
Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Classical First-Order Logic 1

1 Introduction
Logic surely has something to do with reasoning. We say that someone has
reasoned poorly about something if they have not reasoned logically, or that
an argument is bad because it is not logically valid. There has been much
speculation over just what types of logical systems are appropriate for guid-
ing deductive reasoning. Some have suggested that classical first-order logic is
the ideal for guiding reasoning (for example, see Quine (1986), Resnik (1996)
or Rumfitt (2015)).1 Classical first-order logic has occasionally been dubbed
“the one true logic.”

Though there is much debate about the underlying issues, it is safe to say
that classical first-order logic has been prevalent in mathematics and philos-
ophy over the past century or so. There are good reasons for this. Classical
first-order logic has rules which are more or less intuitive, and it is surprisingly
simple given its strength. Plus, it is both sound and complete.2 As is common
in philosophy, however, there is no consensus on the primary status of classical
first-order logic. As indicated in Section 6, there are certain expressive limita-
tions to first-order logic and, as indicated in the later sections (7-9), there are
serious, well-developed rivals to classical logic.

This Element will examine classical first-order logic and then provide
a more thorough understanding of it by exploring some alternative logics.
In the first half, we provide the details of classical first-order logic. Then,
we consider three alternatives to the system we develop: classical higher-
order logic (Section 7), intuitionistic logic (Section 8), and para-consistent
logics (Section 9).3

CLASSICAL FIRST-ORDER LOGIC
2 Formal System

For our purposes, a logic includes a formal language and a deductive sys-
tem and/or a model-theoretic semantics.4 A formal language is like a natural

1 When discussing critical thinking and argument analysis, classical first-order logic, is usually,
but not always, the starting point. See, for example, Stebbing (1939) and Woods (2021).

2 We say what this means below.
3 There are a number of alternatives to classical first-order logic that we will not have space

to cover here. In particular, we omit modal logics (see Marcus (1995), for example) and
substructural logics (see Restall (2000), amongst others).

4 Sections 2-6 are based on Shapiro and Kouri Kissel (2020). More complete proofs and proof
sketches can be found there, or in most textbooks for formal logic. We include here only a few
of the complete proofs: those that are required to prove unique readability, as an example of
how proofs often go, and a proof of theorem 4.5 (The rule of Cut) Not all logics have both a
deductive system and model theory, but we will develop both for classical first-order logic here.

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Philosophy and Logic

language, such as English, Japanese, or Swahili, but with explicit and sim-
ple rules of composition. It has terms and components which come together
in a grammatical way. The deductive system is meant to capture reason-
ing presented in the language. The model theory gives meanings to the
terms in the language, and tells us which propositions are true in various
interpretations.

Section 3 develops a formal language with a rigorous syntax and grammar.
The formal language is a recursively defined collection of strings on a fixed
alphabet. Items in the formal language do not mean anything on their own – they
need the deductive system and model theory to give them meaning. Some items
correspond to items in natural language, and the deductive system and model
theory are designed to preserve this correspondence, at least approximately. An
argument is a non-empty collection of sentences in the formal language, one
of which is designated to be the conclusion. The other sentences (if any) in an
argument are its premises.

Section 4 sets up a deductive system for the language, in the spirit of natural
deduction. An argument is derivable if there is a deduction from some or all of
its premises to its conclusion. Section 5 provides a model-theoretic semantics.
An argument is valid if there is no interpretation (in the semantics) in which
its premises are all true and its conclusion false. This reflects the long-standing
view that a valid argument is truth-preserving.

In Section 6, we explore the relationship between the deductive system and
the model-theoretic semantics. We will be interested mostly in the relationship
between derivability and validity. We sketch two important theorems. The first,
soundness, will show that no deduction can start with a true premise and end
with a false conclusion. So, if an argument is derivable, then it is valid. Prov-
ing this shows that deductions preserve truth. The second, completeness, is the
converse of soundness. It shows that if an argument is valid, then it is derivable.
This demonstrates that there are “enough deductions”: all valid arguments are
derivable. We also briefly indicate other features of the logic, some of which
are corollaries to soundness and completeness.

3 Language
Here we develop the basics of the formal language we will use for classical
logic. As noted, a formal language is a recursively defined set of strings on a
fixed alphabet. Some parts of the formal language correspond to some parts
of natural language. This correspondence is not really a part of the formal
language, but noting these correspondences can help motivate the system.

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Classical First-Order Logic 3

3.1 Building Blocks
We start with analogues of singular terms, sometimes just called terms. These
are linguistic items whose function is to denote a person or object. We assume
a stock of individual constants. These are lower-case letters, near the beginning
of the Roman alphabet, with or without numerical subscripts:

a,a1,b23,c,d22, etc.
Constants are an analogue of proper names. We allow ourselves an infinity

of individual constants. Each constant is a single character, and so individual
constants do not have an internal syntax. Thus, we have an infinite alphabet.5

There are two roles that constants play. One is like that of proper names,
where a constant denotes a specific object or person (in each interpretation).
The other is to denote specific, but unspecified (or arbitrary), objects and
persons.6

We also assume a stock of individual variables. These are lower-case letters,
near the end of the alphabet, with or without numerical subscripts:

w,x,y12, z, z4, etc.
Variables are used to express generality. In ordinary language, some uses of
pronouns play the latter role, as in “When a dog is angry, it growls.”7

We next introduce function symbols. These allow complex terms correspond-
ing to: “5 + 3” and “the Marvel character played by Chadwick Boseman,” or
terms containing variables, like “the sister of x” and “x/y.” Function symbols
are lower-case letters, near the middle of the alphabet:

f,g,h, etc.
Each function has an arity, that is, the number of arguments it takes.

We now give a recursive definition of the terms of the language:

1. All individual constants and all variables are terms.
2. If t1, . . . tn are terms and f is an n-place function symbol, then ft1 . . . tn is a

term.
3. That’s all folks: every term is constructed in accordance with (1) and (2).

A term is closed if it contains no variables.
For each natural number n, we introduce a stock of n−place predicate let-

ters. These are upper-case letters at the beginning or middle of the alphabet.

5 This could be avoided by taking a constant like d22, for example, to consist of three characters,
a lowercase “d” followed by a pair of subscript “2”s.

6 Some authors use (free) variables for this role; others use different symbols for this, sometimes
called “individual parameters.”

7 Another use of pronouns is to denote a specific object or person, as supplied by the context. The
formal language has no analogue of this.

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Philosophy and Logic

A superscript indicates the number of places, and there may or may not be
a subscript. For example, A3,B3

2,D
3, etc, are three-place predicate letters. We

often omit the superscript when no confusion will result. We also add a special
two-place predicate symbol “=” for identity.

Zero-place predicate letters are sometimes called “sentence letters.” They
correspond to freestanding sentences whose internal structure does not mat-
ter. One-place predicate letters, called “monadic predicate letters,” correspond
to linguistic items denoting properties, adjectives, or common nouns like
“woman,” “large,” or “prime number.” Two-place predicate letters, called
“binary predicate letters,” correspond to linguistic items denoting binary rela-
tions, like “is a parent of” or “is shinier than.” Three-place predicate letters
correspond to three-place relations, like “lies on a straight line between.” And
so on.

The non-logical terminology of the language consists of its individual con-
stants and predicate letters. The symbol “=”, for identity, is not a non-logical
symbol. In taking identity to be logical, we provide explicit treatment for it in
the deductive system and in the model-theoretic semantics. Most authors do the
same, but there is some controversy over the issue (see Quine (1986) Chapter
5). If K is a set of constants and predicate letters, then we give the fundamen-
tals of a language L1K= built on this set of non-logical terminology. It may
be called the first-order language with identity on K. A similar language that
lacks the symbol for identity (or which takes identity to be non-logical) may be
called L1K, the first-order language without identity on K.

3.2 Atomic Formulas
IfV is an n-place predicate letter inK, and t1, . . . , tn are terms ofK, thenVt1 . . . tn
is an atomic formula of L1K=. Examples of atomic formulas include:

P4xaab,C1x,C1a,D0,A3aba.
The last one is an analogue of a statement that a certain relation (A) holds
between the objects (a,b,a). If t1 and t2 are terms, then t1 = t2 is also an atomic
formula of L1K=. It corresponds to an assertion that t1 is identical to t2.

If an atomic formula has no variables, then it is called an atomic sentence. If
it does have variables, it is called open. In the above list of examples, the first
and second are open; the rest are atomic sentences.

3.3 Compound Formulas
The final items of the lexicon are:
¬,∧,∨,→,∀,∃, (, )

We give a recursive definition of a formula of L1K=:

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Classical First-Order Logic 5

1. All atomic formulas of L1K= are formulas of L1K=.
2. If θ is a formula of L1K=, then so is ¬θ.

A formula corresponding to ¬θ roughly “says” that it is not the case that θ. The
symbol “¬” is called “negation,” and is a unary connective.

3. If θ and ψ are formulas of L1K=, then so is (θ ∧ ψ).

The wedge “∧” corresponds to the English “and” (when “and” is used to con-
nect sentences). So (θ∧ψ) can be read “θ and ψ.” The formula (θ∧ψ) is called
the “conjunction” of θ and ψ.

4. If θ and ψ are formulas of L1K=, then so is (θ ∨ ψ).

The symbol “∨” corresponds to “either … or … or both,” so (θ ∨ ψ) can be
read “θ or ψ.” The formula (θ ∨ ψ) is called the “disjunction” of θ and ψ.

5. If θ and ψ are formulas of L1K=, then so is (θ → ψ).

The arrow “→” roughly corresponds to “if … then … ,” so (θ → ψ) can be
read “if θ then ψ” or “θ only if ψ.”

The symbols “∧,” “∨,” and “→” are called “binary connectives,” since they
serve to “connect” two formulas into one. Some authors introduce (θ ↔ ψ) as
an abbreviation of ((θ → ψ) ∧ (ψ → θ)). The symbol “↔” is an analogue of
the locution “if and only if.”

6. If θ is a formula of L1K= and v is a variable, then∀vθ is a formula of L1K=.

The symbol “∀” is called a universal quantifier, and is an analogue of “for all”;
so ∀vθ can be read “for all v, θ.”

7. If θ is a formula of L1K= and v is a variable, then ∃vθ is a formula of L1K=.

The symbol “∃” is called an existential quantifier, and is an analogue of “there
exists” or “there is”; so ∃vθ can be read “there is a v such that θ.”

8. That’s all folks: all formulas are constructed in accordance with rules
(1)– (7).

Clause (8) allows us to do inductions on the complexity of formulas. If a
certain property holds of the atomic formulas and is closed under the operations
presented in clauses (2)–(7), then the property holds of all formulas. Here is a
simple example:

Theorem 3.1 Every formula of L1K= has the same number of left and right
parentheses. Moreover, each left parenthesis corresponds to a unique right
parenthesis, which occurs to the right of the left parenthesis. Similarly, each

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Philosophy and Logic

right parenthesis corresponds to a unique left parenthesis, which occurs to the
left of the given right parenthesis. If a parenthesis occurs between a matched
pair of parentheses, then its mate also occurs within that matched pair. In other
words, parentheses that occur within a matched pair are themselves matched.

Proof. By clause (8), every formula is built up from the atomic formulas using
clauses (2)–(7). The atomic formulas have no parentheses. Parentheses are
introduced only in clauses (3)–(5), and each time they are introduced as a
matched set. So at any stage in the construction of a formula, the parentheses
are paired off.

We next define the notion of an occurrence of a variable being free or bound
in a formula. A variable that immediately follows a quantifier (as in “∀x” and
“∃y”) is neither free nor bound. We do not even think of those as occurrences of
the variable. All variables that occur in an atomic formula are free. If a variable
occurs free in θ or in ψ, then that same occurrence is free in ¬θ, (θ∧ψ), (θ∨ψ),
and (θ → ψ). The same goes for bound variables. That is, the (unary and binary)
connectives do not change the status of variables that occur in them. All occur-
rences of the variable v in θ are bound in ∀vθ and ∃vθ. Any free occurrences of
v in θ are bound by the initial quantifier. All other variables that occur in θ are
free or bound in ∀vθ and ∃vθ, as they are in θ.

For example, in the formula (∃x(Axy ∨Bx) ∧ Bx), the occurrences of “x” in
Axy and in the first Bx are bound by the quantifier. The occurrence of “y” and
the last occurrence of “x” are free. In ∀x(Ax → ∃xBx), the “x” in Ax is bound by
the initial universal quantifier, while the other occurrence of x is bound by the
existential quantifier. The above syntax allows this “double-binding.” Although
it does not create any ambiguities (see below), we will avoid such formulas, as
a matter of taste and clarity.

The syntax also allows so-called vacuous binding, as in ∀xBc. This, too, will
be avoided in what follows. Some treatments of logic rule out vacuous binding
and double binding as a matter of syntax. That simplifies some of the treatments
below and complicates others.

Free variables correspond to placeholders, while bound variables are used to
express generality. If a formula has no free variables, then it is called a sentence.
If a formula has free variables, it is called open.

3.4 Features of the Syntax
Before turning to the deductive system and semantics, we mention a few fea-
tures of the language as developed so far. This helps draw the contrast between
formal languages and natural languages like English.

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Classical First-Order Logic 7

We assume at the outset that all of the categories are disjoint. For example,
no connective is also a quantifier or a variable, and the non-logical terms are
not also parentheses or connectives. Also, the items within each category are
distinct. For example, the sign for disjunction does not do double-duty as the
negation symbol, and, perhaps more significantly, no two-place predicate is
also a one-place predicate.

One difference between natural languages like English and formal languages
likeL1K= is that the latter are not supposed to have any ambiguities. The policy
that the different categories of symbols do not overlap, and that no symbol does
double-duty, avoids the kind of ambiguity, sometimes called “equivocation,”
that occurs when a single word has two meanings: “I’ve got a bat in my garage”
(a piece of baseball equipment or a flying mammal?). But there are other kinds
of ambiguity. Consider the English sentence:

Mohammed is tall and Xenia is smart or James is silly.

It can mean that Mohammed is tall and either Xenia is smart or James is silly,
or else it can mean that either both Mohammed is tall and Xenia is smart, or
else James is silly. An ambiguity like this, due to different ways to parse the
same sentence, is sometimes called an “amphiboly.” If our formal language did
not have the parentheses in it, it would have amphibolies. For example, there
would be a “formula” A ∧ B ∨ C. Is this supposed to be ((A ∧ B) ∨ C), or is it
(A ∧ (B ∨ C))? The parentheses resolve what would be an amphiboly.

Can we be sure that there are no other amphibolies in our language? That
is, can we be sure that each formula of L1K= can be put together in only one
way? The answer is yes, and our next task is to show this.

Let us temporarily use the term “unary marker” for the negation symbol (¬)
or a quantifier followed by a variable (e.g., ∀x,∃z).

Lemma 3.2 Each formula consists of a string of zero or more unary markers
followed by either an atomic formula or a formula produced using a binary
connective, via one of clauses (3)–(5).

Proof. We proceed by induction on the complexity of the formula or, in other
words, on the number of formation rules that are applied. The Lemma clearly
holds for atomic formulas. Let n be a natural number, and suppose that the
Lemma holds for any formula constructed from n or fewer instances of clauses
(2)–(7). Let θ be a formula constructed from n+1 instances. The Lemma holds
if the last clause used to construct θ was either (3), (4), or (5). If the last clause
used to construct θ was (2), then θ is ¬ψ. Since ψ was constructed with n
instances of the rule, the Lemma holds for ψ (by the induction hypothesis),
and so it holds for θ. Similar reasoning shows the Lemma to hold for θ if the

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Philosophy and Logic

last clause was (6) or (7). By clause (8), this exhausts the cases, and so the
Lemma holds for θ, by induction.

Lemma 3.3 If a formula θ contains a left parenthesis, then it ends with a right
parenthesis, which matches the leftmost left parenthesis in θ.

Proof. This proof also proceeds by induction on the number of instances of
(2)–(7) used to construct the formula. Clearly, the Lemma holds for atomic for-
mulas, since they have no parentheses. Suppose, then, that the Lemma holds
for formulas constructed with n or fewer instances of (2)–(7), and let θ be con-
structed with n + 1 instances. If the last clause applied was (3)–(5), then the
Lemma holds since θ itself begins with a left parenthesis and ends with the
matching right parenthesis. If the last clause applied was (2), then θ is ¬ψ, and
the induction hypothesis applies to ψ. Similarly, if the last clause applied was
(6) or (7), then θ consists of a quantifier, a variable, and a formula to which we
can apply the induction hypothesis. It follows that the Lemma holds for θ.

Lemma 3.4 Each formula contains at least one atomic formula.

Proof. The proof again proceeds by induction on the number of instances of
(2)–(7) used to construct the formula.

Theorem 3.5 Let α, β be nonempty sequences of characters on our alphabet,
such that αβ (i.e., α followed by β) is a formula. Then α is not a formula.

Proof. If α contains a left parenthesis, then the right parenthesis that matches
the leftmost left parenthesis in αβ comes at the end of αβ, and so the matching
right parenthesis is in β. So, α has more left parentheses than right parentheses.
By Theorem 3.1, α is not a formula. So now suppose that α does not contain
any left parentheses. By Lemma 3.2, αβ consists of a string of zero or more
unary markers followed by either an atomic formula or a formula produced
using a binary connective, via one of clauses (3)–(5). If the latter formula was
produced via one of clauses (3)–(5), then it begins with a left parenthesis. Since
α does not contain any parentheses, it must be a string of unary markers. But
then α does not contain any atomic formulas, and so by Lemma 3.4, α is not a
formula. The only case left is where αβ consists of a string of unary markers
followed by an atomic formula, either in the form t1 = t2 or Pt1 . . . tn. Again,
if α just consisted of unary markers, it would not be a formula, and so α must
consist of the unary markers that start αβ, followed by either t1 by itself, t1 =
by itself, or a predicate letter P, and perhaps some (but not all) of the terms
t1, . . . , tn. In the first two cases, α does not contain an atomic formula, by the
policy that the categories do not overlap. Since P is an n-place predicate letter,

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Classical First-Order Logic 9

by the policy that the predicate letters are distinct, P is not an m-place predicate
letter for any m , n. So the part of α that consists of P followed by the terms is
not an atomic formula. In all of these cases, then, α does not contain an atomic
formula. By Lemma 3.4, α is not a formula.

These theorems are enough to show that there is no amphiboly in our lan-
guage. Though just an indication of how the proof goes is provided here, the
reader can find the complete proof in Shapiro and Kouri Kissel (2020).

Theorem 3.6 Let θ be any formula of L1K=. If θ is not atomic, then there is
one and only one among (2)–(7) that was the last clause applied to construct θ.
That is, θ could not be produced by two different clauses. Moreover, no formula
produced by clauses (2)–(7) is atomic.

Proof. This proof considers each of clauses (2)–(7) in turn to show there is no
amphiboly for any of them. By Clause (8), either θ is atomic or it was produced
by one of clauses (2)–(7). Thus, the first symbol in θ must be either a predicate
letter, a term, a unary marker, or a left parenthesis. If the first symbol in θ is a
predicate letter or term, then θ is atomic. In this case, θ was not produced by any
of (2)–(7), since all such formulas begin with something other than a predicate
letter or term. If the first symbol in θ is a negation sign “¬,” then θ was produced
by clause (2), and not by any other clause (since the other clauses produce
formulas that begin with either a quantifier or a left parenthesis). Similarly, if θ
begins with a universal quantifier, then it was produced by clause (6), and not
by any other clause, and if θ begins with an existential quantifier, then it was
produced by clause (7), and not by any other clause. The only case left is where
θ begins with a left parenthesis. In this case, it must have been produced by one
of (3)–(5), and not by any other clause. We only need to rule out the possibility
that θ was produced by more than one of (3)–(5). To take an example, suppose
that θ was produced by (3) and (4). Then θ is (ψ1 ∧ψ2) and θ is also (ψ3 ∨ψ4),
where ψ1,ψ2,ψ3, and ψ4 are themselves formulas. That is, (ψ1 ∧ψ2) is the very
same formula as (ψ3 ∨ ψ4). By Theorem 3.5, ψ1 cannot be a proper part of ψ3,
nor can ψ3 be a proper part of ψ1. So ψ1 must be the same formula as ψ3. But
then “∧” must be the same symbol as “∨,” and this contradicts the policy that
each of the symbols are different. So θ was not produced by both Clause (3)
and Clause (4). Similar reasoning takes care of the other combinations.

This result is sometimes called “unique readability.” It shows that each for-
mula is produced from the atomic formulas via the various clauses in exactly
one way. If θ was produced by clause (2), then its main connective is the initial
“¬.” If θ was produced by clauses (3), (4), or (5), then its main connective is
the introduced “∧,” “∨,” or “→,” respectively. If θ was produced by clauses

www.cambridge.org/9781108987004
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-98700-4 — Classical First-Order Logic
Stewart Shapiro , Teresa Kouri Kissel 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Philosophy and Logic

(6) or (7), then its main connective is the initial quantifier. We apologize for the
tedious details. We included them to indicate the level of precision and rigor
for the syntax.

4 Deduction
We now introduce a deductive system, D, for our languages. As above, we
define an argument to be a non-empty collection of sentences in the formal lan-
guage, one of which is designated to be the conclusion. If there are any other
sentences in the argument, they are its premises. We use “Γ,” “Γ′,” “Γ1,” etc., to
range over sets of formulas, and we use the letters “ϕ,” “ψ,” “θ,” uppercase or
lowercase, with or without subscripts, to range over single formulas. We write
“Γ,Γ′” for the union of Γ and Γ′, and “Γ, ϕ” for the union of Γ with {ϕ}.

We write an argument in the form 〈Γ, ϕ〉, where Γ is a set of sentences, the
premises, and ϕ is a single sentence, the conclusion. Remember that Γ may
be empty. We write Γ ⊢ ϕ to indicate that ϕ is deducible from Γ, or, in other
words, that the argument 〈Γ, ϕ〉 is deducible in D. We may write Γ ⊢D ϕ to
indicate the deductive system D. We write ⊢ ϕ or ⊢D ϕ to indicate that ϕ can
be deduced (in D) from the empty set of premises. The rules in D are chosen
to match inferential relations concerning the English analogues of the logical
terminology in the language.

We define the deducibility relation by recursion. We start with a rule of
assumptions:

• (As) If ϕ is a member of Γ, then Γ ⊢ ϕ.

We thus have that {ϕ} ⊢ ϕ; each premise follows from itself. We next pres-
ent two clauses for each connective and quantifier. The clauses indicate how
to “introduce” and “eliminate” sentences in which each symbol is the main
connective.

First, recall that “∧” is an analogue of the English connective “and.” Intui-
tively, one can deduce a sentence in the form (θ ∧ ψ) if one has deduced θ and
one has deduced ψ. Conversely, one can deduce θ from (θ ∧ ψ), and one can
deduce ψ from (θ ∧ ψ):

• (∧I) If Γ1 ⊢ θ and Γ2 ⊢ ψ, then Γ1,Γ2 ⊢ (θ ∧ ψ).
• (∧E) If Γ ⊢ (θ ∧ ψ), then Γ ⊢ θ; and if Γ ⊢ (θ ∧ ψ), then Γ ⊢ ψ.

The name “(∧I)” stands for “∧-introduction”; “(∧E)” stands for “∧-
elimination.”

Since the symbol “∨” corresponds to the English “or,” (θ ∨ ψ) should be
deducible from θ, and (θ ∨ ψ) should also be deducible from ψ:

www.cambridge.org/9781108987004
www.cambridge.org

