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Introduction
This Element is an introduction to some uses of paraconsistent logic for math-
ematics. It is for beginners – or at least, readers who know enough about what
the words in the title mean to have picked this up, but not much more. In writing
it, I have mostly tried to take a neutral “tour guide” approach, both in the selec-
tion of material and in avoiding trying to “sell” the reader anything, though
my biases have inevitably shown through, especially by the end. The views
expressed in this Element are the author’s and do not necessarily reflect the
position of Paraconsistency Inc or its affiliates.

Each of the first four little sections exposits some key ideas (including, inev-
itably, using some formal symbolism); the last section of each discusses a more
general philosophical issue that arises. The final section is a brief philosophical
and critical appraisal, looking to the future of this little field.

1 Invitation to Paraconsistency in Mathematics:
Why and How?

Is mathematics consistent? Must it be? Or could new mathematical discoveries
be found where previously no one had thought possible to look – in the
inconsistent?

Paraconsistency in mathematics allows the development of mathematics
that either is or could be inconsistent but without absurdity. On a mainstream
approach in logic, any inconsistent theory is as good (or bad) as another,
because all contradictions are equivalent. Standard mathematics uses classi-
cal logic, according to which there is only one inconsistent theory – the one
that contains every single sentence, the absurd or trivial theory. With classical
logic, if there is even a single contradiction, everything collapses. In a slogan,
the conventional view is that “the inconsistent has no structure” (Mortensen,
2010, p. 3).

A nonclassical, paraconsistent conception of logic takes a more fine-grained
approach to contradictions. Paraconsistency distinguishes between a theory
being inconsistent (it includes at least one contradiction) from the notion of
being incoherent, absurd, or trivial (it includes every sentence); from a para-
consistent point of view, a theory does not have to be consistent to be coherent.
Paraconsistency in mathematics thus provides a rigorous framework for both a
cautious approach to contradiction – for all we know, a theory might be incon-
sistent, so we use a logic that can handle it – and a much less cautious project:
of investigating and describing contradictory abstract objects and structures.

Until recently, even the possibility of a contradictory, yet coherent, mathe-
matical theory would have been taken as facially absurd. (In some quarters, of
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2 Philosophy of Mathematics

course, it still is.) Developments in formal logic since the 1950s, though, have
established that such theories can indeed exist. “Paraconsistent logic” now has
an official mathematics subject classification code.1

One aim of this emerging, diverse field of work is to widen the horizons
of mathematics by discovering and studying new objects – much in the way
that historically mathematics has advanced by admitting the existence of “bad”
entities like zero, negative numbers, irrational numbers, imaginary numbers,
transfinite sets, geometries where parallel lines can meet, and so forth. Newton
da Costa suggests that “it would be as interesting to study the inconsistent sys-
tems as, for instance, the non-euclidean geometries (da Costa, 1974, p. 498).”
For paraconsistency in mathematics, as Robert Meyer puts it, “what is to be
hoped for most of all are not new routes to old truths, but an expansion of the
pragmatic imagination (Meyer, 2021a, p. 158).”

The aim of this Element is to give the interested reader a critical sense of
some of the work in this area to date, its strengths and weaknesses, and to
indicate what might be next.

1.1 Motivations
Let us begin with an example of possible inconsistency in mathematics that
motivates using paraconsistent logic. The discussion proceeds informally. Then
we will get into a few details of how the logic itself works.

Mathematics is, by standard accounts developed in the twentieth century,
based on set theory – itself a mathematical theory of collections that provides a
foundation for all other areas of mathematics. Even very cautious philosophers
like Quine have grudgingly accepted that sets are indispensable for mathemat-
ical (and so scientific) practice. Mathematics takes place in the universe of
sets.2

Consider, then, the universe of sets – the collection of all sets, U. This is,
one imagines, a very big collection, the most inclusive collection of sets there
could be, one containing every set. This collection is, intuitively, the domain of
discourse for statements that set theorists are interested in, such as “every set
can be wellordered” or “there are no self-membered sets”; and whether or not
those statements are true, they do clearly seem to be – have been taken to be –
meaningful. The universal collection is the prima facie basis of the meaning

1 Under the Mathematics Subject Classification 2010, database of the American Mathe-
matical Society, 03B53: “Logics admitting inconsistency (paraconsistent logics, discussive
logics, etc).”

2 For a good account, see Potter (2004).
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of these statements: when you study set theory, U is “where” you work. It has
been traditional at least since Whitehead and Russell’s Principia Mathematica
in 1910 to define the universal class with a “property posessed by everything,”
for example, the collection of all sets x such that x = x, or

U = {x : x = x},

which is universal because everything is, after all, self-identical.3 Every set x
is a member of this collection, x ∈ U.

Within U are subcollections of all sorts – the continuous functions, the com-
mutative groups, the set of all collections with exactly three members, and so
forth. One such collection is all the singletons. Every x has a singleton, {x}, and
the collection of all singletons comprises the sets with just one member. Now,
that means every x in the universe, every x ∈ U, can be paired up exactly, into
a one-to-one correspondence, with its singleton, in pairs

⟨x, {x}⟩.

This shows a natural sense in which the universe and its subcollection of all
singletons have exactly the same “size”: they can be paired off perfectly. But
of course, there are more objects in the universe than just the singletons, since
most things are not singletons. So there is also a natural sense in which U is
not the same size as the subcollection of all singletons.

This is a little puzzling, but we are talking about the entire universe after
all, so we should be prepared for some surprises – and indeed, the outstanding
mathematician Richard Dedekind used exactly this fact in 1888 to define what
it means for a set to be infinite; namely, having a proper part of the same size.
He then used a variant on the aforementioned argument to prove that infinite
sets exist.4

Now consider all the subcollections of the universe collected together, P(U)

(called the powerset of U). Since U is maximally inclusive, both P(U) and
all its members are inside of U. Writing subsethood as “⊆,” then

P(U) ⊆ U . (1)

3 See Whitehead and Russell (1910, p. 216). Here, we are focusing on the universe of sets, so
“everything is self-identical” is short for “every set is self-identical.”

4 In the infamous Theorem 66 of his Was sind und was sollen die Zahlen? of 1888 (reprinted
in (Dedekind, 1901, p. 64)), he argues that the set of his thoughts is infinite because for each
thought x there is also the thought of that thought {x}, the thought of the thought of that thought
{{x}}, and so forth. See Priest (2006, p. 33, sec. 10.1). For alternative ways to think about the
sizes of infinite sets, see Mancosu (2009).
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But similarly, each member of U is a set, which in turn has only sets as
members; so for any x ∈ U, if z ∈ x then z ∈ U, which is to say that x
is also a subset of U and hence a member of the powerset of the universe,
showing

U ⊆ P(U) (2)

But, if all the members of U are members of P(U) and vice versa, then these
collections are exactly the same collections; by (1) and (2),

U = P(U) (3)

because sets with all and only the same members are the same set, by the
principle of extensionality.

A powerset contains all possible recombinations of elements of a set, so this
equality is a little odd – but also natural enough, maybe, since the set in question
is the universe. Note that, since U is a subset of itself, that is, U ∈ P(U),
then this means U ∈ U. The universe is contained in itself; the universe is
everything, after all.

But now we have a real problem. By (3), U and P(U) must be the same size
(since they are the same set). If they are the same size, there is a way to pair
off their members in a one-to-one correspondence. Call such a pairing f, that
matches members x ∈ U with members y ∈ P(U), as in f(x) = y. For members
x of U paired up with subsets y of U, sometimes x will be in that subset, and
sometimes not.5 So consider

r = {x : x < f(x)}

This is a subset of the universe comprising all the things that are not in the set
they are paired with. But then, since f pairs off everything, and r ∈ P(U), there
must be some x ∈ U such that f(x) = r. Now we just have to ask: is x ∈ r,
or not? If it is, then x < f(x) by definition, so x < r after all; yet if x < r, then
x ∈ f(x) again by definition, so x ∈ r after all. Since x is either in r or it is not,
it is both: contradiction.

Classically, this general argument has been taken as a reductio – requiring
the rejection of some assumption, usually the existence of a pairing off between
a set and its powerset, or a universal set, or both (see §2.3). But the existence of
a set theoretic universe is extremely hard to shake; and since we independently
established that U = P(U), it looks like there must be at least one such pairing

5 For instance, if a = {1, 2, 3} and b = {2, 4, 6} then if f(1) = a, we would have 1 ∈ f(1), and if
f(1) = b then 1 < f(1).
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off, namely, identity f(x) = x. Under this identity mapping, where f(r) = r, then
writing “iff” for “if and only if,”

r ∈ r iff r ∈ f (r)

iff r < f (r)

iff r < r.

So we seem to have shown that

r ∈ r and r < r

as an apparently natural consequence of some apparently true premises. There
are no assumptions to reject, or at least, none the rejection of which would be
less puzzling than the conclusion that some “diagonal” subset of the universe
has contradictory properties. In brief, “naive” set theory is inconsistent.

This fact was discovered in the late nineteenth century,6 but was labeled a
paradox: an apparently sound argument for an apparently impossible result. In
more than a century since then, no fully satisfactory solution to this paradox has
been found, as witnessed at least by a continuing stream of dissatisfied research
on the subject, as we will see. A paraconsistent approach offers a unique take on
this situation: there is no problem here to solve. The paradox is simply a proof,
and its conclusion is a theorem: some sets are inconsistent. Put cosmically, the
universe is larger than itself.

Now, none of this forces us into “inconsistent mathematics”: historically,
this and other examples all have consistent accounts. In set theory, the official
solution is that there is no universal set; the collection U, the domain of set
theory (and mathematics) itself is not a set. If that seems good enough to you, I
do not plan to try to talk you out of it.7 Crucially, to see a place for paraconsis-
tency in mathematics, it seems like I do not need to talk you out of it. Indeed,
as we will be canvassing, the majority of people working in paraconsistency
are happy to accept standard mathematics. To move ahead with paraconsistent
investigations, all we need is the suggestion that there are interesting things
that seem to be inconsistent when we think about them. If there could be more
to learn than is allowed by the assumption of consistency, there is a place for

6 The fact that there cannot be a one-to-one correspondence between a set and its powerset was
proven by Cantor and is called Cantor’s theorem. The fact that Cantor’s theorem becomes incon-
sistent at the universe was known to Cantor by 1895 or so but was made especially public
by Russell in 1902 and is called Cantor’s Paradox. See van Heijenoort (1967, p. 124) and
Section 2.

7 If it does not seem good enough, though, I think you might be right and suggest you see Priest
(2006, ch. 2) and Weber (2021, ch. 1).
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6 Philosophy of Mathematics

paraconsistency. Whether or not we should think of paraconsistent theories as
true or their investigations as a challenge to the official consistent approaches
in mathematics is not obvious and is a topic we will return to.

And foundational disciplines like set theory are not the only place some have
found more to learn. We will look at further topics in arithmetic, calculus, and
topology. Chris Mortensen, a key founder of the field of inconsistent mathemat-
ics, has focused on impossible pictures. These have philosophical motivations,
but from a purely mathematical point of view, perhaps it is enough just to
glimpse something new there to study: the inconsistent has some structure after
all, and we can pursue structure for its own sake. We may benefit from drop-
ping what Meyer, Routley/Sylvan, and Priest call the universal consistency
hypothesis – the limiting supposition that there is nothing of rational interest
outside of the bounds consistency8 – and widen our horizon of investigation to
points beyond.

Let us look at some precise ways one might do this.

1.2 Methods
1.2.1 Paraconsistent Logic Tutorial

A paraconsistent logic allows inconsistency without absurdity. In a non-
paraconsistent logic, any inconsistent premises p, ¬p will have any arbitrary
q as a valid conclusion (ex contradictione quodlibet, or explosion); a logic is
paraconsistent if and only if explosion is invalid. Denying explosion is all that
is required for a logic to be paraconsistent.

More precisely, let us say that a logic is determined by a consequence relation
⊢ that relates some sentences (premises) to another (conclusion).9 When the
consequence relation

p0, ...,pn ⊢ q

holds then the argument from p0, ...,pn to q is valid; and if not, not. And then
let us say that a theory is a set of sentences closed under logical consequence:
the “starting” sentences, and all the ones that validly follow under ⊢. An incon-
sistent theory contains both some sentence p and its negation ¬p. And so an
inconsistent theory under a non-paraconsistent logic will include every sen-
tence, which makes the theory trivial. Thus, if an inconsistent theory is to be

8 “...that all that can be spoken of or described (non-trivially) is consistent” (Priest, Routley, &
Norman, 1989, p. 4; cf. Routley and Meyer, 1976).

9 There is a lot of good (paraconsistent) work on multiple conclusion consequence relations; see
Beall and Ripley (2018, p. 744). The focus on single conclusion here is to keep it simple.
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nontrivial, it must, it seems, be embedded in a paraconsistent logic, where the
principle of explosion is invalid:

p,¬p ⊬ q.

Paraconsistent logics are the basis for the study of paraconsistent theories.
There are many strategies for making a logic paraconsistent, and within

these strategies there are many – infinitely many – paraconsistent logics. For
concreteness, let us look at one simple approach due to Asenjo (1966) (cf.
Asenjo and Tamburino, 1975) and then to Priest (1979). This is to general-
ize the standard truth conditions on logical evaluations and the definition of
semantic validity, opening some extra space that leaves classical conditions as
a special case.

Just as with classical logic, we are given a formal language with connec-
tives ¬ (negation, “not”), ∧ (conjunction, “and”), and ∨ (disjunction, “or”),
with propositional atoms p,q, ... connected by these connectives into complex
expressions A,B, .... The material conditional A ⊃ B is defined ¬A ∨ B and a
biconditional A ≡ B is defined as (¬A ∨ B) ∧ (¬B ∨ A). The new twist is in
an assignment ν taking sentences of the language to (two) truth values, t and f.
Sentences may be true, or false, or – now diverging from classical logic – both.

On this arrangement, no sentence must be “both” but some can. This is pos-
sible because ν is a relation, rather than a function.10 Relations can be multiple,
as in “y is a place x has lived” can take one x to multiple values for y. While an
evaluation function would treat a “true” contradiction as having a value equal
to both true and false, t = ν(p) = f, and hence11

t = f (which not even para-
consistentists will approve of), a relation will let t and f be among the values
of ν(p), one not always ruling the other out.

Relational truth conditions for negation, conjunction, and disjunction may
be spelled out in a standard-looking homophonic way:

ν(¬A) is at least t iff ν(A) is at least f

ν(¬A) is at least f iff ν(A) is at least t

ν(A ∧ B) is at least t iff ν(A) is at least t and ν(B) is at least t

ν(A ∧ B) is at least f iff ν(A) is at least f or ν(B) is at least f

10 Following an idea from J. Michael Dunn in the 1960s (see Omori and Wansing, 2019b), pub-
lished as Dunn (1976); cf. Priest (2008, p. 161). Both Asenjo and Graham Priest present this as
a three-valued logic, where the “both” value is a third distinct status along with truth and falsity.
They treat the relation ν as a function, assigning each sentence exactly one of the three possi-
ble statuses. There are strong reasons why it is philosophically preferable to take the relational
approach, as presented here; see Weber (2021, ch. 3).

11 At least, assuming the transitivity of identity: a = b, b = c ⊢ a = c. This is disputed in Priest
(2014).
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8 Philosophy of Mathematics

ν(A ∨ B) is at least t iff ν(A) is at least t or ν(B) is at least t

ν(A ∨ B) is at least f iff ν(A) is at least f and ν(B) is at least f

On this account of negation, a sentence is evaluated as true iff its negation is
evaluated as false; a sentence is evaluated as false iff its negation is evaluated
as true; so if a sentence is evaluated as both true and false, then its negation is
also evaluated as both true and false.

An argument is valid if, whenever all the premises are at least true, then so
is the conclusion; an argument is invalid if there is some way for the premises
to be at least true but the conclusion to be not at all true. Heuristically, validity
is un-truth preservation backward, from conclusion to at least some premises.
If we also assume the relational valuation is exhaustive,

ν(A) is at least t or ν(A) is at least f

then this is the idea behind the logic now known as LP (for “logic of paradox”).
It is paraconsistent because if we just consider the sentences p and q, then it is
possible for p to be assigned both true and false, while q is not assigned true.
Then p and ¬p are both assigned at least true, but not at all so for q, and so ex
contradictione quodlibet is invalid – it has a counterexample.

This is a way of generalizing classical logic. If the relation ν were tightened
up to be a function, so that, for example, ν(¬A) = t iff ν(A) = f, then these con-
ditions simply are those of classical logic. Without assuming functionality, the
logic allows for gluts. We do assume that the relation ν assigns every sentence
at least value t or f, making negation exhaustive:

A ∨ ¬A

is always assigned at least value t. If one wanted to, this condition could be
dropped, and then the logic would allow gaps too; that would deliver the
logic FDE, which can then serve as a base to extend to several other sorts of
paraconsistent logics; see Belnap (1977). In LP there are gluts but no gaps.12

Nothing about the general idea of paraconsistency would seem to commit
to actual gluts (or true contradictions), only the hypothetical that even if there
were some true contradiction, still not everything would be true.13 This opens

12 In this Element, we will not be considering “gappy” approaches, because intuitionistic and con-
structive mathematics have already told us a lot about the “incomplete” (but consistent) side of
things, and it seems worthwhile to try to understand the dual. Also, without the law of excluded
middle (LEM), many of the standard paradoxical proofs of contradictions – those that motivate
inconsistent mathematics to begin with – fall apart; one can derive theorems of the form “A
iff ¬A” but no further. The question of whether one can still derive contradictions without the
LEM has been a point of contention between Priest and Brady; see Brady and Rush (2008);
Priest (2019).

13 See Barrio and Da Re (2018).
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a space, then, for different approaches to paraconsistency in mathematics,
which we will look at. Moderate approaches will be based on a paraconsis-
tent consequence relation, without any commitment to gluts, whereas so-called
strong paraconsistency endorses some true contradictions, sometimes called
dialetheism.

1.2.2 A Very Brief History of Paraconsistency in Mathematics

There are many approaches to paraconsistency one could take; all that is
required for paraconsistency is that the argument from p,¬p to arbitrary q be
invalid. There are almost as many approaches to paraconsistency as there are
logicians who have taken them. For present purposes, here is a potted history
(restricting attention only to mathematical applications, not the development of
paraconsistent logic). This also serves as a forecast for the sections ahead.

Paraconsistent logics were developed in various forms in the first half of the
twentieth century, most notably by Jaśkowski in 1948. The first paraconsistent
approaches connected with mathematical practice were developed independ-
ently by Florencio Asenjo in 1954 and then very prominently by Newton C. A.
da Costa in 1963. Asenjo presented what he called antinomic number theory.
Da Costa introduced paraconsistent set theory; this was investigated with Ayda
Ignez Arruda in the 1960s and 1970s. In 1986, da Costa proved that his sys-
tem is nontrivial. This flourishing line of research continues in work by many,
including Walter Carnielli, Marcelo Coniglio, Itala D’Ottaviano, João Marcos,
and many others, and is sometimes called paraconsistent mathematics.14

Diderik Batens, founder of the adaptive approach to paraconsistency, worked
with Arruda on set theory when she visited Europe in the late 1970s. Batens
had proposed what he then called dynamic dialectical logic, which is intended
to model reasoning in science and mathematics. He has most recently applied
adaptive logics to set theory, in light of some significant developments from
Peter Verdée.

In the 1970s in Australia, Richard Routley/Sylvan and Robert Meyer started
investigating what they called “dialectical” theories, including set theory and
arithmetic. Routley visited the State University of Campinas in 1976, and
da Costa visited the Australian National University in 1977.15 Unpublished
manuscripts by Routley and Meyer were widely distributed, not only to col-
leagues in Australia but also da Costa and others, containing the outlines

14 Interested readers may consult Gomes and D’Ottaviano (forthcoming).
15 According to Arruda (1989, p. 107). Lengthy handwritten correspondence from the late 1970s

between Routley and da Costa (“Dear Brother Richard/Dear Brother Newton”) are preserved
in the archive at the University of Queensland.
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of what is now sometimes called inconsistent mathematics. These included
Routley (1977) and Meyer (2021a, 2021b).

Circa 1976, Meyer produced a model of inconsistent arithmetic; such models
were further developed by Meyer and Mortensen through the 1980s, and then
Priest in the 1990s, using techniques due to Dunn. Important limiting results
for Meyer’s arithmetic were found by Harvey Friedman and Meyer in 1992.
Circa 1978, Ross Brady produced a model of inconsistent set theory, which
he developed further with Routley and reached culmination in a 2006 book;
that set theory was studied further by Weber (me!). In 1995, Mortensen and
collaborators published a book outlining what he termed inconsistent math-
ematics across several new areas, including calculus, topology, and category
theory, and in 2010 followed this with further investigations in inconsistent
geometry.16

Today, with the widespread acceptance of the legitimacy (if not correctness)
of nonclassical logics, paraconsistent logics are being developed, sometimes
with applications to mathematics, in many directions across the globe. The
alternating terms “paraconsistent mathematics” or “inconsistent mathematics”
have been used to some extent as shorthand to demarcate regional traditions
and variations. Marcos has urged that logic does not carry a passport, and I
similarly think there is little to be gained by insisting on geographic labels.
What matters is that the formal development of paraconsistent logic(s) creates
an opportunity in mathematics: the rigorous study of theories that are possibly
or actually inconsistent.

1.2.3 Goals: Recapture, Expansion, Revision

Paraconsistency in mathematics deploys a nonclassical logic for mathematical
work. How sweeping a change, if any, is this to ordinary practice?

We just saw that there is no one project or program called “paraconsistency
in mathematics” or even “inconsistent mathematics.” The story of paraconsis-
tent mathematics told here is of two countervailing forces. On the one hand,
there is a moderate or conservative line of research, seeking mainly to fit a
paraconsistent logic into the wider standard mathematical picture, perhaps as
a kind of buttress or insurance policy against any future inconsistency.17 On
the other hand, there is a radical, revisionary line that not only seeks to extend
knowledge in novel nonclassical directions, but perhaps also to overturn pre-
viously accepted wisdom, rewriting the rules of the game. The conservative
aim is to prove that 1 + 1 = 2, even if there is some chance of inconsistency;

16 Interested readers may consult Brady and Mortensen (2014).
17 There is guarantee that mathematics is consistent, due to Gödel’s theorems; see §3.
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