
Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction

1.1 Overview

A program is a set of instructions, which are followed by the machine so as to generate a desired

output. This means that writing a computer program is giving instructions to a processor, so

as to delegate a particular job to the hardware of the computer system. Every instruction is

a command given to the computer hardware to perform a speciic job. Computer hardware

is a digital system (collection of functional switches) and hence every instruction must be

converted into the form of 0’s and 1’s (where a symbol 0 represents open switch and a

symbol 1 represents closed switch). As an example, let us assume that we want the computer

system to perform the addition of two numbers say 15 and 25. The instruction to perform

addition of two numbers could be written in the machine language as shown below:

10000011 00001111 00011001

In this case, the irst eight bits represent the code informing the hardware that the

addition of the two numbers is to be performed. This is called as an opcode (operational

code) of the instruction. Different instructions would have different opcodes and their

purpose is to convey the meaning of the instruction to the internal hardware circuitry.

In this case, we have assumed an arbitrary opcode of ADD instruction as 10000011.

Different processors have different decoders and internal designs, hence the length and

format of the opcode will certainly differ from processor to processor. Some processors

have eight bit opcodes (e.g., intel 8085), some have 16 bit opcodes (e.g., intel 8086).

Today’s generation processors have 32 bit/64 bit opcodes or even 128 bit opcodes. We

need not look into the hardware conigurations and designs at this stage, but the key

point to understand is that every instruction has an opcode and in this case, we just

assume an arbitrary opcode of 8 bits as 10000011, which represents ADD operation.

A different combination of 8 bits, say 11001010, may represent subtraction and so on.

In theory, the variety of instructions any processor can offer is indirectly dependent on

the length of its opcode. A processor with an opcode length of 8 bits can just offer 28 =

256 distinct instructions whereas a processor with an opcode length of 16 bits can offer

216 = 65536 distinct instructions. We cannot just increase the length of opcode arbitrarily,

the internal hardware and the instruction decoders must support it too. A processor that

has a rich-instruction set certainly has highly effective internal circuitry and decoders to

support it. In today’s generation, we are working with processors having 32 bit opcodes

1
Chapter

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

4 ✦ Computer Programming with C++

or 64 bit opcodes giving us rich- and high-performing instruction set, and this facilitates

the execution of even complex programs in an optimized way. The next bits are the binary

translations of the data values 15 and 25 over which addition is to be performed. The

sample format of the ADD instruction is shown in Figure 1.1. We need not go too much

in detail about computer hardware, however, the rationale of this discussion was just to

make us clear that every processor has a digital circuitry, which only understands the

language of 0’s and 1’s. This language is called as machine language.

Sample format of ADD instruction

Byte 1

Opcode of ADD instruction

Byte 2

Binary representation of 15

Byte 3

Binary representation of 25

10000011 00001111 00011001

Figure 1.1: Representation of instruction in a machine language

Writing every instruction using machine language could be very complex when there are

a large number of operations to be performed in the program as it requires us not only to

work with 0’s and 1’s but also to understand hardware speciications of the processor. In

today’s generation, computer programs are written to design many complex applications

having business challenges in itself, hence, it is practically impossible for a human being to

write such programs in machine language.

To make the programmers life easy, an assembly language is designed, which codes

every instruction using a mnemonic. For example, an instruction to perform the addition of

15 and 25 could be written in the assembly language as

ADD 15, 25

The symbol ADD is called as a mnemonic, which represents addition, whereas the constants

15 and 25 represent the data (also called as operands) over which the ‘add’ operation

is to be performed. It is important to note that mnemonics are English symbols and

hence they cannot be directly understood by the machine. Therefore, there is a need for

a translator, which can translate the assembly language into a language of 0’s and 1’s.

This will ensure that the hardware of the computer system can understand the meaning

of the instruction, which is actually written in the assembly language by the programmer.

The unit that performs the translation of assembly language into the machine language is

called as an assembler. Therefore, the instruction ADD 15, 25 will be irst translated by the

assembler into the machine language as shown in Figure 1.2. After the translation process

is completed, the hardware of the computer system can execute the instruction, which will

actually perform the addition of constants 15 and 25.

The assembly language program can still be tedious to create if the program has a

large number of operations to be performed. So as to make the programmer’s life simple,

the high-level programming languages are designed. A high-level programming language

is an ‘English-like’ programming language wherein the programmer can make use of user

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction ✦ 5

friendly words and symbols to code an instruction. For example, we can write the following

high-level instruction so as to perform the addition of two numbers:

Z = 15 + 25

Note that we have directly used a user friendly symbol + instead of coding the instruction

in a machine language or an assembly language. Hence, the value of Z will be evaluated

as 40, which is the addition of 15 and 25. High-level language is a set of ‘English-like’

symbols and hence these symbols cannot be directly decoded by the hardware of the

system. Therefore, the high-level language is irst converted into an assembly language

by a unit called as ‘compiler’. The assembly code can then be further converted into the

machine code using the ‘assembler as shown in Figure 1.3. It is important to reinforce on a

point that the processor can execute a particular instruction only after it is translated into

the machine language.

15 + 25 ADD 15, 25

Input

Instruction written in

high level language

Compiler

Output

Instruction converted to

machine language

Assembler 10000011 00001111 00011001

Assembly language

Compiler generates an assembly language as its output.

This language is given as an input to the assembler

which generates machine code.

Figure 1.3: Translation of high level language to machine code

As the instructions in high-level programming languages are very user friendly and

easy to code, they facilitate the creation of complex programs in a much more readable and

maintainable then assembly or machine level languages. Hence, the programs written in

high-level languages are easy to create, edit, debug and maintain. There are several high-

level programming languages, which are currently being used in the software industries

for creating different applications. Some of the high-level programming languages include

C, C++, Java, Visual basic, FORTRAN, COBOL, etc. In this text book, we discuss computer

programming using ‘C and C++’.

C programming language is designed by Dennis Ritche in 1973 and C++ is designed by

Bjarne Stroustrup in 1980 as an extension of C. Both C and C++ are designed in AT&T Bell

Laboratories. C++ is an extension of the ‘C’ language, which means that all the features

supported by ‘C’ are also supported by C++. Furthermore, C++ adds many useful features

such as object orientation and template management, which are not supported by ‘C’.

ADD 15, 25

Input

Instruction written in

assembly language

Assembler

Output

Instruction converted to

machine language

10000011 00001111 00011001

Figure 1.2: Assembler

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

6 ✦ Computer Programming with C++

Processor (CPU) is an integrated circuit that responds to a speciic set of instructions. Instruction
set for any processor is packaged along with its release and can be understood referring to
hardware manuals of the processor. The instruction set of any processor is very much coupled

and dependent on its internal circuitry. Every CPU has an instruction decoder which decodes the
input instruction and passes it to the relevant architectural blocks for activating necessary hardware
components to generate required results. Since an instruction needs to be ultimately decoded and
executed by hardware, it must have a representation in binary form (in the form of zeroes and one’s).
This language of zeroes and one’s which is directly executed by the processor is called as machine

language or Binary language.
It is technically impossible for Human beings to communicate with processor directly using machine

language. Hence any release of processor is also packaged with the mnemonics to each of the instructions
it supports. These mnemonics are readable by human beings and is called as the assembly language of
a particular processor. Remember, since the mnemonics are English like symbols, they cannot be passed
directly to the hardware. It is the responsibility of system programmers to design an assembler which can
convert assembly language into machine language. Assembler is a software utility and it is packaged along
the system programs required to compile and execute any High Level language.

In practice, both Assembly and machine languages are categorized as Low Level Languages from
Application programmers perspective.

What is the difference between Assembly Language and Machine Language? ?

Notes

We have been saying that assembly and machine languages are very complex and it is practically impossible for a

programmer to use these languages for application programming. Whilst this statement is very true, the portability of

programs is another big problem in these languages. This is because assembly and machine languages are speciic

to a particular processor. For example, the assembly/machine language of an intel processor is very different from

that of an AMD processor. Hence, even if we manage to write a program in assembly/machine language, our program

may only be speciic to our own platform and it cannot work if the hardware of the system is changed. It is absolutely

not a good practice to design programs, which are very much dependent on hardware, because computer hardware

ROADMAP OF THE BOOK

This text book is divided into two parts

Part 1: Chapters 1 to 9 are the topics, which are common with C and C++. The programs given in these chapters will

work with both C as well as C++ compilers unless speciied otherwise. Chapter 10 gives an explanation on dynamic

memory allocation in C++ style. This feature is also supported by C but this book explains C++ notations.

Part 2: Chapters 11 to 17 explain additional features, which are only supported by C++ and not by C. These are

object-oriented features, which are not supported by C, hence the programs given in Chapters 11 to 17 will only

work with C++ compiler.

It is impossible for a reader to understand the features of object orientation without having a thorough knowledge

of structured programming, hence we should be extra careful when reading Chapters 1 to 10 as they become the

prerequisite for Chapters 11 to 17.

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction ✦ 7

often gets upgraded with technology improvements. It should not happen that the program runs well on current

system and fails after processor or hardware/operating system is upgraded or changed. C/C++ programs do not

have a direct dependency on platform (hardware/operating system), once designed they could run on different

platforms without major changes. We have used the phrase ‘without major changes’ because C/C++ is not fully

platform independent, there are changes that programmer has to make the program while migrating the program

from one platform to another. Note that C/C++ programs are just platform dependent and not hardware dependent;

intermediate system programs such as operating system, compilers, loaders, and linkers make a cohesive architecture

so that C/C++ programs can run on any hardware with almost no change in the code as shown in Figure 1.4. Because

of the additional layer introduced by operating system, loaders, compilers, linkers (in general called as a layer of

system programs), we can be sure of the fact that the C/C++ programs we create can run without any changes

when just hardware of the system is changed or upgraded. This layered architecture gives hardware independence to

application programs. Now the next question is, What if there are any changes in the system program? For example,

what if we decide to change our operating system from windows to Linux? This is called as a change in platform and

in this case, we are not sure that a C/C++ program which runs on a windows platform will also run on Linux. This is

because the C/C++ compiler for windows is different than that of Linux. So, in practice, we will also have to change

the compiler if we change the platform. Clearly, C/C++ languages have removed the hardware dependency on the

programs but not the platform dependency and this is because compiler is different for different platforms. Whilst

platform dependency remains one of the challenges with C/C++ programs, it is also a settled situation in software

industries that platforms are not changed very often. Hence, C/C++ languages are still used at an extensive scale in

the world of application development. In this discussion, we have mentioned names of some system programs such

as loaders and linkers and we will debrief about them in section 1.3, for now just understand that these are some of

the system programs which help to keep our code independent of the underlying hardware.

Application Programs

These are the programs written using high

level languages to deliver a specific business

requirement. High level programming languages

like C and C++ are extensively used to design

application programs.

These applications designed by programmers are used

by business users who may not have any technical expertise.

Few examples of Application programs are program for online

shopping used to design an online shopping website,

a banking program used to perform banking transactions online,

online railway reservation system used over the web, web site

for booking movie tickets etc. Application programs need not be

always web based, they can also be Desktop applications

like Microsoft paint, Microsoft office, desktop games etc. All these

applications are designed in some high level programming languages

like C/C++. A web based program is a program which can be

accessed over intemet without a need of any prior installation

whereas a desktop application is always accessed locally and

needs to be installed on the machine before it can be used. All

applications designed in this book are desktop based applications.

System Programs

These are utility programs which are necessary to develop

and execute application programs. For example, operating

system, compiler, assembler, loader, linker, etc.

Some of programs are tightly coupled with the

hardware of the system and hence you must have

knowledge about system hardware and configuration

before you could design such programs

The scope of this text book is to learn application programming

using C/C++. Design of system programs is out of scope of

this text book, we may mention about them as and when

needed to understand certain application programming

concepts though.

C
o
m

p
iler

A
ssem

b
ler

L
in

k
er

L
o
ad

er

.........
Machine language

C/C++

Program

Operating System

Figure 1.4: Layered architecture of application program, system programs, and computer
hardware

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

8 ✦ Computer Programming with C++

1.2 Computer System Architecture

Before deep diving into the intricacies of C/C++ programming, we need to irst understand

the general low of data and instruction in a computer system. Figure 1.5 shows the basic

building blocks of a system, which consist of the following units:

Processing unit

Storage unit

Input Output

ALU

Control unit

Primary

memory

Secondary

memory

Figure 1.5: Block diagram of a computer system

1. Input unit

2. Processing unit

3. Output unit

4. Storage unit

1.2.1 Input to the system

‘Data’ and ‘instructions’ are given as input to the system so as to perform a particular

operation. Here, the term ‘instruction’ represents the operation to be performed, whereas

the term ‘data’ represents the information over which an operation is to be performed. For

example, if we want the system to perform the addition of two numbers say x and y then

we could write a statement as shown below:

x + y

The symbol + in this case, will be translated into an instruction ADD which will inform the

underlying hardware to actually perform the addition of two numbers. The numbers x

and y represent the ‘data’ over which the instruction ADD operates to generate the required

output. We can give multiple instructions as input to the system, so as to get a consolidated

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction ✦ 9

result. Let us consider that we want the computer system to give us a result of sequence

of instructions say I1,I2,…, In which operate on a series of data values d1,d2,…,dn,

respectively as shown in Figure 1.6. These instructions can be stored in the ile and can

further be processed by the CPU thereby giving the required result as an output.

I1,I2,…, In are instructions

stored in the file. The instructions

I1 to In operate over the

data items d1 to dn, respectively.

I1 d1;

I2 d2;

I3 d3;

I4 d4;

.

.

.

.

In dn;

Sequential execution

CPU executes the instructions in the file in a

sequence from top to bottom. This is

called as sequential execution.

Computer program

Figure 1.6: Computer program

The sequence of instructions that the system can process so as to generate the required

output is called as program and the language in which a program can be written is called as

a computer programming language. Although, we can write multiple instructions in a single

ile, the CPU can only process one instruction at a time. Hence, in reality, the processor runs

just one instruction at a time in a sequence from irst to last until all the instructions present

in the ile are fully executed.

This process of executing instructions in a ile one by one is called as sequential execution.

1.2.2 Translation

As the hardware of a computer system is ultimately built up of electronic and semiconductor

devices, it can only understand a binary language of 0’s and 1’s. However, it is impossible

for us to write programs in machine language as this will involve a detailed study on

the circuitry over which the system is built upon. In addition, as the fabrication of the

machine changes, every machine will have a different machine language. This is because

every machine is built up using different hardware technologies and circuitry. In summary,

we do not understand machine language and machine does not understand the language

we speak. This means that there is a need of a translator that can translate the ‘human

language’ into the ‘machine language’. The language that we can understand is called as

high-level language whereas the language that only machines understand is called as a

low-level language.

The set of programs that perform a translation of high-level language into a low-level

language are called as system programs. The system programs take the high-level code

(also called as source code) as input and generate an equivalent machine code at the

output, as shown in Figure 1.7. The language compilers, assemblers, loader, linkers, etc.

are examples of system programs, which are involved in translation of source code to

machine code.

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

10 ✦ Computer Programming with C++

So as to ensure that the system programs correctly perform a translation from a source

code to a machine code, we must follow certain rules while creating a program in the

high-level language. These rules are also called as ‘syntax’ of that language. Hence, every

programming language has a syntax, which describes the set of rules and we must follow

while writing a program. Furthermore, every programming language will have a dedicated

‘compiler’, which converts the high-level language into a low-level language1. The compiler

also checks if the programmer has preserved the syntax of the language while creating a

program before it starts the translation process. The compiler will throw an ‘error’ message

to the programmer if any of the syntax rules are violated, and the translation process is

immediately terminated if at least one error is located in the input program. Hence, it

becomes easy for the programmer to apply necessary corrections to the code and restart

the compilation process after necessary ixes have been applied.

1.2.3 Processing unit

After the high-level language is translated into a language of 0’s and 1’s, the machine starts

running each instruction one by one, so as to generate required output. The processing stage

is called as ‘execution stage’ of the program. Of course, the output of the code will be generated

at the time when the code is under execution and not at the time when the code is getting

translated or compiled. The process of translation or compilation just converts the program

from one language to another while the process of execution actually runs the program

thereby generating the results on output device. It is ultimately the hardware that performs

the execution of the program. The hardware that executes the instructions written in the

program one by one is called as ‘processing unit’ of the computer system. The processing unit

consists of two major blocks in it:

1. Arithmetic and logical unit (ALU)

2. Control unit

The ALU performs all the arithmetic and logical operations on the input data whereas the

control unit is a circuitry that manages and controls the overall low of data and instructions

within the computer system. The control unit also consists of a set of decoders that can

1 The output of compilation process is called as a target code. The target code differs from language
to language as every language has its own compiler. The output of C/C++ compiler is called as
object code which is a low level language.

Source Code

A program written in

a high level language

System programs

Machine Code

The high level language

is converted into a

language of 0’s and 1’s

Figure 1.7: Translation of high level language to low level language

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction ✦ 11

understand the input instruction; it also passes the data to the ALU if the execution of

the instruction requires any arithmetic or logical operation to be performed. The unit is

responsible for reading the data and instructions from the ‘input’ devices, processing the

instructions and sending the inal results to the ‘output’ device so as to generate the output

of the program.

1.2.4 Storage unit

The storage unit comprises of the memory devices, which are present in the computer

system where instructions and data are stored. The area of the memory where instructions

of the program are stored is called as a ‘code segment’ whereas the area of the memory

where the data required for the program is stored is called as a ‘data segment’. These

memory segments are managed by the memory management unit (MMU) of the operating

system in the primary memory of the computer system. In general, the memory units of a

computer system are categorized as follows:

1. Primary memory (e.g. RAM)

2. Secondary memory (e.g. hard disk)

Hard disk or a secondary memory is generally a magnetic memory that stores the

information persistently. The primary memory or RAM is a semiconductor memory that

can store the information only for the time when the computer is powered ON. This means

that RAM cannot store any information when the system is switched off and hence RAM

is a ‘volatile memory whereas a hard disk can store the information persistently even if the

power is lost, therefore, hard disk as a ‘non-volatile’ memory.

Processor can directly access the data and information only if it is available in RAM,

this is because CPU is also a semiconductor device, which is a very large-scale integrated

circuitry (often abbreviated as VLSI). Hence, it is the duty of the MMU (unit part of

operating system) to get the necessary data and information from hard disk to RAM when

needed for CPU to access it, as shown in Figure 1.8. The transfer of information content

from secondary memory to primary memory is also controlled by the MMU. The key point

to note is that any program can be executed by the CPU if only the code and data referred

by the program are brought into RAM.

When we ‘open’ any ile for read or write operation, the ile is actually copied from

the hard disk to RAM by the operating system. This facilitates the CPU to directly access

the data and instructions stored in the ile. Once the MMU brings the ile into the primary

memory, CPU can then perform read /write operations on the ile as shown in Figure 1.9.

Therefore, once the ile is opened, there are two copies of the ile maintained in the system.

The irst copy of the ile is in RAM whereas the second copy of the ile is the original ile

present in the hard disk as shown in Figure 1.9.

When CPU writes any information only the ile in RAM will be modiied whereas the

copy of the ile in the hard disk will still represent an older version as shown in Figure 1.10.

Hence, this is a state where the data in RAM is modiied; however, the ile in hard disk

is stale. Such a write operation to a ile is called as ‘uncommitted’ (or ‘unsaved’) write

operation, which is performed by the CPU as shown in Figure 1.10.

www.cambridge.org/9781316506806
www.cambridge.org

Cambridge University Press
978-1-316-50680-6 — Computer Programming with C++

Kunal Pimparkhede

Excerpt

More Information

www.cambridge.org© in this web service Cambridge University Press

12 ✦ Computer Programming with C++

Primary memory

(e.g., RAM) is a

semiconductor memory

which is organized as set

of locations. The primary

memory can be directly

accessed by the CPU

Primary Memory

.

.

.

.

.

Secondary Memory
Data files

Processor
Operating

system

Secondary memory (e.g., Hard Disk) is

a magnetic memory which is organized

as set of platters. Hard disk stores the

data in the form of files

Figure 1.8: CPU accessing RAM

Primary Memory

Secondary Memory

File to be opened

.

.

.

Processor

Operating

system

File File

Step 2:

CPU access the copy

of the file from RAM

Step 1:

Operating system copies the file

from secondary memory to primary

memory

Figure 1.9: CPU accessing the ile

Primary Memory

Secondary Memory

File in secondary memory

is stale

New version of the file

.

.

.

Processor

Operating

system

File** File

Write command

CPU performs

a “write” operation

on the file

Figure 1.10: Uncommitted writes done to the ile

www.cambridge.org/9781316506806
www.cambridge.org

