence Principe in his laboratory. Lawrence Principe ©.

7.1 Heliostatic diagrams in Copernicus, De Revolutionibus (Nuremberg: Johannes Petreius, 1543). Reproduced with permission of the Rare Books and Special Collections Library, The University of Sydney.

7.2 The Copernican Hypothesis. Illustration by Cindy Hodoba Eric ©.

7.3 From left to right: map of the Island of Ven, with the Uraniborg observatory managed by astronomer Tycho Brahe (Sweden, 1586). De Agostini Picture Library / Getty Images. Tycho Brahe, Astronomiae instauratae mechanica (Tyskland: Wandsbek, 1598). Danish Royal Library LN 432 2°. Tycho Brahe, Observationes planetarum (Denmark, 1596). Danish Royal Library GKS 316 2°, papir, 208 ff.; 34.5 × 20 cm, 136.
List of Figures xv

7.6 Diagrams of Kepler’s two ‘laws’ from his *Astronomia Nova* (1609). Left: illustration by Cindy Hodoba Eric ©. Right: reproduced with permission of the Rare Books and Special Collections Library, The University of Sydney.

7.7 Galileo’s drawings of the Moon, 1609. Left: Wellcome Library no. 46269i. Attribution 4.0 International (CC BY 4.0). Right: Galileo, “Sidereus, nuncius magna longeque admirabilia spectacula pandens, suspiciendaque proponens vniciuque praesertim vero philosophis, atque astronomis” (Venice, 1610), p. 88. Wellcome Collection. Attribution 4.0 International (CC BY 4.0).

7.8 Galileo’s notes documenting his discovery of the moons of Jupiter. University of Michigan Library (Special Collections Research Center).

8.2 Painting commissioned by John Banister of himself delivering *The Visceral Lecture*, London, 1581. By permission of University of Glasgow Library, Special Collections.

8.3 The four temperaments, from an undated and unsigned medieval manuscript. Bettmann / Contributor / Getty Images.

8.5 A drawing of a blackberry from Dioscorides’ *On Medical Material* in the original Greek. ÖNB / Wien, Cod. Med. Gr. 1, fol. 83r.
xvi List of Figures

8.6 Surgical instruments from a manuscript of Abu'l-Qasim al-Zahrawi's (Albucasis') *Al-Tasrif* (c. 1000 CE). Leiden University Libraries, Or. 2540, fols. 93v–94r. 287

8.7 Two diagrams of skeletons from Johann Ludwig Choulant's *History and Bibliography of Anatomic Illustration* (Leipzig: Rudolph Weigel, 1852). Wellcome Library no. 566150i. 299

8.8 Leonardo da Vinci's drawing of the cardiovascular system and principal organs of a woman from c. 1509–10. Royal Collection Trust / © Her Majesty Queen Elizabeth II 2019. 301

8.9 Left: frontispiece of Andreas Vesalius' *De humani corporis fabrica* (c. 1543). Fine Art Images / Heritage Images / Getty Images. Right, Vesalius' *Tabulae Anatomicae* (1538). By permission of University of Glasgow Library, Special Collections. 303

8.10 The anatomical theater in Palazzo Bo of the University of Padua. DeAgostini / Getty Images. 304

9.5 One of Galileo’s attempts to reduce a chain line into a parabola. Biblioteca Galileo Nazionale Centrale, MS72, 43 r. By permission of Biblioteca Galileo Nazionale Centrale, Firenze.

9.7 Descartes’ diagram of a stone swung in a sling, demonstrating his laws of nature. By permission of Max Planck Institute for the History of Science, Berlin.

9.10 Diagram of Hooke’s air pump for Boyle. Wellcome Collection. Attribution 4.0 International (CC BY 4.0).

9.11 Reconstruction of Berti’s vacuum pump experiment from 1640/41 (left) and Torricelli and Viviani’s 1644 vacuum experiments (right). Gaspar Schott, Technica Curiosa (Wurzburg, 1663 and 1664). By permission of Max Planck Institute for the History of Science, Berlin.

10.2 Newton’s calculation of the centrifugal force of the planets (from c. 1666–1669 manuscript). Cambridge University Library, Portsmouth Collection, MS-ADD-03958 fol 87r.

10.3 Newton’s drawing of his “Crucial Experiment.” New College Library, Oxford, MS 361/2, f. 45v ©. Courtesy of the Warden and Scholars of New College, Oxford.

10.4 Page of Galileo’s experimental investigation into the trajectory of a projectile as composed of two independent motions. By permission of Biblioteca Galileo Nazionale Centrale, Firenze.

10.5 Newton’s diagram from his Nov. 28, 1679 letter to Hooke. Courtesy of the Master and Fellows of Trinity College Cambridge.
List of Figures

10.6 Hooke's diagram from his Dec. 9, 1679 reply to Newton's claims in 10.5. By permission of the Beinecke Rare Book and Manuscript Library, Yale. 361

10.7 Newton's diagram from his letter to Hooke of Dec. 13, 1679, challenging Hooke's conclusion from 10.6. © The British Library Board, MS Add. 37021, f.56 124. 365

10.8 A page from Newton's first manuscript version of De Motu Corporum in Gyrum (On the Motion of Orbiting Bodies). Reproduced by kind permission of the Syndics of Cambridge University Library. 369

10.9 Diagram and explanation of Newton's demonstration that Kepler's Law of Areas applies to all bodies orbiting around a center of attraction. Newton, Philosophiae Naturalis Principia Mathematica (London: The Royal Society, 1687). Reproduced by kind permission of the Syndics of Cambridge University Library. 370

Note from the Publisher

This book attempts to introduce to its readers major chapters in the history of science. It tries to present science as a human endeavor – a great achievement, and all the more human for it. In place of the story of progress and its obstacles or a parade of truths revealed, this book stresses the contingent and historical nature of scientific knowledge. Knowledge, science included, is always developed by real people, within communities, answering immediate needs and challenges shaped by place, culture and historical events with resources drawn from their present and past.

Chronologically, this book spans from Pythagorean mathematics to Newton’s *Principia*. The book starts in the High Middle Ages and proceeds to introduce the readers to the historian’s way of inquiry. At the center of this introduction is the Gothic Cathedral – a grand achievement of human knowledge, rooted in a complex cultural context and a powerful metaphor for science. The book alternates thematic chapters with chapters concentrating on an era. Yet it attempts to integrate discussion of all different aspects of the making of knowledge: social and cultural settings, challenges and opportunities; intellectual motivations and worries; epistemological assumptions and technical ideas; instruments and procedures. The cathedral metaphor is evoked intermittently throughout, to tie the many themes discussed to the main lesson: that the complex set of beliefs, practices and institutions we call science is a particular, contingent human phenomenon.

The wide scope and varied audience of this book required sacrificing footnotes for the sake of fluency – not without some professional anxiety – and I provide exact references only for direct quotations. The place of referencing within the text is taken by a list of Suggested Readings at the end of each chapter, and the book’s main resources are in the “Secondary Sources” part of these. For any factual error I bear full responsibility. The “Primary Texts” listed in the Suggested Readings are easily accessible, English translations of sources from the period or theme discussed. For the instructor, they should serve as suggestions for tutorial readings; for the student, they present an exercise in the interpretation of texts remote in place and time. The discussion questions are offered to help the instructor in preparing for tutorials, and the reader may find in them clues to the main insights that the story attempts to convey.
This book is a tribute to the intellectual value of university teaching, and in that, indebted to almost everyone whose classroom I attended over the years – formally or informally, literally or figuratively. This assembly of scholars far too large to reconvene here, so beyond the authors of the works populating the book’s reading lists, I will have to directly thank only those from whose scholarship I have benefited directly, as my immediate teachers or colleagues: Rivka Feldhay, Sabbetay Unguru, J. E. McGuire, Peter Machamer, Bernard Goldstein and the late Marcelo Dascal belong to the former category; Alan Chalmers, John Schuster, Hanan Yoran, Ohad Parnes, Daniela Helbig, Dominic Murphy, Victor Boantza, Snait Gissis and especially Raz Chen-Morris – to the latter. Victor volunteered to serve as a scientific editor at the very last stage of writing, saved me some serious factual embarrassments and forced me to shorten sentences and sharpen arguments.

With some scholars I have not had an opportunity to study in an official setting, but still consider my teachers: Hal Cook, Ben Elman, Dan Garber, Tony Grafton, Simon Schaffer and the late Sam Schweber. For the very idea of a bold yet careful account of science, wide ranging but rich with details, I am the venerating disciple of the people who first taught me such courses: the late Amos Funkenstein and Yehuda Elkana. I am still in awe at their erudition, depth and intellectual courage.

Blessed as I have been with the intellectual support for this book, for which Hagar and Yi provided an essential (if sometimes unwitting) foundation, it would still not have come into being without the professional and dedicated help of the people at Cambridge University Press: Lucy Rhymer, Lisa Pinto, Maggie Jeffers, Sophie Rosinke and Charlie Howell, to whom I am deeply grateful. Many librarians went out of their way to help assemble the book’s images, and among those I owe special thanks to Tom Goodfellow of Sydney University Library and Urte Brauckmann and her team at the Max Planck Institute for the History of Science in Berlin.

But first and foremost, this book is indebted to the graduate students who have served as my tutors throughout the years in Sydney. The weekly meeting with them has always been the most intellectually exciting hour of the week. Alan Salter taught me history of medicine, and Ian Wills the history of
technology. James Ley is my teacher of classical thought and many matters pedagogical, and Kiran Krishna of all things medieval. Jennifer Tomlinson, who helped me tremendously by editing early versions and gathering exciting images, also forced me to find the voice of women – especially that of Jane Sharp. Sahar Tavakoli joined her with instruction about early modern midwives and Megan Baumhammer about the power and mysteries of the visual. To Ian Lawson I owe my understanding of the delicate balance of instruments and their environs and to Claire Kennedy – the fascination with maps. Arin Harman, a visitor from better rooted disciplines, was my master of pedagogical smooth sailing, and Nick Bozic contributed a powerful philosophical mind. Paddy Holt taught me all I know about the Royal Society; to Laura Sumrall I owe whatever insight I have into magic and Cindy Hodoba-Eric retaught me early modern natural philosophy. Cindy also contributed skills, intelligence and passion without which the book would never have been completed: editing for style and content; gathering images and copyrights; designing and drawing complicated diagrams.

It is the joy of working with my tutors that I try to capture in this book, and it is dedicated to them.