WHAT IS A QUANTUM FIELD THEORY?

Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses.

MICHEL TALAGRAND is the recipient of the Loève Prize (1995), the Fermat Prize (1997), and the Shaw Prize (2019). He was a plenary speaker at the International Congress of Mathematicians and is currently a member of the Académie des sciences (Paris). He has written several books in probability theory and well over 200 research papers.
“This book accomplishes the impossible task: It explains to a mathematician, in a language that a mathematician can understand, what is meant by a quantum field theory from a physicist’s point of view. The author is completely and brutally honest in his goal to truly explain the physics rather than filtering out only the mathematics, but is at the same time as mathematically lucid as one can be with this topic. It is a great book by a great mathematician.”

- Sourav Chatterjee, Stanford University

“Talagrand has done an admirable job of making the difficult subject of quantum field theory as concrete and understandable as possible. The book progresses slowly and carefully but still covers an enormous amount of material, culminating in a detailed treatment of renormalization. Although no one can make the subject truly easy, Talagrand has made every effort to assist the reader on a rewarding journey though the world of quantum fields.”

- Brian Hall, University of Notre Dame

“A presentation of the fundamental ideas of quantum field theory in a manner that is both accessible and mathematically accurate seems like an impossible dream. Well, not anymore! This book goes from basic notions to advanced topics with patience and care. It is an absolute delight to anyone looking for a friendly introduction to the beauty of QFT and its mysteries.”

- Shahar Mendelson, Australian National University

“I have been motivated to try and learn about quantum field theories for some time but struggled to find a presentation in a language that I as a mathematician could understand. This book was perfect for me: I was able to make progress without any initial preparation and felt very comfortable and reassured by the style of exposition.”

- Ellen Powell, Durham University

“In addition to its success as a physical theory, quantum field theory has been a continuous source of inspiration for mathematics. However, mathematicians trying to understand quantum field theory must contend with the fact that some of the most important computations in the theory have no rigorous justification. This has been a considerable obstacle to communication between mathematicians and physicists. It is why, despite many fruitful interactions, only very few people would claim to be well versed in both disciplines at the highest level.

There have been many attempts to bridge this gap, each emphasizing different aspects of quantum field theory. Treatments aimed at a mathematical audience often deploy sophisticated mathematics. Michel Talagrand takes a decidedly elementary approach to answering the question in the title of his book, assuming little more than basic analysis. In addition to learning what quantum field theory is, the reader will encounter in this book beautiful mathematics that is hard to find anywhere else in such clear pedagogical form, notably the discussion of representations of the Poincaré group and the BPHZ Theorem. The book is especially timely given the recent resurgence of ideas from quantum field theory in probability and partial differential equations. It is sure to remain a reference for many decades.”

- Philippe Sosoe, Cornell University
WHAT IS A QUANTUM FIELD THEORY?

A First Introduction for Mathematicians

MICHEL TALAGRAND
If all mathematics were to disappear, physics would be set back exactly one week.
Richard Feynman

Physics should be made as simple as possible, but not simpler.
Albert Einstein

The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.
Sydney Coleman
Contents

Introduction
Part I Basics
1 Preliminaries
 1.1 Dimension
 1.2 Notation
 1.3 Distributions
 1.4 The Delta Function
 1.5 The Fourier Transform
2 Basics of Non-relativistic Quantum Mechanics
 2.1 Basic Setting
 2.2 Measuring Two Different Observables on the Same System
 2.3 Uncertainty
 2.4 Finite versus Continuous Models
 2.5 Position State Space for a Particle
 2.6 Unitary Operators
 2.7 Momentum State Space for a Particle
 2.8 Dirac’s Formalism
 2.9 Why Are Unitary Transformations Ubiquitous?
 2.10 Unitary Representations of Groups
 2.11 Projective versus True Unitary Representations
 2.12 Mathematicians Look at Projective Representations
 2.13 Projective Representations of \mathbb{R}
 2.14 One-parameter Unitary Groups and Stone’s Theorem
 2.15 Time-evolution

page 1

7
Contents

2.16 Schrödinger and Heisenberg Pictures
2.17 A First Contact with Creation and Annihilation Operators
2.18 The Harmonic Oscillator

3 Non-relativistic Quantum Fields
3.1 Tensor Products
3.2 Symmetric Tensors
3.3 Creation and Annihilation Operators
3.4 Boson Fock Space
3.5 Unitary Evolution in the Boson Fock Space
3.6 Boson Fock Space and Collections of Harmonic Oscillators
3.7 Explicit Formulas: Position Space
3.8 Explicit Formulas: Momentum Space
3.9 Universe in a Box
3.10 Quantum Fields: Quantizing Spaces of Functions

4 The Lorentz Group and the Poincaré Group
4.1 Notation and Basics
4.2 Rotations
4.3 Pure Boosts
4.4 The Mass Shell and Its Invariant Measure
4.5 More about Unitary Representations
4.6 Group Actions and Representations
4.7 Quantum Mechanics, Special Relativity and the Poincaré Group
4.8 A Fundamental Representation of the Poincaré Group
4.9 Particles and Representations
4.10 The States $|p\rangle$ and $\langle p|$
4.11 The Physicists’ Way

5 The Massive Scalar Free Field
5.1 Intrinsic Definition
5.2 Explicit Formulas
5.3 Time-evolution
5.4 Lorentz Invariant Formulas

6 Quantization
6.1 The Klein-Gordon Equation
6.2 Naive Quantization of the Klein-Gordon Field
6.3 Road Map
6.4 Lagrangian Mechanics
6.5 From Lagrangian Mechanics to Hamiltonian Mechanics

Contents ix

6.6 Canonical Quantization and Quadratic Potentials 161
6.7 Quantization through the Hamiltonian 163
6.8 Ultraviolet Divergences 164
6.9 Quantization through Equal-time Commutation Relations 165
6.10 Caveat 172
6.11 Hamiltonian 173

7 The Casimir Effect 176
7.1 Vacuum Energy 176
7.2 Regularization 177

Part II Spin 181

8 Representations of the Orthogonal and the Lorentz Group 183
8.1 The Groups $SU(2)$ and $SL(2, \mathbb{C})$ 183
8.2 A Fundamental Family of Representations of $SU(2)$ 187
8.3 Tensor Products of Representations 190
8.4 $SL(2, \mathbb{C})$ as a Universal Cover of the Lorentz Group 192
8.5 An Intrinsically Projective Representation 195
8.6 Deprojectivization 199
8.7 A Brief Introduction to Spin 199
8.8 Spin as an Observable 200
8.9 Parity and the Double Cover $SL^+(2, \mathbb{C})$ of $O^+(1, 3)$ 201
8.10 The Parity Operator and the Dirac Matrices 204

9 Representations of the Poincaré Group 208
9.1 The Physicists’ Way 209
9.2 The Group \mathcal{P}^* 211
9.3 Road Map 212
9.3.1 How to Construct Representations? 213
9.3.2 Surviving the Formulas 213
9.3.3 Classifying the Representations 214
9.3.4 Massive Particles 214
9.3.5 Massless Particles 214
9.3.6 Massless Particles and Parity 215
9.4 Elementary Construction of Induced Representations 215
9.5 Variegated Formulas 217
9.6 Fundamental Representations 223
9.6.1 Massive Particles 223
9.6.2 Massless Particles 223
9.7 Particles, Spin, Representations 228
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.8</td>
<td>Abstract Presentation of Induced Representations</td>
<td>232</td>
</tr>
<tr>
<td>9.9</td>
<td>Particles and Parity</td>
<td>235</td>
</tr>
<tr>
<td>9.10</td>
<td>Dirac Equation</td>
<td>236</td>
</tr>
<tr>
<td>9.11</td>
<td>History of the Dirac Equation</td>
<td>238</td>
</tr>
<tr>
<td>9.12</td>
<td>Parity and Massless Particles</td>
<td>240</td>
</tr>
<tr>
<td>9.13</td>
<td>Photons</td>
<td>245</td>
</tr>
<tr>
<td>10</td>
<td>Basic Free Fields</td>
<td>250</td>
</tr>
<tr>
<td>10.1</td>
<td>Charged Particles and Anti-particles</td>
<td>251</td>
</tr>
<tr>
<td>10.2</td>
<td>Lorentz Covariant Families of Fields</td>
<td>253</td>
</tr>
<tr>
<td>10.3</td>
<td>Road Map I</td>
<td>255</td>
</tr>
<tr>
<td>10.4</td>
<td>Form of the Annihilation Part of the Fields</td>
<td>256</td>
</tr>
<tr>
<td>10.5</td>
<td>Explicit Formulas</td>
<td>260</td>
</tr>
<tr>
<td>10.6</td>
<td>Creation Part of the Fields</td>
<td>262</td>
</tr>
<tr>
<td>10.7</td>
<td>Microcausality</td>
<td>264</td>
</tr>
<tr>
<td>10.8</td>
<td>Road Map II</td>
<td>267</td>
</tr>
<tr>
<td>10.9</td>
<td>The Simplest Case ($N = 1$)</td>
<td>268</td>
</tr>
<tr>
<td>10.10</td>
<td>A Very Simple Case ($N = 4$)</td>
<td>268</td>
</tr>
<tr>
<td>10.11</td>
<td>The Massive Vector Field ($N = 4$)</td>
<td>269</td>
</tr>
<tr>
<td>10.12</td>
<td>The Classical Massive Vector Field</td>
<td>271</td>
</tr>
<tr>
<td>10.13</td>
<td>Massive Weyl Spinors, First Attempt ($N = 2$)</td>
<td>273</td>
</tr>
<tr>
<td>10.14</td>
<td>Fermion Fock Space</td>
<td>275</td>
</tr>
<tr>
<td>10.15</td>
<td>Massive Weyl Spinors, Second Attempt</td>
<td>279</td>
</tr>
<tr>
<td>10.16</td>
<td>Equation of Motion for the Massive Weyl Spinor</td>
<td>281</td>
</tr>
<tr>
<td>10.17</td>
<td>Massless Weyl Spinors</td>
<td>283</td>
</tr>
<tr>
<td>10.18</td>
<td>Parity</td>
<td>284</td>
</tr>
<tr>
<td>10.19</td>
<td>Dirac Field</td>
<td>285</td>
</tr>
<tr>
<td>10.20</td>
<td>Dirac Field and Classical Mechanics</td>
<td>288</td>
</tr>
<tr>
<td>10.21</td>
<td>Majorana Field</td>
<td>293</td>
</tr>
<tr>
<td>10.22</td>
<td>Lack of a Suitable Field for Photons</td>
<td>293</td>
</tr>
<tr>
<td>Part III Interactions</td>
<td></td>
<td>297</td>
</tr>
<tr>
<td>11</td>
<td>Perturbation Theory</td>
<td>299</td>
</tr>
<tr>
<td>11.1</td>
<td>Time-independent Perturbation Theory</td>
<td>299</td>
</tr>
<tr>
<td>11.2</td>
<td>Time-dependent Perturbation Theory and the Interaction Picture</td>
<td>303</td>
</tr>
<tr>
<td>11.3</td>
<td>Transition Rates</td>
<td>307</td>
</tr>
<tr>
<td>11.4</td>
<td>A Side Story: Oscillating Interactions</td>
<td>310</td>
</tr>
<tr>
<td>11.5</td>
<td>Interaction of a Particle with a Field: A Toy Model</td>
<td>312</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Scattering, the Scattering Matrix and Cross-Sections 322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1 Heuristics in a Simple Case of Classical Mechanics 323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2 Non-relativistic Quantum Scattering by a Potential 324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.3 The Scattering Matrix in Non-relativistic Quantum Scattering 330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.4 The Scattering Matrix and Cross-Sections, I 333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 Scattering Matrix in Quantum Field Theory 343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.6 Scattering Matrix and Cross-Sections, II 345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 The Scattering Matrix in Perturbation Theory 351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1 The Scattering Matrix and the Dyson Series 351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2 Prologue: The Born Approximation in Scattering by a Potential 353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3 Interaction Terms in Hamiltonians 354</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.4 Prickliness of the Interaction Picture 355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5 Admissible Hamiltonian Densities 357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.6 Simple Models for Interacting Particles 359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.7 A Computation at the First Order 361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.8 Wick’s Theorem 365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.9 Interlude: Summing the Dyson Series 367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.10 The Feynman Propagator 369</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.11 Redefining the Incoming and Outgoing States 373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.12 A Computation at Order Two with Trees 373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.13 Feynman Diagrams and Symmetry Factors 379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.14 The ϕ^4 Model 384</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.15 A Closer Look at Symmetry Factors 387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.16 A Computation at Order Two with One Loop 389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.17 One Loop: A Simple Case of Renormalization 392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.18 Wick Rotation and Feynman Parameters 395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.19 Explicit Formulas 401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.20 Counter-terms, I 403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.21 Two Loops: Toward the Central Issues 404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.22 Analysis of Diagrams 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.23 Cancellation of Infinities 409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.24 Counter-terms, II 414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Interacting Quantum Fields 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1 Interacting Quantum Fields and Particles 421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.2 Road Map I 422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3 The Gell-Mann–Low Formula and Theorem 423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4 Adiabatic Switching of the Interaction 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5 Diagrammatic Interpretation of the Gell-Mann–Low Theorem 436</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

14.6 Road Map II 440
14.7 Green Functions and S-matrix 441
14.8 The Dressed Propagator in the Källén–Lehmann Representation 447
14.9 Diagrammatic Computation of the Dressed Propagator 453
14.10 Mass Renormalization 457
14.11 Difficult Reconciliation 460
14.12 Field Renormalization 462
14.13 Putting It All Together 467
14.14 Conclusions 469

Part IV Renormalization 471

15 Prologue: Power Counting 473
15.1 What Is Power Counting? 473
15.2 Weinberg’s Power Counting Theorem 480
15.3 The Fundamental Space ker L 483
15.4 Power Counting in Feynman Diagrams 484
15.5 Proof of Theorem 15.3.1 489
15.6 A Side Story: Loops 490
15.7 Parameterization of Diagram Integrals 492
15.8 Parameterization of Diagram Integrals by Loops 494

16 The Bogoliubov–Parasiuk–Hepp–Zimmermann Scheme 496
16.1 Overall Approach 497
16.2 Simple Examples 498
16.3 Canonical Flow and the Taylor Operation 500
16.4 Subdiagrams 503
16.5 Forests 504
16.6 Renormalizing the Integrand: The Forest Formula 506
16.7 Diagrams That Need Not Be 1-PI 510
16.8 Interpretation 510
16.9 Specificity of the Parameterization 512

17 Counter-terms 514
17.1 What Is the Counter-term Method? 515
17.2 A Very Simple Case: Coupling Constant Renormalization 516
17.3 Mass and Field Renormalization: Diagrammatics 518
17.4 The BPHZ Renormalization Prescription 524
17.5 Cancelling Divergences with Counter-terms 525
17.6 Determining the Counter-terms from BPHZ 527
17.7 From BPHZ to the Counter-term Method 531
Contents

17.8 What Happened to Subdiagrams? 535
17.9 Field Renormalization, II 538

18 Controlling Singularities 542
18.1 Basic Principle 542
18.2 Zimmermann’s Theorem 546
18.3 Proof of Proposition 18.2.12 556
18.4 A Side Story: Feynman Diagrams and Wick Rotations 560

19 Proof of Convergence of the BPHZ Scheme 563
19.1 Proof of Theorem 16.1.1563
19.2 Simple Facts 565
19.3 Grouping the Terms 567
19.4 Bringing Forward Cancellation 575
19.5 Regular Rational Functions 578
19.6 Controlling the Degree 583

Part V Complements 591

Appendix A Complements on Representations 593
A.1 Projective Unitary Representations of \(\mathbb{R} \) 593
A.2 Continuous Projective Unitary Representations 596
A.3 Projective Finite-dimensional Representations 598
A.4 Induced Representations for Finite Groups 600
A.5 Representations of Finite Semidirect Products 604
A.6 Representations of Compact Groups 608

Appendix B End of Proof of Stone’s Theorem 612

Appendix C Canonical Commutation Relations 616
C.1 First Manipulations 616
C.2 Coherent States for the Harmonic Oscillator 618
C.3 The Stone–von Neumann Theorem 621
C.4 Non-equivalent Unitary Representations 627
C.5 Orthogonal Ground States! 632

Appendix D A Crash Course on Lie Algebras 635
D.1 Basic Properties and \(\mathfrak{so}(3) \) 635
D.2 Group Representations and Lie Algebra Representations 639
D.3 Angular Momentum 641
D.4 \(\mathfrak{su}(2) = \mathfrak{so}(3)! \) 642
Contents

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.5</td>
<td>From Lie Algebra Homomorphisms to Lie Group Homomorphisms</td>
<td>644</td>
</tr>
<tr>
<td>D.6</td>
<td>Irreducible Representations of $SU(2)$</td>
<td>646</td>
</tr>
<tr>
<td>D.7</td>
<td>Decomposition of Unitary Representations of $SU(2)$ into Irreducibles</td>
<td>650</td>
</tr>
<tr>
<td>D.8</td>
<td>Spherical Harmonics</td>
<td>652</td>
</tr>
<tr>
<td>D.9</td>
<td>$so(1, 3) = sl_C(2)!$</td>
<td>654</td>
</tr>
<tr>
<td>D.10</td>
<td>Irreducible Representations of $SL(2, C)$</td>
<td>656</td>
</tr>
<tr>
<td>D.11</td>
<td>QFT Is Not for the Meek</td>
<td>658</td>
</tr>
<tr>
<td>D.12</td>
<td>Some Tensor Representations of $SO^+(1, 3)$</td>
<td>660</td>
</tr>
<tr>
<td>E</td>
<td>Special Relativity</td>
<td>664</td>
</tr>
<tr>
<td>E.1</td>
<td>Energy–Momentum</td>
<td>664</td>
</tr>
<tr>
<td>E.2</td>
<td>Electromagnetism</td>
<td>666</td>
</tr>
<tr>
<td>F</td>
<td>Does a Position Operator Exist?</td>
<td>668</td>
</tr>
<tr>
<td>G</td>
<td>More on the Representations of the Poincaré Group</td>
<td>671</td>
</tr>
<tr>
<td>G.1</td>
<td>A Fun Formula</td>
<td>671</td>
</tr>
<tr>
<td>G.2</td>
<td>Higher Spin: Bargmann–Wigner and Rarita–Schwinger</td>
<td>672</td>
</tr>
<tr>
<td>H</td>
<td>Hamiltonian Formalism for Classical Fields</td>
<td>677</td>
</tr>
<tr>
<td>H.1</td>
<td>Hamiltonian for the Massive Vector Field</td>
<td>677</td>
</tr>
<tr>
<td>H.2</td>
<td>From Hamiltonians to Lagrangians</td>
<td>678</td>
</tr>
<tr>
<td>H.3</td>
<td>Functional Derivatives</td>
<td>679</td>
</tr>
<tr>
<td>H.4</td>
<td>Two Examples</td>
<td>681</td>
</tr>
<tr>
<td>H.5</td>
<td>Poisson Brackets</td>
<td>682</td>
</tr>
<tr>
<td>I</td>
<td>Quantization of the Electromagnetic Field through the Gupta–Bleuler Approach</td>
<td>685</td>
</tr>
<tr>
<td>J</td>
<td>Lippmann–Schwinger Equations and Scattering States</td>
<td>692</td>
</tr>
<tr>
<td>K</td>
<td>Functions on Surfaces and Distributions</td>
<td>697</td>
</tr>
<tr>
<td>L</td>
<td>What Is a Tempered Distribution Really?</td>
<td>698</td>
</tr>
<tr>
<td>L.1</td>
<td>Test Functions</td>
<td>698</td>
</tr>
<tr>
<td>L.2</td>
<td>Tempered Distributions</td>
<td>699</td>
</tr>
<tr>
<td>L.3</td>
<td>Adding and Removing Variables</td>
<td>701</td>
</tr>
<tr>
<td>L.4</td>
<td>Fourier Transforms of Distributions</td>
<td>703</td>
</tr>
<tr>
<td>M</td>
<td>Wightman Axioms and Haag’s Theorem</td>
<td>704</td>
</tr>
<tr>
<td>M.1</td>
<td>The Wightman Axioms</td>
<td>704</td>
</tr>
<tr>
<td>M.2</td>
<td>Statement of Haag’s Theorem</td>
<td>710</td>
</tr>
</tbody>
</table>
Contents

M.3 Easy Steps 711
M.4 Wightman Functions 714
Appendix N Feynman Propagator and Klein-Gordon Equation 721
 N.1 Contour Integrals 721
 N.2 Fundamental Solutions of Differential Equations 723
Appendix O Yukawa Potential 726
Appendix P Principal Values and Delta Functions 729

Solutions to Selected Exercises 731
Reading Suggestions 732
References 733
Index 738