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Gödel’s Incompleteness Theorems 1

Introduction
The life of the mathematician is governed by the following two simple
principles: for any mathematical assertion A, if it has a proof it is true, and
conversely, if A is true – that is, if A is to be granted the status of a theorem –
A must have a proof.

Into this neat correspondence between mathematical truth and mathematical
proof, indeed into this soundest and most venerable of all the human sciences,
namely mathematics, Gödel introduced a small, filament-like crack – albeit
with a number of essential caveats. And whether mathematicians will ever
have to face the consequences of Gödel’s theorems, or whether a cordon sani-
taire exists around mathematics, immunizing its core areas from the effects of
incompleteness, as some have conjectured,1 the fact is that mathematics had
changed forever after 1931 – for those who cared to ponder the matter.

The Incompleteness Theorems: what are they about? What do they say
about the mathematician’s everyday concept of truth – not to mention every-
one else’s? Do the Incompleteness Theorems have even broader implications,
for example for the computational nature of the mind, or for quantum phys-
ics, or, as some have suggested, for the organization of society and the logical
consistency of self-government? Concerning the proof, which is based on the
Liar Paradox, is it a “parlor trick,” as Gödel suggested to Kreisel on a walk one
day?2 Or is it a masterpiece of logical methodology?

The logician has questions of their own: are the Incompleteness Theorems
fundamentally about self-reference, about the existence of fixed points for
formulae in, say, the language of arithmetic? Do they rely essentially on diag-
onalization and paradoxes? Or are there diagonal/self-reference–free proofs of
them? Can semantic notions such as truth and definability be eliminated from
the statement of the theorems and their proofs and, if so, are the syntactic ver-
sions purely syntactic? How tied to the language of arithmetic, or indeed to any
particular language, are they? To which formal systems do they apply?

In this Element we weigh in on the logician’s sharper questions, setting
aside the broader questions raised by political scientists, theologians, and
others.3 In spite of Gödel’s early worries about their generality, the Incom-
pleteness Theorems have turned out to be incredibly plastic, appearing in as
many different (dis)guises and with as many different proofs as a Greek god in
pursuit of amour: syntactic, semantic, abstract or logic-free, liar-free, language-
free, “honest,” that is, such that coding and representability are presented in

1 See Macintyre’s [92].
2 See Kreisel’s Royal Society obituary of Gödel [80].
3 An exception is the Lucas–Penrose debate, which we (briefly) take up in Section 8.

www.cambridge.org/9781108986991
www.cambridge.org


Cambridge University Press
978-1-108-98699-1 — Gödel's Incompleteness Theorems
Juliette Kennedy 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Philosophy and Logic

complete detail; “mathematical,” treelike, arithmetic, nonarithmetic, proof by
recursively inseparable sets, proof by undecidability of the halting problem,
and so forth. And although both theorems are slightly unstable, in the sense
that with a little logical trickery in the form of so-called deviance, for example,
deviant provability predicates, or deviant notation systems, they can be made
to fail,4 they are at the same time remarkably robust.

Of particular interest to us is the classification of the various proofs of
the Incompleteness Theorems into the categories of syntactic and semantic –
categories, as we have argued elsewhere, that can be somewhat changeable.5

Accordingly we here explore the phenomenology of the syntax/semantics dis-
tinction, as seen through the prism of the Incompleteness Theorems. About the
semantic concept of truth in particular, it is striking that in spite of his embrace
of truth as a primitive notion in the 1940s, Gödel goes to great lengths to ban-
ish the concept of truth from the proof of the Incompleteness Theorems – in
deference, as he would later admit, to the anti-metaphysical tenor of the times.
We will also emphasize the role the theorems played in the transition in logic,
and especially in set theory, from a type-theoretic framework to a first-order
one. Gödel’s 19316 very evidently tracks this change.

If one looks back comprehensively on the logic of the 1920s, one can detect
slight indications coming from here and there that something on the order of
Gödel’s 1931 was coming, especially from E. Post, and, for the Second Incom-
pleteness Theorem, from Kuratowski.7 It must be said, however, that many
logicians, including Hilbert, hoped and indeed expected the opposite of the
results of 1931. All of this would be swept aside; on the side of premonition,
the technical machinery Gödel invented for the proof went far beyond what had
been done to date; and on the side of those expecting to achieve the goals of
the Hilbert Program, the proof left no doubt that the desiderata of that Program,
as stated, could not be carried out—shaking that program to its foundations, as
Kleene would write, without quite demolishing it.8

It is hard to imagine the undeveloped state of logic prior to 1931 – or nearly
so, considering Tarski’s 1926–8 Warsaw seminar on the elimination of quanti-
fiers, if not the Polish School in logic altogether; or considering Gödel’s 1929
doctoral thesis. Computability theory, which is intimately bound up with the
two Incompleteness Theorems, was in its infancy—in fact Gödel’s 1931 was a

4 See Section 4.1.
5 See [72].
6 Throughout this Element we follow the numeration of Gödel’s papers as given in the Collected

Works, vols. I–V. So “1931” refers to Gödel’s 1931 paper, while “1931” refers to the year 1931.
7 See Section 5.1.
8 [42], p. 127.
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central stimulus for the development of that field. The notion of a formal seman-
tics or even the logical notion of a model did not exist at the time, although
semantic notions were relied on sotto voce, more or less, to wit: the structure
of the natural numbers as it is put to use in Gödel’s thesis, and, more overtly,
albeit “piecewise” in Theorems V, IX, and X of Gödel’s 1931. The notion of
truth was famously and vociferously campaigned against by, for example, the
Vienna Circle, even so that the everyday mathematician could still entertain
the idea that in mathematics, truth simply meant the same thing as proof—and
indeed for today’s intuitionist this remains so. Logicians conflated first- and
second- (or higher) order logic, which Gödel’s 1929 Completeness Theorem
definitively separates. Finally, the concept of “finite computation” was not well
understood. Gödel and Herbrand in particular expressed doubts that an ade-
quate definition of the concept could be given, doubts which were only put to
rest in Gödel’s mind in 1936 with the advent of the Turing Machine.

On the level of syntax and semantics, one would be hard-pressed to find
the distinction laid out in, for example, Russell and Whitehead’s Principia,
which is essentially an interpreted system, whereas Gödel’s 1931 draws a
sharp distinction between the two.9 Here is Gödel patiently (or perhaps impa-
tiently) explaining the distinction between name and referent in a 1931 letter
to Zermelo, himself a figure of colossal importance for logic and set theory, in
response to Zermelo’s questioning the proof of the Incompleteness Theorems:

Namely, one can not set

n ∈ K∗
= [R(n); n],

because the symbol complex [R(n); n] has no meaning. A negation stroke,
after all, only has meaning with reference to a symbol complex that expresses
an assertion (with reference to the number 5, say, a negation stroke is mean-
ingless). But the symbol complex “[R(n); n]” does not express an assertion.
“[R(n); n]” means about the same as the following [English] words: “that
formula of Principia Mathematica which results from the n-th class sign by
substitution of the number n for the variable.” “[R(n);n]” is not itself that for-
mula . . . those words, however, obviously express no assertion, but are rather
the unique characterization of a formula (that is, of a spatial figure), just as,
say, the words “the first formula of that book” express no assertion, even
if perhaps the formula that is characterized by those words does express an

9 Grattan-Guinness in [52], p. 296 describes the situation thus.

Despite the attention given to the distinction between theory and metatheory in the
1920s with Hilbert’s revival of his proof theory, logicians still tended to conflate sym-
bol and referent; indeed, Professor J. Barkley Rosser once told me in reminiscence
that it was only with Gödel’s theorem that logicians realised how careful they needed
to be in this matter.
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assertion. For each particular number n, “[R(n); n]” thus is a name (a unique
description) for a particular formula (i.e., a spatial figure), and a negation
stroke over it therefore has just as little meaning as [it would], say, over
the formula “5 + n,” which, for every number n, is a name for a particular
natural number. The whole difficulty obviously is due to the fact that in meta-
mathematics there are, besides the symbols for numbers, functions, etc., also
symbols for formulas, and that one must clearly distinguish a symbol that
denotes a formula from that formula itself.10

Does mathematics remember what happened to it in 1931? Almost 100 years
after their publication, the Incompleteness Theorems appear to have had a
minor impact on the life of the working mathematician. What the theorems have
to say about the undecidability of certain Diophantine equations, for example,
has not really come to the surface outside of logic, if it ever will.

Mathematics goes on in spite of those theorems – a testament, perhaps, to its
great structural stability.

10 [47], pp. 425–427.
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THE FIRST INCOMPLETENESS THEOREM
1 The First Version of the Proof

Gödel’s proof of the First Incompleteness Theorem asks the viewer to shift their
perspective back and forth, from semantics to syntax and back again to seman-
tics, and back again to syntax. It is a hall of mirrors such as had never before
been seen in mathematics – though diagonal arguments, of which Gödel’s is a
supreme example, had been around at least since the time of Cantor’s proof of
the uncountability of the real numbers (if not earlier).

Gödel’s original, informal, and unpublished (in 1931) proof of the First
Incompleteness Theorem was semantic in flavor, based as it was on the undefin-
ability of truth versus the definability of the concept of provability with respect
to the arithmetic system S in which he worked, together with the soundness of
the system S. The observation is simply that the set of all S-provable sentences
is a subset of the set of all sentences in the language of S true in the natural
numbers – in fact the former is a definable subset of the latter. But the set of all
sentences in the language of S true in the natural numbers is not definable, on
pain of paradox. Thus the set of all S-provable sentences is a proper subset of
the set of all sentences in the language of S true in the natural numbers.11 From
Gödel’s 1964 letter to van Heijenoort:

Perhaps you were puzzled by the fact that I once said an attempted relative
consistency proof for analysis led to the proof of the existence of undecidable
propositions and another time that the heuristic principle and the first version
of the proof were those given in Sect. 7 of my 1934 Princeton lectures. But
it was precisely the relative consistency proof which made it necessary to
formalize either “truth” or “provability” and thereby forced a comparison of
the two in this respect. By an enumeration of symbols, sentences and proofs
within the given system, I quickly discovered that the concept of arithmetic
truth cannot be defined in arithmetic. If it were possible to define truth in
the system itself, we would have something like the liar paradox, showing
the system to be inconsistent …Note that this argument can be formalized to
show the existence of undecidable propositions without giving any individ-
ual instances. (If there were no undecidable propositions, all (and only) true
propositions would be provable within the system. But then we would have
a contradiction.)
In contrast to truth, provability in a given formal system is an explicit com-
binatorial property of certain sentences of the system, which is formally
specifiable by suitable elementary means.12

Gödel’s conclusion that truth cannot be defined internally in S depends on
arithmetization, namely an injective mapping from finite strings of symbols

11 See Theorem 1.0.1 for the exact proof of this remark.
12 See [47], p. 313.
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into the natural numbers N,13 together with the Fixed Point Theorem. We
explain these two concepts in Sections 2.1.2 and 2.1.5 respectively. Assum-
ing these two concepts are in place, and letting ⌜ϕ⌝ stand for the so-called
“Gödel-number” of ϕ (see below), the undefinability of truth follows:

Theorem 1.0.1 Let T be the set {⌜ϕ⌝ | N |= ϕ}.14 Then there is no formula
θ(x) in the language of arithmetic such that for all ϕ:

N |= θ(⌜ϕ⌝) if and only if N |= ϕ.

Proof. Assume to the contrary that there is such a θ(x). Let ϕ be a fixed point
of ¬θ(x).15 That is,

N |= ¬θ(⌜ϕ⌝) if and only if N |= ϕ.

IfN |= ϕ thenN |= θ(⌜ϕ⌝), a contradiction, by the definition of θ. IfN |= ¬ϕ

thenN |= θ(⌜ϕ⌝), by the definition of ϕ. This is also a contradiction, asN |= ¬ϕ

implies N |= ¬θ(⌜ϕ⌝), by the choice of θ.

With the above theorem in place, Gödel could now derive the initial version
of the First Incompleteness Theorem. Thus if P denotes the set of all Gödel-
numbers of statements provable in S (under some suitable coding of those sen-
tences fixed in advance), and T is again the set {⌜ϕ⌝ | N |= ϕ}, where ⌜ϕ⌝
denotes, as above, the Gödel-number of ϕ, then:

Theorem 1.0.2 P is a proper subset of T .

Proof. By soundness, if ⌜ϕ⌝ ∈ P, i.e., ϕ is provable, then ϕ is true. Thus
⌜ϕ⌝ is an element of T , i.e., P is a subset of T . P is definable in S by a
formula in the language of S, recalling Gödel’s remark above that “In contrast to
truth, provability in a given formal system is an explicit combinatorial property
of certain sentences of the system, which is formally specifiable by suitable
elementary means.” If P were identical to T , then T would be definable in S
by that same formula. But T is not definable by any arithmetic formula, by the
above Theorem 1.0.1. Thus P ⊊ T .

The theorem that truth is undefinable in the above sense is usually attributed
to Tarski, who published the proof in 1933 and the German translation in 1936
[124]. Gödel clearly had Tarski’s theorem in some form already in 1930. As
for the question of priority related to the theorem on the undefinability of truth,

13 In this Element the notation “N” is used to denote both the set of natural numbers and the
standard model of arithmetic. It will be clear from the context which is meant.

14 The notation “N |= φ” means that φ is true in the standard model N.
15 For a proof of the Fixed Point Theorem, which Gödel clearly knew in 1930, see Section 2.1.5.
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Gödel refers to Tarski in a footnote added at this point in the 1965 reprinting
of his 1934 Princeton Lectures, albeit somewhat acidly.16

In these 1934 Princeton Lectures Gödel ponders self-reference, remarking
that Russell and Whitehead’s prohibition of all self-referential statements is
“too drastic.”17 He cites the Fixed Point Theorem as a counterweight, as it pro-
vides a way, given “any metamathematical property f which can be expressed
in the system, to construct a proposition that says of itself that it has this
property.”18

Gödel inserts the “first version of the proof,” as he calls it, into section 7
of his 1934 Princeton Lectures, as mentioned in the above quote. Why didn’t
Gödel publish this first version, or even mention it, in his 1931 paper?19 He
later ascribed this to the “philosophical prejudices of the time”:

I have explained the heuristic principle for the construction of propo-
sitions undecidable in a given formal system in the lectures I gave
in Princeton in 1934 …The occasion for comparing truth and demon-
strability was an attempt to give a relative model-theoretic consistency
proof of analysis in arithmetic. This leads almost by necessity to such a
comparison.
However in consequence of the philosophical prejudices of our times 1.
nobody was looking for a relative consistency proof because i[t] was con-
sidered axiomatic that a consistency proof must be finitary in order to
make sense. 2. a concept of objective mathematical truth as opposed to
demonstrability was viewed with greatest suspicion and widely rejected as
meaningless.20

Gödel often spoke in this vein, that is, about the philosophical or positiv-
istic prejudices of the time, and indeed his published proof demonstrates the
great care he took in order to accommodate such prejudices. Unlike his ini-
tial, informal proof, the published proof avoids to the degree possible semantic
notions such as the notion of a model, of soundness, or of satisfaction in a

16 “For a closer examination of this fact see A. Tarski’s papers 1933a…” [42], p. 363. For more
on the question of priority with regard to the Undefinability of Truth Theorem see Feferman’s
[22]. See also Woleński’s [138]. Gödel also may have gone some way beyond Tarski’s theorem
in 1931 in the matter of model-theoretic semantics, based on the evidence of the mysterious
footnote 48a of 1931. On this point see Gödel’s correspondence with Zermelo in the Collected
works [47]. We discuss footnote 48a in Section 2.4.1.

17 [42], p. 362.
18 [43], p. 362.
19 The heuristic or, in Gödel’s words, “nonbinding” proof sketch of the First Incompleteness

Theorem that Gödel gives at the beginning of 1931 resembles more the proof from a noncom-
putable set given in Section 2.5.1 than the original proof, though it does employ the concept
of soundness. See Gödel’s correspondence with Zermelo in [47] for Gödel’s use of the term
“nonbinding.”

20 Gödel’s unsent letter to Balas, undated, [46], p. 10.
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structure.21 The caveat “to the degree possible” is meaningful; Gödel relies
on a somewhat semantic condition of ω-consistency in his proof, an assump-
tion that was later eliminated by Rosser [113], and the published syntactic
proof has other semantic aspects, which we take note of as the particular issue
arises.

Feferman explains Gödel’s avoidance of the concept of truth in his 1931 thus,
citing the above excerpt from Gödel’s unsent letter to Balas:

Here, in a crossed-out passage in an unsent reply to an unknown gradu-
ate student, I think we have reached the heart of the matter. Despite his
deep convictions as to the objectivity of the concept of mathematical truth,
Gödel feared that work assuming such a concept would be rejected by the
foundational establishment, dominated as it was by Hilbert’s ideas. Thus he
sought to extract results from it which would make perfectly good sense
even to those who eschewed all nonfinitary methods in mathematics . . .
Even more, once Gödel realized the generality of his incompleteness results
it was natural that he should seek to attract attention by formulating them
for the strong theories that had been very much in the public eye: theories
of types such as PM and theories of sets such as ZF (Zermelo-Fraenkel).
But if the concept of objective mathematical truth would be rejected in the
case of arithmetic, should not one expect an even greater negative reaction
to the case of theories of types or sets? All the more reason, then, not to
have any result depend on it, and no need then to express one’s convictions
about it.22

Feferman’s analysis notwithstanding, there is always the (rather remote) pos-
sibility that Gödel excised the concept of truth from the First Incompleteness
Theorem on the basis of hesitations of his own that he may have held at the time.
Seen in this light, the First Incompleteness Theorem may provide evidence for
an anti-truth stance, however short-lived.23

21 Gödel does invoke soundness in the informal sketch of the proof given at the beginning of 1931.
Also, Gödel’s Theorem V relies on the concept of “piecewise” truth in the standard model. We
discuss this point below in Section 2.3.1.

22 [24], pp. 160–161.
23 Evidence for this is somewhat sparse in the record, but it is there. See, for example, Gödel’s

remark in his 1933 Cambridge address:

The result of our previous discussion is that our axioms, if interpreted as meaningful
statements, necessarily presuppose a kind of Platonism, which cannot satisfy any
critical mind and which does not even produce the conviction that they are consistent.

[45], pp. 49-50. For a fuller discussion of this matter see Davis’s “What did Gödel believe and
when did he believe it?” [13]. See also Parsons, Platonism and mathematical intuition in Kurt
Gödel’s thought [107]. We do not attend here to the subtleties regarding the nature of Gödel’s
Platonism, its relation to truth, and in particular to what Gödel himself may have meant by the
term in 1933.
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Putting the role of truth aside for the moment, Gödel’s piercing clarity regard-
ing the syntactic and semantic aspects of the proof can be seen in the fact
that Gödel is always scrupulous to separate those elements of the proof that,
in his words, “have nothing to do with the formal system P”24 from the for-
mal concepts. In the instance just quoted, Gödel is observing that the concept
of a number-theoretic function being defined recursively from other number-
theoretic functions is, simply, formalism-independent. This as it might be called
“schematic” or modular approach made it easy for logicians to generalize the
proof to a range of formal and informal settings subsequently, an enterprise
that continues vigorously to this day.

2 Gödel’s “Intuitionistically Acceptable” Second Proof
of the First Incompleteness Theorem

2.1 Ingredients of the Proof
In our presentation of Gödel’s 1931 proof we largely conform to Gödel’s
original presentation, though we adopt, as is usually done, a first-order setting
rather than working in type theory. For a treatment of the proof including any
details omitted here the reader is referred to Lev Beklemishev’s brilliant survey
[4], and to Kleene’s introduction to [40], two of the deepest commentaries on
the Incompleteness Theorems in the ocean of literature on them.

The formal system for which the Incompleteness Theorems were proved is
a version of the simple (unramified) theory of types with the (second-order)
Peano axioms adjoined. Using rather PA as the base theory,25 the ingredients
of the proof are as follows.

2.1.1 ω-consistency

We let n stand for the numeral term s(s(· · · s(0) · · · )), where s is the successor
function symbol of the theory PA, the number of applications of the function
s is n, and 0 denotes the constant term zero. We now state the definition of
ω-consistency.

Definition 2.1.1 Let T be a theory extending PA.26 We say that T is ω-
consistent if it is not the case that there is a formula ϕ(x) in the language of
T such that the following hold simultaneously:

24 [40], p. 157.
25 See the Glossary for the signature of PA, and a list of the Peano axioms.
26 Alternatively, T can also be one of the weaker theories Q or R. See the Glossary for the definition

of Q and R.
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(i) T ⊢ ∃xϕ(x).
(ii) For all n, T ⊢ ¬ϕ(n).

Note that ω-consistency is weaker than (the semantic condition of) sound-
ness; at the same time it is stronger than (the syntactic condition of) mere
consistency. Of course, ω-consistency implies consistency.

2.1.2 Arithmetization/Gödel-Numbering

Arithmetization (a.k.a. Gödel-numbering) is a one-to-one mapping of finite for-
mal strings of the language of PA into the natural numbers. In Gödel’s 1931
coding every element of the signature is assigned a distinct odd number; strings
of symbols are then encoded with the help of the prime numbers via the map-
ping: 〈n1,n2, . . . ,nk〉 7→ 2n1 · 3n2 · · · pnk

k , where pk is the k-th prime. In this way
any formula or sentence ϕ corresponds to a number, its Gödel-number ⌜ϕ⌝;
and given any natural number, the formula it encodes (if the number is
the Gödel-number of a formula) can be recovered from its Gödel-number
because of prime factorization. Now it is easy to see that finite sequences
of formulas can be encoded; notably, finite proofs can now be assigned a
Gödel-number.

When it comes to the definability of coding, there is a subtlety here involving
the β-function, so-called (see below). The above coding is not in any obvi-
ous way definable (unless we have the exponential function in the vocabulary)
and while the (iterated) Cantor pairing function can be used to encode a finite
sequence of any given length n, for each n the formula used to encode the
sequence is different.27 However with the β-function one has a single formula
in plus and times that can encode sequences of any given length. Gödel uses the
β-function later in the paper to show that the undecidable sentences constructed
therein are arithmetic.

2.1.3 Primitive Recursion

Gödel defines the class of primitive recursive functions, as they are now
known, or, as Gödel calls them, the “recursive” functions. In contrast to Gödel-
numbering, which was a complete innovation at the time, primitive recursion
was known.28 The primitive recursive functions are defined as follows:

27 See Section 2.3.1 for the definition and an application of the β-function.
28 The phrase “primitive recursive” was coined by Rózsa Péter in 1928, the year Wilhelm Acker-

mann proved the existence of a recursive function that is not primitive recursive. See [3]. The
primitive recursive functions appear as early as in Richard Dedekind’s 1888 What are numbers
and what should they be? [17].
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