Contents

Preface
ix

1 *Introduction*
1

2 *Some Background on Ordinary Differential Equations*
4
2.1 What Is an Ordinary Differential Equation?
4
2.2 Solutions of Linear Time-Invariant Differential Equations
6
2.3 Solutions of General Linear Differential Equations
10
2.4 Fourier Transforms
11
2.5 Laplace Transforms
13
2.6 Numerical Solutions of Differential Equations
16
2.7 Picard–Lindelöf Theorem
19
2.8 Exercises
20

3 *Pragmatic Introduction to Stochastic Differential Equations*
23
3.1 Stochastic Processes in Physics, Engineering, and Other Fields
23
3.2 Differential Equations with Driving White Noise
33
3.3 Heuristic Solutions of Linear SDEs
36
3.4 Heuristic Solutions of Nonlinear SDEs
39
3.5 The Problem of Solution Existence and Uniqueness
40
3.6 Exercises
40

4 *Itô Calculus and Stochastic Differential Equations*
42
4.1 The Stochastic Integral of Itô
42
4.2 Itô Formula
46
4.3 Explicit Solutions to Linear SDEs
49
4.4 Finding Solutions to Nonlinear SDEs
52
4.5 Existence and Uniqueness of Solutions
54
4.6 Stratonovich Calculus
55
4.7 Exercises
56
Contents

5 **Probability Distributions and Statistics of SDEs** 59
5.1 Martingale Properties and Generators of SDEs 59
5.2 Fokker–Planck–Kolmogorov Equation 61
5.3 Operator Formulation of the FPK Equation 65
5.4 Markov Properties and Transition Densities of SDEs 67
5.5 Means and Covariances of SDEs 69
5.6 Higher-Order Moments of SDEs 72
5.7 Exercises 73

6 **Statistics of Linear Stochastic Differential Equations** 77
6.1 Means, Covariances, and Transition Densities of Linear SDEs 77
6.2 Linear Time-Invariant SDEs 80
6.3 Matrix Fraction Decomposition 83
6.4 Covariance Functions of Linear SDEs 87
6.5 Steady-State Solutions of Linear SDEs 90
6.6 Fourier Analysis of LTI SDEs 92
6.7 Exercises 96

7 **Useful Theorems and Formulas for SDEs** 98
7.1 Lamperti Transform 98
7.2 Constructions of Brownian Motion and the Wiener Measure 100
7.3 Girsanov Theorem 104
7.4 Some Intuition on the Girsanov Theorem 111
7.5 Doob’s h-Transform 113
7.6 Path Integrals 116
7.7 Feynman–Kac Formula 118
7.8 Exercises 124

8 **Numerical Simulation of SDEs** 126
8.1 Taylor Series of ODEs 126
8.2 Itô–Taylor Series–Based Strong Approximations of SDEs 129
8.3 Weak Approximations of Itô–Taylor Series 137
8.4 Ordinary Runge–Kutta Methods 140
8.5 Strong Stochastic Runge–Kutta Methods 144
8.6 Weak Stochastic Runge–Kutta Methods 151
8.7 Stochastic Verlet Algorithm 155
8.8 Exact Algorithm 157
8.9 Exercises 161

9 **Approximation of Nonlinear SDEs** 165
9.1 Gaussian Assumed Density Approximations 165
9.2 Linearized Discretizations 174
9.3 Local Linearization Methods of Ozaki and Shoji 175
Contents

9.4 Taylor Series Expansions of Moment Equations 179
9.5 Hermite Expansions of Transition Densities 183
9.6 Discretization of FPK 185
9.7 Simulated Likelihood Methods 192
9.8 Pathwise Series Expansions and the Wong–Zakai Theorem 193
9.9 Exercises 196

10 Filtering and Smoothing Theory 197
10.1 Statistical Inference on SDEs 198
10.2 Batch Trajectory Estimates 203
10.3 Kushner–Stratonovich and Zakai Equations 206
10.4 Linear and Extended Kalman–Bucy Filtering 208
10.5 Continuous-Discrete Bayesian Filtering Equations 211
10.6 Kalman Filtering 216
10.7 Approximate Continuous-Discrete Filtering 219
10.8 Smoothing in Continuous-Discrete and Continuous Time 223
10.9 Approximate Smoothing Algorithms 228
10.10 Exercises 231

11 Parameter Estimation in SDE Models 234
11.1 Overview of Parameter Estimation Methods 234
11.2 Computational Methods for Parameter Estimation 236
11.3 Parameter Estimation in Linear SDE Models 239
11.4 Approximated-Likelihood Methods 243
11.5 Likelihood Methods for Indirectly Observed SDEs 246
11.6 Expectation–Maximization, Variational Bayes, and Other Methods 248
11.7 Exercises 249

12 Stochastic Differential Equations in Machine Learning 251
12.1 Gaussian Processes 252
12.2 Gaussian Process Regression 254
12.3 Converting between Covariance Functions and SDEs 257
12.4 GP Regression via Kalman Filtering and Smoothing 265
12.5 Spatiotemporal Gaussian Process Models 266
12.6 Gaussian Process Approximation of Drift Functions 268
12.7 SDEs with Gaussian Process Inputs 270
12.8 Gaussian Process Approximation of SDE Solutions 272
12.9 Exercises 274

13 Epilogue 277
13.1 Overview of the Covered Topics 277
13.2 Choice of SDE Solution Method 278
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>Beyond the Topics</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Symbols and Abbreviations</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>List of Examples</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>List of Algorithms</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>311</td>
</tr>
</tbody>
</table>