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1 Historical Roots

Although in retrospect others (Bernard Bolzano, Richard Dedekind) can be

viewed as precursors, set theory was largely the creation of a single individual,

Georg Cantor, beginning in the 1870s, and his key work (Cantor, 1915) remains

highly readable to this day. He launched the field with two results on questions

with ancient roots.

1.1 Strings to Ordinals

Pythagoreans noted that if the lengths of otherwise similar strings are in the ratio

2:1, the shorter sounds an octave higher. Why? Because it vibrates twice as

quickly. Inmodernmathematical language, if the graph of the displacement of the

center of the string with time approximates y ¼ cos x for the longer, it will

approximate y ¼ cos 2x for the shorter. No real string vibrates so simply, and a

better approximation for the long string would be y ¼ a1 cosþ a2 cos 2x; with

the amplitude a1 of the “fundamental” much larger than the amplitude a2 of the

“overtone.” By the eighteenth century, workers in analysis, the branch of math-

ematics beginning with calculus, were dealing with infinite trigonometric series:

y ¼ a1 cos xþ b1 sin xð Þ þ a2 cos 2xþ b2 sin 2xð Þ þ a3 cos 3xþ b3 sin 3xð Þ þ . . .

The “vibrating string controversy” engaging Leonhard Euler and others con-

cerned how wide a class of functions can be represented in this form. The dispute

exposed, beyond endemic deficiencies of rigor in the treatment of infinite series,

lack of a common understanding about what is meant by a function. The ensuing

nineteenth-century rigorization of analysis, besides banning any literal infinities

or infinitesimals, explaining contexts containing the symbol ∞ without assuming

it to denote anything in isolation, fixed on the maximally general notion of

function, under which any correlation between inputs and outputs counts, as

long as there is one and only one output per input. Improved rigor eventually led

to consensus about the existence of trigonometric series representations.

But with existence there come uniqueness questions. Could a function have

two different representations? Does the constant function zero have any other

than the trivial one with an ¼ bn ¼ 0 for all n? Bernhard Riemann showed it

does not if the sequence converges for all x. But what if one allows an

exceptional point for which convergence is not assumed? Enter Cantor. It

turns out that even then triviality holds (and, as a conclusion, we get what we

did not assume as a premise, convergence even at the exceptional point).

Indeed, one can allow two or any finite number of exceptional points. One

can even allow infinitely many as long as they are all isolated from one another,
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meaning that for each exceptional x there is a positive ε with no other excep-

tional points between x� ε and xþ ε. One can even allow a doubly exceptional

point, not isolated from other exceptional points. Indeed, one can allow two or

any finite number. One can even allow infinitely many as long as they are

isolated from one another. One can even allow a triply exceptional point. And so

on. And as one goes on, it becomes natural to switch from speaking in the plural

of the exceptional points to speaking in the singular of the set E of which they

are elements. What it means to treat E as a single item is to think of operations

being applicable to it. The relevant operation on sets Cantor called derivation,

discarding isolated points. Let E0 be E itself, and let Enþ1 be the derived set of

En. Reimann’s result was that uniqueness holds if E0 ¼ ∅ , the empty set, with

no elements. Cantor’s results were that uniqueness holds if any of

E1; E2; E3; . . . is empty. Moreover, if we let Eω be the intersection of the En,

the set of x belonging to all of them, uniqueness still holds if Eω ¼ ∅ .

Moreover, the results continue, with sets indexed by:

ωþ 1;ωþ 2;ωþ 3; . . .ωþ ω ¼ ω � 2;ω � 3;ω � 4; . . .ω � ω ¼ ω
2;ω3;ω4; . . .ω

ω

and more. Here are Cantor’s transfinite ordinal numbers, and, as the notation

suggests, he introduced an arithmetic for them, with addition, multiplication,

and exponentiation.

1.2 Quadrature to Cardinals

Euclid shows many geometrical figures can be constructed with straightedge

and compass, indicating the steps involved and proving they lead to the desired

result. Thus one can duplicate the square, or construct, given the side of a

square, the side of a square of twice the area, just by taking the diagonal of the

original square. To show a construction not possible is more difficult, and

requires an analysis available only with the modern coordinate methods,

which transform geometric into algebraic problems. Thus duplicating the

cube, constructing, given the side of a cube, the side of a cube of twice the

volume, turns out equivalent to obtaining a key number,
ffiffiffi

2
3
p

, from rational

numbers by addition, subtraction, multiplication, division, and extraction of

square roots. And this was proved impossible in the 1830s, disposing of an

ancient problem. For quadrature of the circle, constructing for a given circle a

square of equal area, the key number is π. Now, although
ffiffiffi

2
3
p

is not obtainable in

the way indicated, it is at least an algebraic number in the sense of a solution to a

polynomial equation:

anx
n þ an�1x

n�1 þ . . . þ a1xþ a0 ¼ 0
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with rational coefficients ai, namely, x3–2 ¼ 0. It was conjectured, however,

that π is not even algebraic in this sense. Joseph Liouville showed nonalgebraic

or transcendental numbers exist. Then e, the basis of the natural logarithms, was

shown to be one by Charles Hermite, and, finally, π by Ferdinand von

Lindemann. Between these last two, Cantor showed that the vast majority of

real numbers are transcendental.

Since the sets of algebraics and transcendentals are infinite, to say one has

more elements than the other requires a definition of when the transfinite

cardinal, or number of elements of one infinite set, A, is equal or unequal to

that of another, B. Cantor took as his standard of equality the existence of a

bijection between A and B, a relation under which each element of A is

associated with exactly one element of B, and vice versa. In the case of the set

N of natural numbers, the existence of a bijection with a set B means that the

elements of B can be enumerated or listed in a sequence indexed by 0, 1, 2, . . .,

as in Table 1. An infinite set whose elements can be so enumerated is called

denumerable, while a set that is either denumerable or finite is called countable.

The number of elements of a denumerable set Cantor called ℵ0 (pronounced

“aleph nought”). What the table shows is that signed integers and positive

rationals both have cardinal or size ℵ0; so do the signed rationals. Nowadays,

a finite sequence of keystrokes is transmitted electronically as a sequence of

zeros and ones, the binary numeral for some natural number that may be

considered a code for the sequence. This makes the set of such sequences

denumerable, in order of increasing code number. Then, since a polynomial

equation of degree n has at most n solutions, each algebraic number can be

denoted by an expression such as “the second smallest solution to

2x3 � 9x2 � 6xþ 3 ¼ 0” and given a code number accordingly. But their

denumerability was established in correspondence between Dedekind and

Cantor long before the digital age began.

By contrast, Cantor showed that the whole set R of real numbers (and hence

the set of transcendentals, left over when we remove the algebraics) is not

denumerable. No countable set can contain even just those whose decimal

Table 1 Denumerable sets

Set Enumeration

Natural numbers 0 1 2 3 4 5 6 7 8 . . .

Integers 0 1 −1 2 −2 3 −3 4 −4 . . .

Positive rationals 1/1 1/2 2/1 1/3 2/3 3/2 3/1 1/4 3/4 . . .
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expansion involves only 0s and 1s; or what is the same, all infinite zero-one

sequences; or what is the same, all sets of natural numbers, each such being

representable by the zero-one sequence with one in the nth place if and only if n

is in the set. This he established by his famous diagonal argument. Suppose we

have an enumeration of some set S of infinite zero-one sequences, as in Table 2.

Go down the diagonal, marked with asterisks. Take in order for each n the digit

appearing in the nth place in the nth row of the table. This gives 0100 . . . . Now

swap the zeros and the ones. This gives 1011 . . ., a sequence that does not

belong to the denumerable set S, since it differs in the nth place from the nth

sequence. Cantor called the cardinal of the real numbers or points of the line c.

Analogously to the results in Table 1 in this discussion, he showed that the

positive real numbers, or even just those in a finite interval, also have cardinal c,

as do pairs of real numbers, or equivalently complex numbers. He also intro-

duced an arithmetic, with addition, multiplication, and exponentiation, for his

cardinals.

Cantor’s audacious introduction of ω and ℵ when mathematicians had just

finished explaining away ∞ provoked a reaction. But Cantor’s theory won

acceptance among leaders in the rising generation fairly quickly (as examples

they put forth, such as the one-, two-, and three-dimensional Cantor set,

Sierpinski carpet, and Menger sponge, whose images appear all over the

Internet today, captured the imagination of amateurs). The leading mathemat-

ician David Hilbert insisted: “No one shall expel us from the paradise Cantor

created for us.”

2 The Notion of Set

Many objections turned on certain paradoxes. Cantor, unlike his contemporary

Gottlob Frege, never made the assumptions that led to these paradoxes, but he

did not make clear enough what assumptions he was making. His successors

had to be more clear and explicit. Explicit axiomatization began in the first

decade of the twentieth century with Ernst Zermelo (1908/1967). His system,

Table 2 The diagonal argument

Index Zero-one sequence

0 0* 0 0 0 0 0 0 0 0 . . .

1 1 1* 1 1 1 1 1 1 1 . . .

2 0 1 0* 1 0 1 0 1 0 . . .

3 1 0 1 0* 1 0 1 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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with additions and amendments, mainly by Abraham Fraenkel (1922/1967),

remains that accepted today, when it is recognized that the paradoxes result

mostly from confusing the notion of set behind the axioms of Zermelo–Fraenkel

set theory with Choice (ZFC) with other ideas.

2.1 Collections

The expression “a multiplicity of objects” begins singular but ends plural, and

may be understood as referring either to a plurality, a many, or to a universal, a

one as opposed to a many. Universals include properties, which are intensional,

meaning that two may be different even while having exactly the same

instances, as with the stock example being a coin in my pocket and being a

penny in my pocket, which are distinct properties even if I have no coins in my

pocket but pennies. They also include aggregates completely determined by

their components. One kind, topic of a theory called mereology, is a fusion of a

plurality of component parts into a single whole, in a way that permits different

pluralities to have the same fusion, as do the eight ranks and the eight files of a

chessboard, the fusion being the selfsame chessboard in either case. By contrast

we have collections, in which many are gathered into a one without losing track

of which many they were.

The notion of collection in Frege (1893) was that of an extension. Here we

start with all objects, and take what he called a concept (associated with a

predicate), and divide objects into those that fall under the concept (satisfy the

predicate) and those that do not. The collection of those that do is the extension

of the concept, so that the extensions of two concepts are the same if and only if

the concepts are coextensive, having exactly the same things falling under them.

Graphically, we may represent the unbounded range of all objects with which

we start as an unbounded blank page, and represent the extension as given by a

dividing line or curve separating objects inside from objects outside, as in

Figure 1. But for Frege, the extension is itself an object: If represented by a

dot, that dot must fall on the page on one side or the other of the division – but

which? That is the question indicated by the question marks in the figure.

Bertrand Russell raised an embarrassing issue about the extension R of the

concept: it is an extension that as an object is outside, not inside, itself. In the

case of the universal extension, V, the extension of is self-identical, V is inside

itself since everything is inside V. In the case of the empty extension ∅ , the

extension of nonself-identical, ∅ is outside itself since nothing is inside ∅ .

Hence ∅ is inside, and V is outside, the Russell extension R. But just as the

statement this very statement is false seems to be true if it is false and false if it is
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true, so R seems to be inside itself if outside itself, and outside if inside. This is

the Russell paradox as Russell (1902) put it to Frege.

Contrasting with this inconsistent “top down” notion of extension is the

“bottom up” notion of an ensemble. Here we start with a given “universe of

discourse,”whichmight be represented by a box, and a predicate will, like a curve

in a Venn diagram, mark off the ensemble of things in the universe that do satisfy

it from things in the universe that do not. The ensemble does not, however, itself

belong to the universe. A dot representing it would lie outside the box, as in

Figure 2. Implicit here is the possibility of iteration. We can add a new box atop

the original, to accommodate all the dots representing ensembles of things in the

lower box, and then more. But there are two ways to implement this idea.

On the layered approach of the theory of types, deriving from Russell (1908)

by way of Frank Ramsey (1925), we have a hierarchy with individuals at the

bottom type zero, collections called classes of type zero items at type one,

classes of type one items at type two, and so on. Even if we assume no items at

type zero, there will be one item at type one, the empty class ∅1 of type zero

items, and then two items at type two, the empty class ∅2 of type one items, and

the singleton class ∅1g2
�

of the one item at type one. At type three, there will

be four items, as in Table 3. With one item at type zero, there will be two at type

•

Out

In

Figure 2 An ensemble

Out

•?

•?

In

Figure 1 An extension
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one, then four, then sixteen. But with only finitely many individuals, there will

only ever be only finitely many items of any one type. For mathematical

purposes, Russell assumed infinitely many individuals.

2.2 Sets

By contrast, we have the cumulative approach, where successive boxes are

nested, like Chinese boxes or Russian dolls, each higher one adding a new level

of collections called sets. In box zero are individuals or Urelemente; at level

one, sets whose elements are individuals; in box one, individuals and level-one

sets; at level two, any new sets whose elements come from box one; in box two,

box-one and level-two items; and so on.

In ZFC, we consider only pure sets, without individuals. There then will be

no items at level zero, one item, the empty set ∅ , at level one, in box one. As for

level two, from the one item in box one can be formed two sets: the empty set ∅

and its singleton ∅ gf , but the former we already have, so only the latter is new.

In box three will be four items, two new at level three. In box four will be sixteen

items, twelve new at level four. And so on, as in Table 4.

After all finite levels, we may recognize a box ω containing everything of

finite level but nothing new, and then form a levelωþ 1 for sets whose elements

come from level ω, meaning from any finite level, but do not themselves appear

at any such level, containing as they do sets of arbitrarily high finite level. We

can then continue through the transfinite ordinals. Zermelo at first claimed for

his axioms only that they permitted none of the known deductions of contradic-

tions, and seemed adequate to develop Cantor’s set theory (as they are with

Fraenkel’s friendly amendments). Only later (as in Zermelo, 1930) did some-

thing like the picture in the table emerge.

The ideal of rigor is that one should list in advance all primitives, notions

assumed meaningful without definition, and postulates or axioms, results

assumed true without demonstration, and given these principles all further

Table 3 The layered hierarchy

…

4 Sixteen Items

3
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1
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Ø
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2
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1
}
2
}
3
, {Ø

2
,{Ø

1
}
2
}
3

1 Ø
1

0 No Items
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notions or results should be logically derived, by definition or deduction. In set

theory, there is just one primitive, written with a stylized epsilon symbol, x2 y,

read “x is an element of y” or “x is in y” or “y contains x.”All other notions must

be defined in terms of this and the logical notion of identity using the logical

operators in Table 5. A formula Φ is built up from atomic formulas x2 y and

x ¼ y using the five operations in the table.

Some minimal familiarity with logical notions and notations must be

assumed here (for a quick review, see Boolos, Burgess, and Jeffrey, 2002,

chapters 9 and 10), including an ability to recognize simple logical laws. In

particular, familiarity is assumed with the distinction between “free” and

“bound” occurrences of variables in a formula, those that are not and those

that are caught by a quantifier. For example, in the formula asserting the non-

emptiness of x, namely ∃yðy2 xÞ, the x is free but the y is bound. The latter could
be changed to z without changing the meaning. Other logical and set-theoretic

notions may be defined in terms of what we have so far, as in Tables 6 and 7, but

officially these are mere abbreviations.

Table 5 Primitive logical notions

Symbol Operation Reading

: Negation “not”

˄ Conjunction “and”

˅ Disjunction “or”

8 Universal quantification “for all”

∃ Existential quantification “for some” or “there exists”

Table 4 The cumulative hierarchy

… …

��+ 1 {Ø, {Ø}, {{Ø}}, {{{Ø}}}, …} and Many Other New Items

� No New Items

… …

4 Twelve New Items

3 {{Ø}}, {Ø,{Ø}}

2 {Ø}

1 Ø

0 No Items
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3 The Zermelo–Fraenkel Axioms

The axioms of the system ZFC will be presented next, in both words and

symbols, to be assumed without proof, but not without something in the way

of informal, intuitive justification.

3.1 Statement

The first axiom says sets with the same elements are the same. It has two

equivalent formulations:

Extensionality ð1Þ 8zðz2 x≡ z2 yÞ � x ¼ y; ð2Þ x⊆ y∧ y⊆ x� x ¼ y:

By convention, in displaying formulas initial universal quantifiers are omitted,

so what is meant is really 8x8y( ) where what is explicitly written is . As (2)

suggests, proofs of identities most often come in two parts, proving inclusion in

two directions. Extensionality implies that if there is a set y whose elements are

all and only the sets x satisfying a condition Φ, it is unique. That unique set, if it

exists, is denoted xjΦðxÞgf , and we have z2 xjΦðxÞgf if Φ(z). Frege’s incon-

sistent assumption would be an axiom of comprehension, according to which

Table 6 Defined logical notions

Abbreviation Definition Operation Reading

Φ � Ψ :ΦVΨ Conditional “if Φ then Ψ”

Φ≡Ψ Φ � Ψð Þ ˄ Ψ � Φð Þ Biconditional “Φ if and only if Ψ” or

“ Φ iff Ψ”

x 6¼ y :x ¼ y Nonidentity “x is distinct from y”

∃!xΦðxÞ ∃x 8 yðΦðyÞ≡ x ¼ yÞ Unique

existence

“there exists a unique”

Table 7 Defined set-theoretic notions

Abbreviation Definition Reading

x =2 y : x2 y “x is not an element of

[or not in] y”

x⊆ y 8z ðz2 x� z2 yÞ “x is a subset of [or

included in] y”

8x2yΦðxÞ 8xðx2 y� ΦðxÞÞ “for all x in y . . .”

∃x2yΦðxÞ ∃xðx2 yΛΦðxÞÞ “for some x in y . . .”
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xjΦðxÞgf always exists for any condition Φ. Applied to the condition x =2 x this

would give the Russell paradox, and it is not assumed in ZFC.

The second axiom says that if we already have some set u, we can at least

separate out from u those of its elements that satisfy a condition Φ to form

x2 ujΦðxÞg :f

Separation ∃y8xðx2 y≡ðx2 u∧Φ xð ÞÞÞ:

This is not a single formula, but rather a rule to the effect that anything of a

certain form counts as an axiom. The cases for differentΦ are called instances of

the scheme of separation. (Zermelo’s original formulation was vaguer.) Note

that separation implies there is no universal set of all sets V ¼ xj x ¼ xgf . If

there were, we could, by separation, obtain comprehension.

Further axioms state the existence of certain specific sets:

Pairing ∃y ðu2 y∧ v2 yÞ:
Union ∃y 8z2X 8x2 zðx2 yÞ:

With what we have so far, some basic existence results then become deducible,

those in Table 8. (The expression “family” used in the table may be used for any

set of sets.)

Separation gives us the empty set, since given any set u at all – and even

pure logic assumes there is at least one item in the domain our quantifiers

range over, which in the present case consists of sets – separation gives

x2 ujx =2 ugf , which is empty. It also gives twofold intersections, and by the

alternative definition, family intersections, if the family X has at least one

member u; also differences. Now given y containing u and v, we can separate

out the elements of y identical to one of those two, so pairing with separation

gives the unordered pair. Union with separation gives us family union. The

unordered triple and twofold union we then get using the alternative definitions.

The difference u� v is also called the relative complement of v in u. An

absolute complement �v ¼ xj x =2 vgf cannot exist, because v∪ � v would be

the nonexistent V.

The next two axioms are these:

Power ∃y8xðx⊆ u � x2 yÞ:
Infinitity ∃yðØ2 y∧8x2 yð xg2 yÞÞ:f

Power with separation gives the power set P xð Þ ¼ yjy⊆ xgf and also

y⊆ xj Φ yð Þg ¼ y2P xð ÞjΦ yð Þg:ff
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