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Introduction

The Twin Primes Conjecture says that there are infinitely many prime numbers,

p, such that p + 2 is also prime.* As for this writing, it is an open question

whether this conjecture is true or false, although most experts believe that it is

true. If the question is settled, it will be settled by proof.

What is a proof? It is basically an argument that convinces experts of the

claim proved. More fully, it is an argument that convinces experts that there

exists a formal proof of that claim.1 A formal proof of S is a finite sequence of

sentences, each of which is either an axiom or follows from the previous

sentences by a rule of formal inference, the last line of which is S itself.

Whether a proof is sound is widely supposed to be a mind- and language-

independent matter. It is supposed to be independent of us whether the logic

used is correct and whether the argument is valid in that logic. This is logical

realism. Mathematical realism is the view that it is independent of us whether

the (nonlogical) axioms are true (and that some are non-vacuously true). Their

combination says that we do not make up the logical or mathematical facts.

Mathematical realism raises a question: How do we know that the axioms

are true?2 Even if knowledge of the logical axioms is intelligible (a matter to

which we return in Section 4), mathematical axioms are not just (first-order)

logical truths. Consider the Axiom of Choice (AC). This says that if t is a

disjointed set not containing the empty set, ∅ , then there exists a subset

of ∪ t whose intersection with each member of t is a singleton. In symbols:

ðtÞ½ðxÞ½x 2 t !ð ∃ zÞðz 2 xÞ& ðyÞðy2 t & y 6¼ x!∼ ð ∃ zÞðz 2x& z2yÞÞ�!

ð ∃ uÞðxÞðx 2 t! ð∃wÞðvÞ½v ¼ w ! ðv 2 u&v 2 xÞ�Þ�. It is consistent

with standard mathematics, minus AC, that AC is false if standard mathematics

is consistent. Universes in which AC fails are studied and deeply understood –

unlike, say, universes in which squares are circles. So there is nothing “unintel-

ligible” about choiceless mathematics, in any ordinary sense. How, then, do

mathematicians know that AC is true?

* Chapters 1 and 3 draw on Chapters 2 and 5, respectively, of my book,Morality and Mathematics

(Oxford University Press, 2020). For overviews of much of the technical material discussed here,

see the following additional Cambridge Elements: Set Theory by John Burgess,Gödel’s Theorems

by Juliette Kennedy, and Foundations of Quantum Mechanics by Emily Adlam.
1 Although this is the standard view, it can be questioned. See De Toffoli [2021]. (Of course, no one

should be under the illusion that mathematics as practiced simply consists of deducing theorems

from axioms. See Harris [2015] for a lovely portrayal of the experience of pure mathematical

research.)
2 Logical realism bears on the more general question of how proofs supply mathematical know-

ledge. For instance, how do we reliably determine that there exists a formal proof on the basis of

the (informal) arguments that convince experts (setting aside the question of how we know that

the axioms of feasible length are true)? This is not obvious because formal proofs of mainstream

theorems are typically too lengthy to be humanly comprehensible. See Gaifman [2012, 506].

1Mathematics and Metaphilosophy

www.cambridge.org/9781108995405
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-99540-5 — Mathematics and Metaphilosophy
Justin Clarke-Doane 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

The difficulty can sound generic. There is also the question of how scientists

know their laws. How do physicists know the Dirac Equation or geologists

know the theory of plate tectonics? There is nothing unintelligible about the

failure of these claims either. The difference is that in these cases, we have

the beginning of an answer. Electrons and the Earth’s crust leave marks on the

world to which our nervous systems respond. We bear no relevant physical

relations to the likes of sets. So no story like this suggests itself in connection

with our knowledge of AC.

To be clear, it is not that mathematical cognition is beyond the reach of

science. It is an established subject in cognitive psychology.3 But we must

distinguish the study of mathematical belief acquisition from the study of the

correlation between our mathematical beliefs and the facts. Science is illumin-

ating our beliefs about sets (and, especially, natural numbers). But it has been

conspicuously silent on how they relate to the mathematical facts.

It is tempting to dismiss the problem as stemming from an unwarranted

“platonism” about mathematical entities. If platonism is just mathematical

realism – that is, the view that the Twin Primes Conjecture is either true or

false, independent of what anybody says or believes – then the problem does

stem from this. But platonism in this sense is difficult to discharge. Our best

theories of the physical world are up to their ears in mathematics (Section 2). So

absent a way to “factor out” those theories’ mathematical commitments, the

view that the mathematical truths depend on us would seem to imply that the

physical truths do too. For example, the (time-dependent) Schrödinger Equation

of quantummechanics tells us how the state vector of a physical system changes

with time. How could this express an independent fact if there are not any

independent facts about vectors? Or consider the banal claim that some of our

scientific theories are at least consistent, that is, do not (classically) imply a

contradiction, independent of what anyone says or believes. This claim turns out

to be a simple arithmetic claim whose negation (for typical theories) is consist-

ent if elementary arithmetic itself is consistent.4

So the question of how humans acquire knowledge of independent mathem-

atical facts is pressing. This Element clarifies the problem, sketches a solution,

and discusses its import for philosophy more generally, including modal meta-

physics, (meta)logic, and normative theory.

3 See Butterworth [1999], Carey [2009], De Cruz [2006], Dehaene [1997], Pantsar [2014], and

Relaford-Doyle and Núñez [2018] for work on the psychology of number concepts. See Marshall

[2017] and Opfer et al. [2021] for a critical discussion of the relevance of work like this to the

problem of mathematical knowledge.
4 Technically, the claim is aΠ1 claim, that is, a claim of the form “for all natural numbers,Φ,”where

Φ is a formula with only bounded quantifiers.
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1 Self-evidence, Analyticity, and Intuition

Knowledge is justified and non-coincidentally true belief (where specifying the

relevant sense of “coincidence” is the so-called Gettier Problem). So the

problem of explaining our knowledge of the axioms, partitions into two. First,

there is the problem of explaining the (defeasible) justification of our belief in

the axioms, what I call the justificatory challenge. Second, there is the problem

of explaining our belief’s non-coincidental truth, that is, the reliability chal-

lenge. Let us begin with the first.

1.1 Two Kinds of Axiom

What are the axioms of mathematics? There are two varieties. On the one hand,

there are axioms that just speak of their class of models. These are structural

axioms. For example, a mathematical group is any set that is closed under a

binary operation satisfying the axioms of associativity, identity, and invertibil-

ity. We may also stipulate that the operation is commutative. In that case, the

group is said to be Abelian. But there is no nonverbal question as to whether the

Axiom of Commutativity itself is true. It is true of Abelian groups and false of the

others.

The situation is prima facie different with foundational axioms, like those of

set theory, type theory, category theory, and arithmetic. Foundational axioms

are, roughly, those on the basis of which one can carry out metatheoretic

reasoning. For instance, already in (first-order) Peano Arithmetic (PA), one

can formulate claims about the consistency of theories and prove relative

consistency results. One can prove, say, that if Zermelo–Fraenkel (ZF) set

theory is consistent, then so is ZFC + Cantor’s Continuum Hypothesis (CH);

where ZFC is ZF plus AC, and CH says that there is a bijection between every

uncountable subset of the real numbers and all of them, or, equivalently, given

AC, that the cardinality of the real numbers is the next greatest after that of the

natural numbers. This is written: PA ⊢ Con(ZF)→ Con(ZFC + CH). Arithmetic

axioms do not seem to be structural – just about their class of models – because

there seems to be a nonverbal question as to whether metatheoretic claims like

the aforementioned are true. Indeed, Gödel’s Second Incompleteness Theorem

says that if PA is consistent, then it cannot prove that it is, written PA ⊬Con(PA).

Nor, thankfully, do we have that PA ⊢ ~Con(PA). So PAþ ConðPAÞ and

PAþ ∼ConðPAÞ are both consistent if PA is – just like group theory with the

Axiom of Commutativity and group theory with the negation of that axiom. But

the question of whether arithmetic is consistent cannot be dismissed like the

question of whether the Axiom of Commutativity for groups is true! There either

is or is not a natural number that codes a proof (in classical logic) of “0 = 1”, from
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the axioms of PA. Or so it seems. If this were not the case – if, for instance,

PAþ∼ConðPAÞ were really analogous to Abelian group theory – then there

would also be no nonverbal question as to what counts as finite (since a model of

PA þ ∼ConðPAÞ disagrees with us about this), what a formula is, and even

what a theory, like PA, consists in.

Such considerations only take us so far. They do not show that there is a

nonverbal question of whether characteristic axioms of set theory, like AC, are

true, for example. Indeed, a view to which we return in Section 3.5 says,

roughly, that nonstructural foundational axioms are limited to those of (first-

order) arithmetic [Weaver 2014, Ch. 30]. But many realists deny that we should

draw the line at arithmetic (Koellner [2014], Van Atten and Kennedy [2009],

Woodin [2010]). Is it really just a verbal question whether, for any disjointed set

not containing ∅ , there is a subset of ∪ x whose intersection with each member

of x is a singleton? What about the claim that there is a so-called Inaccessible

Cardinal (IC)? This implies new arithmetic results. ZFC ⊬ Con(ZFC)

ðif Con ZFCð ÞÞ, but ZFC + IC ⊢ Con(ZFC). So, arguably, belief in IC is

presupposed by belief in ZFC.5

Whatever we include among the structural and foundational axioms, there are

axioms that cleanly qualify as neither. Tarski’s axioms for first-order geometry

do not have the flavor of the Axiom of Commutativity for groups (Tarski

[1959]). Prima facie, they have an intended subject, Euclidean space, of

which they could be wrong. But those axioms are also not foundational, in

that one cannot carry out metatheoretic reasoning in the theory.6 The Parallel

Postulate, which says, informally, that two straight lines intersecting another so

as to make less than a 180° angle on one side intersect on that side, will serve as

a key example in Sections 3 and 4. A debate over it would be misconceived, like

a debate over the Axiom of Commutativity for groups. But, unlike group theory,

this is not because geometry is about its class of models. It is because, if

geometric reality exists, it is rich enough to afford an intended model of the

postulate and its negation.7

5
“Arguably” because the assumption of IC is stronger than the assumption that there is a model of

ZFC (which is equivalent, by Soundness and Completeness to Con(ZFC)). That is, ZF þ IC is

stronger than ZF þ ConðZFCÞ.
6 The theory is decidable and complete and so, by Gödel’s theorems, cannot even interpret

Robinson Arithmetic (i.e., PA minus all instances of the Induction Schema).
7 The distinction between structural and foundational axioms is similar to Shapiro’s distinction

between algebraic and non-algebraic ones, although he appears to think that the distinction is

exhaustive. See Shapiro [1997, 41 and 50]. Likewise, Balaguer [2001] distinguishes between

mathematical domains in which our intentions are exhausted by the (first-order) axioms that we

adopt from those in which they are not. This is different from the distinction above if our

intentions about a domain can transcend any recursive axiomatization while failing to interpret

arithmetic.
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1.2 Self-evidence

Despite being a relatively fringe area of pure mathematics, set theory is of

special philosophical interest. While it has only one nonlogical predicate, 2 ,

the claims of all other branches of mathematics can be interpreted in it. Those

claims can be understood as claims about sets in disguise. It does not follow

that all mathematical entities are really sets (Benacerraf [1965]). It follows

that if the axioms of set theory are consistent, then so are our other mathemat-

ical theories.8

Could the axioms of set theory, and of all other areas of mathematics,

including arithmetic, be consistent but false (or vacuous)? Not if consistency

is understood standardly, as a claim about proofs, or set-theoretic models. One

could take the notion of consistency as primitive (an idea to which we return in

Section 2.3). But on what basis might we believe that, say, set theory is thus

consistent? Perhaps the standard answer is: on the basis that it is true, and truth

implies consistency (Frege [1980/1884, 106]; Woodin [2004, 31])! But this

answer, in tandem with the assumption that mathematical claims are true

independent of us, implies mathematical realism.

What, then, explains the justification of our belief that the axioms are true? In

other words, why is it rational or reasonable for us to believe those axioms? A

common answer outside of the philosophy of mathematics is that “[a]xioms are

mathematical statements that are self-evidently true” [Greene 2013, 184, italics

in original]. This is perhaps defensible in rudimentary cases.9 Consider the

Axiom of Extensionality, which says that if “two” sets have the same members,

then they are really one and the same (the converse is a logical truth in first-order

logic with identity). In symbols: ðxÞðyÞðzÞ½ðz 2 x ! z 2 yÞ ! ðx ¼ yÞ�. Set

theory without Extensionality has been explored (Friedman [1973]; Hamkins

[2014]; Scott [1961]). But this axiom is often taken to be some kind of truism

about sets. Similarly, the Axiom of Pairing says that for any “two” (perhaps not

distinct) sets, there is another containing just those two. That is: ðxÞðyÞð ∃ zÞðwÞ

½w 2 z ! ðw ¼ x v w ¼ yÞ�. This is also difficult to deny – though it is

unclear that any existential statement, even conditional on the existence of other

objects, could be self-evident.

8 Whether set theory, rather than another theory, or no theory, can serve as a “foundation” for

mathematics in any of the myriad senses that term have been discussed will be irrelevant. It is

certainly not unique in interpreting mathematics (see, e.g., Tsementzis & Haverson [2018]).

However, it is canonical in this respect, so I focus on it for concreteness.
9 Authors rarely say exactly what they mean by “self-evident.” But the idea seems to be that P is

self-evident when, if one understands P, one is thereby (defeasibly) justified in believing P

(the “thereby” would require explication).
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However, Extensionality and Pairing do not imply the existence of a single set!10

Set theory gets going with the Axiom of Infinity, written: ð∃ yÞððð∃ xÞðx 2 y&

ðzÞðz =2 xÞ& ðxÞðx 2 y! ð∃ zÞðz 2 y& ðwÞðw 2 z ! ðw 2 xvw ¼ xÞÞÞÞÞ:11

This says that there is an inductive set – that is, a set that (according to the usual

definitions) includes 0 and includes the number n + 1, whenever it includes n. It is

hard to see the point of calling the claim that something infinite exists “self-

evident” (Mayberry [2000, 10]).12Other axioms are still more doubtful. Consider

the Axiom of Replacement. This is a schema, not a single axiom. It says that for any

set, z, and any formula, Φ, such that, for every t 2 z, there is exactly one x with

Φ t; xð Þ, there exists a set that contains just those things, x, for which Φ t; xð Þ

holds for some t 2 z. Formally: ðaÞ½ðuÞðvÞðwÞðu 2 a&Φðu; vÞ&Φðu;wÞ !

u ¼ wÞ ! ð∃yÞðxÞðx 2 y ! ð∃ tÞðt 2 a&Φðt; xÞÞÞ�; where u, v, w, and y

are not free in Φ t; xð Þ. This has important consequences for set theory, like the

Reflection Principle (to which it is actually equivalent in the context of the other

axioms), which says that if a formula is true of the set-theoretic universe, V, then

it is already true in an initial segment, Vα, of it. The Axiom of Replacement is

even needed to prove that the number ω + ω exists. But it also implies the

existence of outrageously huge sets (though they are tiny for set theory!). Of a

relatively small such set, κ, Boolos, laments: “Let me try to be as accurate,

explicit, and forthright about my belief about the existence of κ as I can… I…

think it probably doesn’t exist” [1999, 121].

Finally, consider, again, AC. In the context of the other axioms, AC is

equivalent to the claim that every set is well-orderable (totally orderable so

that every non-empty subset of it contains a least element). Thus, AC ensures

that the set of real numbers, R, has a well-order. But what is that order? It cannot

be the standard order, since there is no least real number in any open subset of

real numbers, like (0, 1). In fact, it is consistent with ZFC (if that is consistent!)

that there is no definable well-order on R at all – that is, no well-order specified

by a formula, no matter how lengthy and baroque. Even if AC is true, it is not

self-evident!

Needless to say, if typical axioms like Infinity, Replacement, and Choice, are

not self-evident, then neither are speculative extensions of them, contra the

10 It is a classical logical truth that there is an x such that x ¼ x, since domains are defined to be non-

empty. But Extensionality and Pairing give us nothing beyond this, an assumption which can,

anyway, be dropped by adopting a free logic.
11 PA and ZF minus Infinity plus its negation are actually bi-interpretable (if the Axiom of

Foundation, to be discussed, is stated as a scheme of ϵ-induction). So Infinity is essential to

set theory, as opposed to arithmetic. See https://math.stackexchange.com/questions/315399/

how-does-zfc-infinitythere-is-no-infinite-set-compare-with-pa
12 The claim that there is an inductive (infinite) set must be clearly distinguished from the claim that

there are infinitely many things. Set theory, minus Infinity, proves the latter, but not the former.

The former proves Con(PA).
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rhetoric of some set theorists. Consider Gödel’s Axiom of Constructibility,

V ¼ L: Let PDef Að Þ refer to the set of all subsets of A definable in the structure

〈A;2 〉 by first-order formulas with parameters in A. Then V = L says that every

set lies in the following hierarchy obtained by transfinite recursion on the

ordinals: L0 ¼ ∅ ; Lαþ1 ¼ PDef ðLαÞ and Lγ ¼ ∪α< γ Lα for limit γ (Gödel

[1990/1938]). Is V = L true? The dominant narrative, originating with Gödel

himself (see his 1947 work), is that V = L must be false because it settles

undecidables – especially “large” large cardinal axioms – in the wrong way

(Maddy [1997, Pt II, § 4]; Magidor [2012]; Woodin [2010, 1]). But Fontanella

points out that Gödel’s “feeling that [V=L’s] consequences would be implaus-

ible is not unanimously shared” [2019, 32]. Indeed, Jensen writes, “I personally

find [V = L] a very attractive axiom” [1995, 398]. He continues, “I do not

understand … why a belief in the objective existence of sets obligates one to

seek ever stronger existence postulates [large cardinal axioms]. Why isn’t

Platonism compatible with the mild form of Ockham’s razor …?” [1995,

401].13 Devlin thinks that V = L “is … a natural axiom, closely bound up

with what we mean by ‘set’ …. [and] tends to decide problems in the ‘correct’

direction” [1977, 4]. And Eskew queries, “The axiom V = L … settles ‘nearly

all’ mathematical questions …. [I]t can be motivated by constructivist views

that are still widely held today …. [A] wealth of powerful combinatorial

principles… follow from… V = L…. [So] why hasn’t there been… a stronger

push to adopt it as a[n] … axiom for mathematics?” [2019).]14

1.3 Analyticity

So appeal to self-evidence does not afford a satisfying answer to the justificatory

challenge. How else might we explain the justification of belief in the axioms?

Another prominent proposal is that the axioms are analytic, “a system of

tautologies, the basic elements of which are true by virtue of the meanings of

13 See Arrigoni [2011] for an explication and defense of Jensen’s position.
14 Consequences of V= L that are said to be particuarly counterintuitive (besides that there does not

exist a so-called Measurable Cardinal) include there is a definable but nonmeasurable set of

reals, and the Diamond Principle holds. Gödel [1947] contains further arguments against the

axiom. On the other hand, Fraenkel, Bar-Hillel, and Levy [1973, 108–109] contain additional

arguments supporting V = L, and Simpson compares skepticism about large cardinals (the larger

of which imply that V = L is false) to (rational) religious skepticism in his [2009]. Friedman

quips, “[some s]et theorists say that V = L has implausible consequences… [and] claim to have a

direct intuition which allows them to view these as so implausible that this provides ‘evidence’

against V = L. However, mathematicians [like me] disclaim such direct intuition about compli-

cated sets of reals. Many… have no direct intuition about all multivariate functions from N into

N” [2000]! Arrigoni and Friedman emphasize that criteria of success and intuitiveness vary, and

that “ZFCþ V ¼ L … is fruitful in consequences, furnishes powerful methods for solving

problems and introduces the concept of constructability, important throughout set theory”

(Arrigoni & Friedman [2012, 1361, italics in original]).
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the terms used” [Singer 1994, 8]. In light of Quine [1951a], most philosophers

are careful to distinguish epistemic from metaphysical versions of this

proposal.15 The metaphysical version says that the meaning of the term “2 ”

somehow makes it the case that the axioms are true. This is hard to even

understand. How could a meaning make a fact? The epistemic version says

that it is “part of the concept of 2 ” that standard axioms hold, and those of us

with that concept are, therefore, defeasibly justified in believing those axioms

(at least assuming that we are justified in believing that there are any sets at all).

Supposing for the moment that the notion of epistemic analyticity is in good

order, it is doubtful that standard axioms are so analytic. First, it is hard to

imagine a compelling argument that it is just “part of the concept of 2 ” that

standard axioms hold, given that some theorist actually denies them. Consider

the Axiom of Foundation (orRegularity). This schema says that for any formula,

Φ, if there is a set that satisfiesΦ, then there is a minimal x that does – an x such

that Φ and no y2 x such that Φ. In symbols: ð∃ xÞΦ! ð∃ xÞ½Φ& ðyÞ

ðy 2 x! ∼Φ
�Þ� (where Φ does not contain y and Φ* is just Φ but contains

y whereverΦ contains free occurrences of x). This is equivalent to a Principle of

Set-theoretic Induction, according to which, if Φ is a formula such that, when-

ever all members of x satisfy Φ, x does too, then every set satisfies Φ.

Foundation is widely alleged to be the foremost example of a nontrivial analytic

axiom (Boolos [1971, 498], Shoenfield [1977, 327]). It is just part of what we

mean by “2 ” that every set is formed at some stage of a transfinite generation

process via the powerset and union operations, beginning with ∅ – so that no

set contains itself, and there are no infinitely descending chains of membership,

for example. This “platitude” is equivalent to Foundation, given the

other axioms. It says, if V 6¼ L, that all sets lie in a liberalized version of

Gödel’s L, the Cumulative Hierarchy: V0 ¼ ∅ , Vαþ1 ¼ PðVαÞ, and

Vγ ¼ ∪ β<γVβÞ, for limit γ, where P(x) is the ordinary powerset operation

(i.e., the set of all subsets of the set x, even those that are not definable in the

structure 〈x;2〉). But far from being beyond dispute, many doubt the coherence

of the resulting “iterative conception of set” (ICS)! What, after all, could

“formation” and “generation” mean when these terms are applied to the likes

of (pure) sets (Ferrier [Forthcoming], Potter [2004, § 3.3])? Rieger complains:

“[ICS] does not embody a philosophically coherent notion of set. There is a

coherent constructivist position …. There is also a coherent anti-constructivist

15 See Boghossian [2003] for the distinction.
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position…. But [ICS] is an uneasy compromise between these two: it pays lip-

service to constructivism without really meaning it” ([2011, 17–18].16

Even if it were just “part of the concept of 2 ” that standard axioms hold,

however, epistemic analyticity is a suspect idea. If we were worried that some

sets fail to occur at any Vα, then under the assumption that it is “part of the

concept of 2 ” that all sets do, we should just worry that our concept of set is not

satisfied. Maybe instead of sets, there are only set-like things, which are similar

to sets except that some fail to live in any Vα (because they are, say, self-

membered). Epistemic analyticity makes justification too cheap. For any claim

of interest, S, consistent with the other claims that we believe, we could be

justified in believing S simply by enriching our concepts! Of course, if every

consistent concept of set – or, more carefully, theory in the language of first-

order set theory – were satisfied (in a class model, under a face-value Tarskian

satisfaction relation), then we might be able to rule out the worry that ours is

not. But, if that were the case, then the whole project of seeking out the “true”

set-theoretic axioms would be misconceived. Every consistent set-theoretic

sentence that was not a logical truth would be like the Parallel Postulate

(understood as a claim of pure mathematics). By Gödel’s Second

Incompleteness Theorem, this includes (a coding of) the claim that PA is

consistent, if it is.

1.4 Reflective Equilibrium

So the axioms of set theory seem to be neither self-evident nor analytic in a

useful sense. Is there any other way to explain the justification of our belief in

them? Russell proposes what is perhaps the canonical way. He writes, “We tend

to believe the premises because we can see that their consequences are true,

instead of believing the consequences because we know the premises …. But

the inferring of premises from consequences is the essence of induction; thus the

method in investigating the principles of mathematics is really an inductive

method, and is substantially the same as the method of discovering general laws

in any other science” [1973/1907, 273–4]. Russell’s proposal is that, first, the

epistemic priority of mathematical principles is opposed to their logical priority.

Although we deduce theorems from axioms, we are justified in believing the

axioms because we are justified in believing the theorems that they imply, rather

16 See also Azcel [1988, Introduction]. Advocates of the so-called logical conception of set, such as

Quine [1937] and [1969], reject the Axiom of Foundation too. Quine’s New Foundations (NF)

for mathematical logic proves the existence of a universal set, which contains itself. (The relative

consistency of NF is still officially an open problem. However, experts appear to be converging

on the view that it is consistent even relative to quite weak theories. See: https://mathoverflow

.net/questions/132103/the-status-of-the-consistency-of-nf-relative-to-zf)
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than the other way around. Second, the theorems that justify us in believing the

axioms need not be self-evident or analytic. They need only be initially plaus-

ible, or intuitive.

Russell’s method prefigures reflective equilibrium, championed by Goodman

and Rawls. Rawls writes, “Although … various judgments are viewed as firm

enough to be taken provisionally as fixed points, there are no judgments of any

level of generality that are… immune to revision” [1974, 8].17An attraction of the

method is that it analogizes the epistemology of mathematics to that of empirical

science, which is better understood. Gödel stresses that “the axioms need not… be

evident in themselves, but rather their justification lies (exactly as in physics) in the

fact that they make it possible for these ‘sense perceptions’ to be deduced” [1990/

1944, 121]. But neither Russell nor Gödel distinguishes the justificatory and

reliability challenges. The analogy at most holds for the former. Benacerraf

complains, “there is a superficial analogy …. [W]e ‘verify’ axioms by deducing

consequences from them concerning areas in which we seem to have more

direct ‘perception’ (clearer intuitions). But we are never told how we know

even these, clearer, propositions” [1973, 674, italics in original]. Field clari-

fies that “we [can] grant… that there may be positive reasons for believing in

[select theorems]. These … might involve … initial plausibility …. But

Benacerraf ’s challenge… is to… explain how our beliefs about these remote

entities can so well reflect the facts about them” [1989, 26, my emphasis].

We discuss the reliability challenge in detail in Section 3. For the present,

even the idea that the justification of our mathematical beliefs can be explained

in analogy with the justification of our empirical scientific ones is tendentious.

The problem is that there is disagreement over the data to be accounted for in

the mathematical case that has no apparent analog in the empirical one.18

Consider a paradigmatic disagreement over an empirical scientific theory, the

theory of dark matter. Those who reject the hypothesis of dark matter, like

Milgrom [2002, 45], and propose amendments to Newtonian gravity do so in

order to account for the same data.19 They do not disagree over it. But

disagreement in the foundations of mathematics seems characteristically to

17 See also Goodman [1955, 63–64].
18 This is why comments like the following are too quick. “Many realists … take the epistemo-

logical challenge to be one about … epistemic justification … .And they reply in the obvious

ways… by showing that their favorite theory of epistemic justification in general nicely applies

to the case of [mathematical] beliefs … .[T]his is not a promising way of understanding … the

epistemological challenge… . [W]hatever your theory of epistemic justification, it is hard to see

any special difficulties applying it to [mathematical] beliefs [Enoch 2009, 2].” (Enoch is actually

talking here about normative beliefs, although the more general context is both normative and

mathematical ones.)
19 For details, see Milgrom’s online overview here: http://ned.ipac.caltech.edu/level5/Sept01/

Milgrom2/paper.pdf See Merritt [2020] for a philosophical discussion of Milgrom’s program.
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