

WHAT IS A QUANTUM FIELD THEORY?

Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses.

MICHEL TALAGRAND is the recipient of the Loève Prize (1995), the Fermat Prize (1997), and the Shaw Prize (2019). He was a plenary speaker at the International Congress of Mathematicians and is currently a member of the *Académie des sciences* (Paris). He has written several books in probability theory and well over 200 research papers.

"This book accomplishes the impossible task: It explains to a mathematician, in a language that a mathematician can understand, what is meant by a quantum field theory from a physicist's point of view. The author is completely and brutally honest in his goal to truly explain the physics rather than filtering out only the mathematics, but is at the same time as mathematically lucid as one can be with this topic. It is a great book by a great mathematician."

- Sourav Chatterjee, Stanford University

"Talagrand has done an admirable job of making the difficult subject of quantum field theory as concrete and understandable as possible. The book progresses slowly and carefully but still covers an enormous amount of material, culminating in a detailed treatment of renormalization. Although no one can make the subject truly easy, Talagrand has made every effort to assist the reader on a rewarding journey though the world of quantum fields."

- Brian Hall, University of Notre Dame

"A presentation of the fundamental ideas of quantum field theory in a manner that is both accessible and mathematically accurate seems like an impossible dream. Well, not anymore! This book goes from basic notions to advanced topics with patience and care. It is an absolute delight to anyone looking for a friendly introduction to the beauty of QFT and its mysteries."

- Shahar Mendelson, Australian National University

"I have been motivated to try and learn about quantum field theories for some time but struggled to find a presentation in a language that I as a mathematician could understand. This book was perfect for me: I was able to make progress without any initial preparation and felt very comfortable and reassured by the style of exposition."

- Ellen Powell, Durham University

"In addition to its success as a physical theory, quantum field theory has been a continuous source of inspiration for mathematics. However, mathematicians trying to understand quantum field theory must contend with the fact that some of the most important computations in the theory have no rigorous justification. This has been a considerable obstacle to communication between mathematicians and physicists. It is why, despite many fruitful interactions, only very few people would claim to be well versed in both disciplines at the highest level.

There have been many attempts to bridge this gap, each emphasizing different aspects of quantum field theory. Treatments aimed at a mathematical audience often deploy sophisticated mathematics. Michel Talagrand takes a decidedly elementary approach to answering the question in the title of his book, assuming little more than basic analysis. In addition to learning what quantum field theory is, the reader will encounter in this book beautiful mathematics that is hard to find anywhere else in such clear pedagogical form, notably the discussion of representations of the Poincaré group and the BPHZ Theorem. The book is especially timely given the recent resurgence of ideas from quantum field theory in probability and partial differential equations. It is sure to remain a reference for many decades."

- Philippe Sosoe, Cornell University

WHAT IS A QUANTUM FIELD THEORY?

A First Introduction for Mathematicians

MICHEL TALAGRAND

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781316510278
DOI: 10.1017/9781108225144

© Michel Talagrand 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Names: Talagrand, Michel, 1952– author.
Title: What is a quantum field theory?: a first introduction for mathematicians / Michel Talagrand.

Description: First edition. | New York : Cambridge University Press, 2021. |
Includes bibliographical references and index.

Identifiers: LCCN 2021020786 (print) | LCCN 2021020787 (ebook) | ISBN 9781316510278 (hardback) | ISBN 9781108225144 (epub)

Subjects: LCSH: Quantum field theory. | BISAC: SCIENCE / Physics / Mathematical & Computational

Classification: LCC QC174.45 .T35 2021 (print) | LCC QC174.45 (ebook) | DDC 530.14/3-dc23

LC record available at https://lccn.loc.gov/2021020786 LC ebook record available at https://lccn.loc.gov/2021020787

ISBN 978-1-316-51027-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

If all mathematics were to disappear, physics would be set back exactly one week.

Richard Feynman

Physics should be made as simple as possible, but not simpler.

Albert Einstein

The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction.

Sydney Coleman

Contents

intro	introduction		
Part	t I Ba	asics	7
1	Prelim	ninaries	9
	1.1	Dimension	9
	1.2	Notation	10
	1.3	Distributions	12
	1.4	The Delta Function	14
	1.5	The Fourier Transform	17
2	Basics	s of Non-relativistic Quantum Mechanics	21
	2.1	Basic Setting	22
	2.2	Measuring Two Different Observables on the Same System	27
	2.3	Uncertainty	28
	2.4	Finite versus Continuous Models	30
	2.5	Position State Space for a Particle	31
	2.6	Unitary Operators	38
	2.7	Momentum State Space for a Particle	39
	2.8	Dirac's Formalism	40
	2.9	Why Are Unitary Transformations Ubiquitous?	46
	2.10	Unitary Representations of Groups	47
	2.11	Projective versus True Unitary Representations	49
	2.12	Mathematicians Look at Projective Representations	50
	2.13	Projective Representations of \mathbb{R}	51
	2.14	One-parameter Unitary Groups and Stone's Theorem	52
	2.15	Time-evolution	59

vii

viii

Cambridge University Press 978-1-316-51027-8 — What Is a Quantum Field Theory? Michel Talagrand Frontmatter More Information

	2.16	Schrödinger and Heisenberg Pictures	62
	2.17	A First Contact with Creation and Annihilation Operators	64
	2.18	The Harmonic Oscillator	66
3	Non-	relativistic Quantum Fields	73
	3.1	Tensor Products	73
	3.2	Symmetric Tensors	76
	3.3	Creation and Annihilation Operators	78
	3.4	Boson Fock Space	82
	3.5	Unitary Evolution in the Boson Fock Space	84
	3.6	Boson Fock Space and Collections of Harmonic Oscillators	86
	3.7	Explicit Formulas: Position Space	88
	3.8	Explicit Formulas: Momentum Space	92
	3.9	Universe in a Box	93
	3.10	Quantum Fields: Quantizing Spaces of Functions	94
4	The Lorentz Group and the Poincaré Group		
	4.1	Notation and Basics	102
	4.2	Rotations	107
	4.3	Pure Boosts	108
	4.4	The Mass Shell and Its Invariant Measure	111
	4.5	More about Unitary Representations	115
	4.6	Group Actions and Representations	118
	4.7	Quantum Mechanics, Special Relativity and the	
		Poincaré Group	120
	4.8	A Fundamental Representation of the Poincaré Group	122
	4.9	Particles and Representations	125
	4.10	The States $ p\rangle$ and $ p\rangle$	128
	4.11	The Physicists' Way	129
5	The N	Massive Scalar Free Field	132
	5.1	Intrinsic Definition	132
	5.2	Explicit Formulas	140
	5.3	Time-evolution	142
	5.4	Lorentz Invariant Formulas	143
6	Quantization		145
	6.1	The Klein-Gordon Equation	146
	6.2	Naive Quantization of the Klein-Gordon Field	147
	6.3	Road Map	150
	6.4	Lagrangian Mechanics	151
	6.5	From Lagrangian Mechanics to Hamiltonian Mechanics	156

Contents

		Contents	ix
	6.6 6.7 6.8 6.9 6.10 6.11	Canonical Quantization and Quadratic Potentials Quantization through the Hamiltonian Ultraviolet Divergences Quantization through Equal-time Commutation Relations Caveat Hamiltonian	161 163 164 165 172
7	The C 7.1 7.2	Casimir Effect Vacuum Energy Regularization	176 176 177
Pai	tII S	pin	181
8	Repres 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	esentations of the Orthogonal and the Lorentz Group The Groups $SU(2)$ and $SL(2,\mathbb{C})$ A Fundamental Family of Representations of $SU(2)$ Tensor Products of Representations $SL(2,\mathbb{C})$ as a Universal Cover of the Lorentz Group An Intrinsically Projective Representation Deprojectivization A Brief Introduction to Spin Spin as an Observable Parity and the Double Cover $SL^+(2,\mathbb{C})$ of $O^+(1,3)$ The Parity Operator and the Dirac Matrices	183 183 187 190 192 195 199 200 201 204
9	9.1 9.2 9.3 9.4 9.5	The Physicists' Way The Group \mathcal{P}^* Road Map 9.3.1 How to Construct Representations? 9.3.2 Surviving the Formulas 9.3.3 Classifying the Representations 9.3.4 Massive Particles 9.3.5 Massless Particles 9.3.6 Massless Particles and Parity Elementary Construction of Induced Representations Variegated Formulas	208 209 211 212 213 214 214 214 215 215 217
	9.6	Fundamental Representations 9.6.1 Massive Particles 9.6.2 Massless Particles	223 223 223
	9.7	Particles, Spin, Representations	228

Λ		Comenis	
	9.8	Abstract Presentation of Induced Representations	232
	9.9	Particles and Parity	235
	9.10	Dirac Equation	236
	9.11	History of the Dirac Equation	238
	9.12	Parity and Massless Particles	240
	9.13	Photons	245
10	Basic	Free Fields	250
	10.1	Charged Particles and Anti-particles	251
	10.2	Lorentz Covariant Families of Fields	253
	10.3	Road Map I	255
	10.4	Form of the Annihilation Part of the Fields	256
	10.5	Explicit Formulas	260
	10.6	Creation Part of the Fields	262
	10.7	Microcausality	264
	10.8	Road Map II	267
	10.9	1	268
	10.10	A Very Simple Case $(N = 4)$	268
		The Massive Vector Field $(N = 4)$	269
	10.12	The Classical Massive Vector Field	271
		Massive Weyl Spinors, First Attempt $(N = 2)$	273
		Fermion Fock Space	275
		Massive Weyl Spinors, Second Attempt	279
		Equation of Motion for the Massive Weyl Spinor	281
		Massless Weyl Spinors	283
		Parity	284
		Dirac Field	285
		Dirac Field and Classical Mechanics	288
		Majorana Field	293
	10.22	Lack of a Suitable Field for Photons	293
Part III Interactions		297	
11	Pertur	bation Theory	299
	11.1	Time-independent Perturbation Theory	299
	11.2	Time-dependent Perturbation Theory and the Interaction	
		Picture	303

11.3

11.4

11.5

Transition Rates

A Side Story: Oscillating Interactions

Interaction of a Particle with a Field: A Toy Model

307

310

312

		Contents	Xi
12		ring, the Scattering Matrix and Cross-Sections	322
	12.1 12.2	Heuristics in a Simple Case of Classical Mechanics	323 324
	12.2	Non-relativistic Quantum Scattering by a Potential The Scattering Matrix in Non-relativistic Quantum Scattering	330
	12.3	The Scattering Matrix and Cross-Sections, I	333
	12.4	Scattering Matrix in Quantum Field Theory	343
	12.5	Scattering Matrix and Cross-Sections, II	345
13	The S	cattering Matrix in Perturbation Theory	351
	13.1	The Scattering Matrix and the Dyson Series	351
	13.2	Prologue: The Born Approximation in Scattering	
		by a Potential	353
	13.3	Interaction Terms in Hamiltonians	354
	13.4	Prickliness of the Interaction Picture	355
	13.5	Admissible Hamiltonian Densities	357
	13.6	Simple Models for Interacting Particles	359
	13.7	A Computation at the First Order	361
	13.8	Wick's Theorem	365
	13.9	Interlude: Summing the Dyson Series	367
	13.10	The Feynman Propagator	369
	13.11	Redefining the Incoming and Outgoing States	373
	13.12	A Computation at Order Two with Trees	373
	13.13	Feynman Diagrams and Symmetry Factors	379
	13.14	The ϕ^4 Model	384
	13.15	A Closer Look at Symmetry Factors	387
	13.16	A Computation at Order Two with One Loop	389
	13.17	One Loop: A Simple Case of Renormalization	392
		Wick Rotation and Feynman Parameters	395
	13.19	Explicit Formulas	401
	13.20	Counter-terms, I	403
	13.21	Two Loops: Toward the Central Issues	404
		Analysis of Diagrams	406
		Cancellation of Infinities	409
	13.24	Counter-terms, II	414
14	Interacting Quantum Fields		420
	14.1	Interacting Quantum Fields and Particles	421
	14.2	Road Map I	422
	14.3	The Gell-Mann—Low Formula and Theorem	423
	14.4	Adiabatic Switching of the Interaction	430
	14.5	Diagrammatic Interpretation of the Gell-Mann–Low Theorem	436

> xii Contents 14.6 Road Map II 440 14.7 Green Functions and S-matrix 441 14.8 The Dressed Propagator in the Källén–Lehmann Representation 447 14.9 Diagrammatic Computation of the Dressed Propagator 453 14.10 Mass Renormalization 457 14.11 Difficult Reconciliation 460 14.12 Field Renormalization 462 467 14.13 Putting It All Together 14.14 Conclusions 469 Part IV Renormalization 471 15 Prologue: Power Counting 473 15.1 What Is Power Counting? 473 15.2 Weinberg's Power Counting Theorem 480 15.3 The Fundamental Space $\ker \mathcal{L}$ 483 15.4 Power Counting in Feynman Diagrams 484 15.5 Proof of Theorem 15.3.1 489 15.6 A Side Story: Loops 490 Parameterization of Diagram Integrals 15.7 492 15.8 Parameterization of Diagram Integrals by Loops 494 The Bogoliubov–Parasiuk–Hepp–Zimmermann Scheme 496 16.1 Overall Approach 497 16.2 Simple Examples 498 16.3 Canonical Flow and the Taylor Operation 500 16.4 Subdiagrams 503 16.5 **Forests** 504 16.6 Renormalizing the Integrand: The Forest Formula 506 16.7 Diagrams That Need Not Be 1-PI 510 16.8 Interpretation 510 16.9 Specificity of the Parameterization 512 17 Counter-terms 514 17.1 What Is the Counter-term Method? 515 17.2 A Very Simple Case: Coupling Constant Renormalization 516 Mass and Field Renormalization: Diagrammatics 17.3 518 17.4 The BPHZ Renormalization Prescription 524 17.5 Cancelling Divergences with Counter-terms 525 17.6 Determining the Counter-terms from BPHZ 527

> > From BPHZ to the Counter-term Method

17.7

531

		Contents	xii
	17.8	What Happened to Subdiagrams?	535
	17.9	Field Renormalization, II	538
18	Conti	olling Singularities	542
	18.1	Basic Principle	542
	18.2	Zimmermann's Theorem	546
	18.3	1	556
	18.4	A Side Story: Feynman Diagrams and Wick Rotations	560
19	Proof	of Convergence of the BPHZ Scheme	563
	19.1	Proof of Theorem 16.1.1	563
	19.2	Simple Facts	565
	19.3	Grouping the Terms	567
	19.4	Bringing Forward Cancellation	575
	19.5	Regular Rational Functions	578
	19.6	Controlling the Degree	583
Par	tV C	omplements	591
Apı	oendix	A Complements on Representations	593
11	A.1	Projective Unitary Representations of \mathbb{R}	593
	A.2	Continuous Projective Unitary Representations	596
	A.3	Projective Finite-dimensional Representations	598
	A.4	Induced Representations for Finite Groups	600
	A.5	Representations of Finite Semidirect Products	604
	A.6	Representations of Compact Groups	608
App	pendix	B End of Proof of Stone's Theorem	612
App	pendix	C Canonical Commutation Relations	616
	C.1	First Manipulations	616
	C.2	Coherent States for the Harmonic Oscillator	618
	C.3	The Stone–von Neumann Theorem	621
	C.4	Non-equivalent Unitary Representations	627
	C.5	Orthogonal Ground States!	632
App	pendix	D A Crash Course on Lie Algebras	635
	D.1	Basic Properties and so(3)	635
	D.2	Group Representations and Lie Algebra Representations	639
	D.3	Angular Momentum	641
	D.4	su(2) = so(3)!	642

xiv

D.5

Cambridge University Press 978-1-316-51027-8 — What Is a Quantum Field Theory? Michel Talagrand Frontmatter More Information

> 644 Homomorphisms D.6 Irreducible Representations of SU(2)646 D.7 Decomposition of Unitary Representations of SU(2) into Irreducibles 650 D.8 **Spherical Harmonics** $so(1,3) = sl_{\mathbb{C}}(2)!$ D.9 D.10 Irreducible Representations of $SL(2,\mathbb{C})$ D.11 OFT Is Not for the Meek D.12 Some Tensor Representations of $SO^{\uparrow}(1,3)$ Appendix E Special Relativity E.1 Energy-Momentum E.2 Electromagnetism Appendix F Does a Position Operator Exist? Appendix G More on the Representations of the Poincaré Group G.1A Fun Formula

Contents

From Lie Algebra Homomorphisms to Lie Group

Contents	XV
M.3 Easy Steps	711
M.4 Wightman Functions	714
Appendix N Feynman Propagator and Klein-Gordon Equation	721
N.1 Contour Integrals	721
N.2 Fundamental Solutions of Differential Equations	723
Appendix O Yukawa Potential	726
Appendix P Principal Values and Delta Functions	729
Solutions to Selected Exercises	731
Reading Suggestions	
References	
Index	738

