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1 Second- and Higher-Order Logic

Second-order logic is a form of logic in which the rules of statement formation

permit quantification over relations and properties, in addition to the quantifi-

cation over individuals allowed in first-order logic. Thus, for example, the

statement

Napoleon won every battle he fought before Waterloo

is first-order, while the statement

Napoleon had all the properties of a great general

is second-order.

In higher-order logic, the idea underlying second-order logic is extended to

embrace quantification over higher-order entities such as properties of proper-

ties and relations between relations.

1.1 The Syntax and Semantics of Second-Order Logic

The vocabulary on which second-order logic1 is based is an extension of that of

first-order logic. A typical vocabulary for first-order logic – a first-order

vocabulary – consists of the following symbols:

• (Individual) constant symbols a, b, c, …

• (Individual) variables x, y, z, …

• Relation symbols P, Q,…. Each relation symbol is assigned a natural number

n ≥ 1 called itsmultiplicity.A relation symbol of multiplicity nwill be called

n-ary. A 1-ary relation symbol is called a predicate symbol

• Function symbols f, g, h, …. Each such symbol is assigned a number n ≥ 1

called itsmultiplicity.An operation symbol of multiplicity nwill be said to be

n-ary. A 1- or 2-ary function symbol is called unary or binary

• Logical operators ∧, ⋁, ¬,→, and↔

• Quantifiers ∃ and ∀

• Equality symbol =

• Punctuation symbols (,) and [,]

Relation symbols are also called second-level constants.

The terms of our logical vocabulary are now defined as follows:

(i) Any variable or name standing alone is a term.

(ii) If f is an n-ary operation symbol and t1; . . . ; tn are n terms, then

f t1 . . . ; tn is a term.

(iii) Nothing is a term unless it follows from (i) and (ii) that it is so.

1 Second-order logic first appears explicitly in Frege’s Begriffsschrift (1879).
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Formulas in a first-order vocabulary are defined as follows:

1. The following are formulas: (i) an n-ary relation symbol followed by n terms

and (ii) any expression of the form s = t, where s and t are terms. These are

known as atomic formulas.

2. If φ and ψ are formulas,2 so are ¬φ, φ ∧ ψ φ ⋁ ψ φ→ ψ, and φ↔ ψ.

3. If φ is a formula and x a variable, then both ∃x φ and ∀x φ are formulas. In

each of these formulas, the (occurrence of the) variable is said to be bound.

A(n) (occurrence of a) variable in a formula that is not bound is called free.

4. Nothing counts as a formula unless its being so follows from clauses 1 to 3.

A sentence is a formula in which each variable is bound in the aforementioned

sense. We write s 6¼ t as an abbreviation for :ðs ¼ tÞ.

Clause 3 encapsulates the ‘first-order’ nature of a first-order vocabulary, for it

licenses quantification over individual variables, which may be considered first-

level entities. A second-order vocabulary, or a vocabulary for second-order logic, is

an extension of a first-order vocabulary that also licenses quantification over

second-level entities such as relations. To be precise, a second-order vocabulary is

obtained by adding to a first-order vocabulary a collection of symbols X, Y, Z, …

called relations or second-level variables.3 Each relation variable is assigned a

natural number n ≥ 1 called its multiplicity. A relation variable of multiplicity n

will be called n-ary, and a 1-ary relation variable is called a predicate variable. The

formulas of a second-order vocabulary are definedby expanding clause1(i) to admit

as a formula any n-ary relation variable followed by n terms and expanding clause 3

to admit as formulas (∃X)φ and (∀X)φ for any formula φ and relation variable X.

Free and bound variables and sentences are defined as in the first-order case.

A second-order vocabulary may be considered as a many-sorted first-order

vocabulary. In a many-sorted first-order vocabulary, one is given a collection of

entities called sorts, and each variable or constant is assigned a particular sort.

Quantification is then restricted to each sort. Thus, in a second-order vocabu-

lary, the collection for each n ≥ 1 of n-ary relation variables may be taken to

constitute a separate sort and second-order quantification as first-order quantifi-

cation over the relevant sort.

We proceed to describe the semantics of second-order logic. Roughly speaking,

this is an extension of the semantics of first-order logic in which the relation

variables are interpreted as set-theoretic relations over the domain of interpretation

of the individual variables. In particular, predicate variables are interpreted as

subsets of the domain of interpretation.

2 We shall use lower-case Greek letters φ, ψ, α, β, γ to denote arbitrary formulas.
3 A second-order vocabulary can also contain function variables. We shall not consider this

possibility here.

2 Philosophy and Logic

www.cambridge.org/9781108986908
www.cambridge.org


Cambridge University Press
978-1-108-98690-8 — Higher-Order Logic and Type Theory
John L. Bell 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

We recall the semantics of first-order logic. This is based on the concept of a

structure. Given a first-order vocabulary L, let us suppose for specificity that the

individual variables of L are enumerated as a list v0; v1; . . . ; vn; . . . ; that the

relation symbols, function symbols, and individual constants of L are presented

as indexed lists Pi; i2 Ið Þ; fj;j2 J
� �

; ck; k 2Kð Þ, respectively, and that for

each i2 I; j2 J , the multiplicities of Pi; fj are the natural numbers n(i), m(j ),

respectively. Then an L-structure (also called an interpretation of L) is a triple

A ¼ A; Ri : i2 Ig; gj : j2 Jg; ek : k 2Kgf Þ;
���

where A, the domain or universe of A, is a non-empty set; Ri : i2 Igf is an

indexed family of relations on A, where, for each i2 I; Ri is n(i)-ary;4

gj : j2 Jg;

�

is an indexed family of operations5 on A, where each gj is m(j)-

ary; and ek : k 2 kgf is an indexed set of elements ofA – the designated elements

ofA. We call Ri; gj; ek the denotations of Pi; fj; ck; respectively, inA.

Now let a ¼ a0; a1; . . .ð Þ be a countable sequence of elements of A (such a

sequence will be referred to henceforth as an A-sequence). For any term t, we

define its interpretation tðA;aÞ in ðA; aÞ as follows:

(i) ck
ðA;aÞ ¼ ek

6

(ii) v
ðA;aÞ
n ¼ an

(iii) For j 2 J, terms t1; . . . ; tmðjÞ; fjt1 . . . t
A;að Þ

mðjÞ ¼ gj t
ðA;aÞ
1 ; . . . ; t

ðA;aÞ
mðjÞ

� �

For a natural number n and b 2 A, we define

½nj b�a ¼ a0; a1; . . . ; an�1; b; anþ1; . . .ð Þ:

For a formula φ, we define the relation a satisfies φ in A,

A⊨aφ;

as follows:

1) for terms t and u,

A⊨a t ¼ u⇔ tðA;aÞ ¼ uðA;aÞ

2) for terms t1; . . . ; tnðiÞ,

A⊨aPit1 . . . tnðiÞ ⇔Ri t1
ðA;aÞ

; . . . ; t
ðA;aÞ

nðiÞ

� �

3) A⊨a :φ⇔ not A⊨a φ

4) A⊨a φ∧ψ⇔A⊨a φ and A⊨aψ

4 When n(i) = 1, Ri is a property defined on A, which may be identified with a subset of A.
5 An n-ary operation on a set A is a function An ¼ A� . . .� A→A.
6 Thus, the interpretation of ck in (A, a) is just its denotation in A.
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5) A⊨a φ⋁ψ⇔A⊨a φ or A⊨aψ

6) A⊨a φ→ψ⇔ if A⊨a φ, then A⊨aψ

7) A⊨a φ↔ψ⇔A⊨a φ if and only if A⊨aψ

8) A⊨a ∃vnφ⇔ for some b2A;A⊨ ½nj b�αφ

9) A⊨a 8vnφ⇔ for all b2A;A⊨ ½nj b�αφ

A formula φ is true in A if A⊨a φ for every A-sequence a and satisfiable in A if

A⊨a φ for some A-sequence a. For sentences, satisfiability and truth in a structure

coincide. If a sentence σ is true in A, we write A⊨ σ and call A a model of σ.

IfA⊨:σ,we say that σ is false inA. If Σ is a set of sentences of L,A is amodel

of Σ, writtenA⊨Σ, if each member of Σ is true inA. The sentence σ is a (first-

order) logical consequence of Σ, written Σ⊨ σ, if σ is true in every model of Σ. σ

is (logically) valid if ∅ ⊨ σ, that is, if σ is true in every interpretation of L.

Now the semantics of first-order logic is readily extended to second-order

logic. Given a second-order vocabularyL0 extending a first-order vocabulary L,

we suppose that for each n ≥ 1, the n-ary relation variables of L0 are enumerated

as a list V
ðnÞ
0 ; V

ðnÞ
1 ; . . . . If A is a set, an L0-sequence of relations on A is a double

sequenceR ¼ R
ðnÞ
m : m ¼ 0; 1; . . . n ¼ 1; 2; . . .

� �

of relations on A such that

for each n, R
ðnÞ
m is n-ary.

For a natural number n and an n-ary relation Q on A, we define [m|Q]R to be

the result of replacing R
ðnÞ
m by Q in R.

IfA is an L-structure and R an L0-sequence of relations on A, we extend the

notion of satisfaction to L0-formulas by means of the rules (in which, for

simplicity, we have suppressed reference to the A-sequence a):

10) A⊨ R ∃V
ðnÞ
m φ⇔ for some n-ary relation Q on A, A⊨ ½mjQ�Rφ

11) A⊨ R 8VmðnÞφ⇔ for any n-ary relation Q on A, A⊨ ½mjQ�Rφ

Clauses 10 and 11 constitute the core of the idea of a second-order interpret-

ation. Clause 11 in particular asserts that in a second-order interpretation, a

universal second-order quantifier ‘∀X’ is understood to mean ‘for all relations

or subsets X of the domain’.

The notions of truth, satisfiability model, and logical consequence then

extend automatically to second-order sentences.

1.2 The Expressive Power of Second-Order Logic: Second-Order
Arithmetic

Second-order logic has vastly more expressive power than first-order logic. For

example, students of mathematical logic soon come to learn that the property of

having a finite domain is not expressible in first-order terms, that is, there is no

set Σ of first-order sentences such that the models of Σ are precisely the
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structures with finite domains. By contrast, the property of having a finite

domain can be expressed by the single second-order sentence as follows:

Fin 8X ½½8x∃!yX ðx; yÞ∧8x8y8z½X ðx; yÞ∧X ðz; yÞ→ x ¼ z�→ 8y∃xX ðx; yÞ��;

where X is a binary relation variable and ∃!yφ(y) is an abbreviation for the

sentence ∃y8x½φðxÞ↔ x ¼ y�, which expresses ‘there is a unique y such that

φ(y)’. Thus, Fin says that ‘any binary relation which is the graph of an injective

function of the domain into itself is surjective’. And this holds if and only if the

domain is finite.

Second-Order Arithmetic. Mathematical concepts are often presented by

means of postulates (sometimes called axioms) formulated as sentences of

first- or second-order logic. In writing such sentences, it is customary to place

binary operation symbols between arguments rather than in front of them: thus,

for example, one writes xþ y instead of þxy.

The logical vocabulary for arithmetic includes a unary function symbol s,

two binary function symbols + and ×, and an individual constant 0. The

standard interpretation R of this vocabulary is the structure based on the

familiar natural number system, specified as follows:

domain of N: the set N ¼ 0; 1; 2; . . . gf of natural numbers

denotation in N of s: the (immediate) successor operation • þ 1 on N

denotations inN of + and×: the usual operations of addition and multiplication

on N

denotation in N of 0: the natural number zero

The domain and successor operation of the standard interpretation may be

represented by the following diagram:

ð�Þ 0→ 1→ 2→ 3→ . . .

in which each arrow proceeds from an element to its successor.

The postulates for basic first-order arithmetic (BFOA) are the following:

B1 8x8yðx 6¼ y→ sx 6¼ syÞ

B2 8x 0 6¼ sx

B3 8xðx 6¼ 0→ ∃yðx ¼ syÞÞ

B4 8x xþ 0 ¼ x

B5 8x8y xþ sy ¼ sðxþ yÞ

B6 8x x� 0 ¼ 0

B7 8x8y x� sy ¼ ðx� yÞ þ x:

Each of these postulates is true inN. The first three express familiar facts about

the successor operation:
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B1 Distinct natural numbers have distinct successors.

B2 Zero is the successor of no natural number.

B3 Every non-zero natural number is a successor.

The next two postulates tell us how to add in this notation:

B4 Adding 0 has no effect.

B5 ðxþ yÞ þ 1 ¼ xþ ðyþ 1Þ.

In this notation, each numeral 1, 2, 3, 4,… is represented by a string of s’s of the

appropriate length followed by 0, as in

1 ¼ s0 2 ¼ ss0 3 ¼ sss0 4 ¼ ssss0; . . . :

BFOA has a property known as incompleteness, which means that there are

certain sentences true in the standard interpretation B that are not (first-order)

logical consequences of BFOA or are, simply, independent of BFOA. For

instance, although each of the sentences

0 6¼ s0; s0 6¼ ss0; ss0 6¼ sss0; . . .

is a logical consequence of BFOA, the corresponding generalization

(a) 8x x 6¼ sx

is not. Similarly, none of the following generalizations is a logical consequence of

(BFOA), though each of their particular instances is:

(b) 8x 0þ x ¼ x

(c) 8x8y8z xþ ðyþ zÞ ¼ ðxþ yÞ þ z

(d) 8x8y xþ y ¼ yþ x

(e) 8x 0� x ¼ 0

(f) 8x8y sx� y ¼ ðx� yÞ þ y

(g) 8x8y x� y ¼ y� x

To establish the independence of (a)–(g) from the postulates of BFOA, we must

supply a model of BFOA, that is, an interpretation in which B1–B7 are true, but

in which (a)–(g) are false. It is not difficult to check that the following interpret-

ation B does the job:

domain of B: the set of natural numbers together with two additional distinct

objects $ and@ denotation of s: indicated by the following diagram, in which

each arrow leads from a member of the domain to its successor:

(**)
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denotations of + and ×: these are as usual when the arguments are both natural

numbers. When one or both arguments is/are $ or @, the values are given by

the following tables, in which n is any natural number and n> is any non-zero

natural number:

+ n $ @ × 0 n> $ @

N @ $ n 0 $ @

$ $ @ $ $ 0 @ @ @

@ @ @ $ @ 0 $ $ $

The incompleteness of BFOA basic implies that it also fails to be

categorical. A set of postulates is said to be categorical if all of its models

are isomorphic (Greek iso: ‘same’ and morphe: ‘form’) in the sense that

the same diagram serves for all of them, apart from the relabelling of

nodes.7 The non-categoricity of basic arithmetic can be seen immediately

from the fact that the standard interpretation N is not isomorphic to the

interpretation B defined previously. For no relabelling of nodes can ever

convert N’s diagram (*) into B’s diagram (**), since the latter contains

loops and the former doesn’t.

The incompleteness of BFOA is a kind of deductive weakness: certain

arithmetical sentences that one would expect to be logical consequences of it

follow turn out not to be. This weakness can be overcome by adding to it a

second-order postulate known as the Principle of Mathematical Induction.

Informally, this is the rule of arithmetic that states:

for any property P of natural numbers, if 0 has the property P and if, for any

number x, that x + 1 has the propertyP follows from the assumption that x has

the property P, then every number has the property P.

This can be expressed by the second-order sentence

Ind 8P½½P0∧8xðPx→PsxÞ�→ 8xPx�;

where P is a predicate variable.

Basic second-order arithmetic (BSOA) is obtained by adding Ind to BFOA.

We have seen that BFOA has models that differ in essential respects from the

standard interpretation N. But its second-order extension BSOA does not

suffer from this defect. In fact, BSOA is categorical; all of its models are

7 To be precise, an isomorphism between two L-structures A ¼ A; Ri : j2 Ig;fð

gi : j2 Jg; ek : k2Kgf Þf and A
0 ¼ A0

; R0
i : j2 Ig; g0i : j2 Jg;

���

e0k : k2Kgf Þ is a bijective

function F : A→A0 satisfying, for each i2 I; j2 J; k2K, the conditions F ekð Þ ¼ e0k;

F½Ri� ¼ R0I, for any a1; . . . ; amðjÞ 2A; g0jðFa1; . . . :;FamðjÞÞ ¼ Fðgjða1; . . . ; amðjÞÞÞ.
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isomorphic toN. The first, and crucial, step in demonstrating this is to establish

what we shall call the ‘exhaustion principle’.

Exhaustion principle. Models of Ind are exactly those interpretations in which

(the interpretations of the terms on) the list 0, s0, ss0, sss0, … exhausts the

whole domain of the interpretation.

To see this, suppose that A is a model of Ind. Let M ¼ f0A;

ðs0ÞA; ðss0ÞA; . . . g and let P be a predicate symbol such that PA ¼ M . (We

may assume without loss of generality that such exists by simply adding a new

predicate symbol to L and interpreting it as M.) Then P0 and 8xðPx→PSxÞ are

both true inA. SinceA⊨ Ind, it follows that ∀xPx is true inA. But the truth of

this means precisely that A ¼ M .

Conversely, suppose that the domain A of an interpretationA coincides with

f0A; ðs0ÞA; ðss0ÞA; . . . g. Let P be any property defined on A, and let P be a

predicate symbol such that PA ¼ P. (Again, we can always add a new predicate

symbol to L and interpret it as U.) Now assume that P0 and 8xðPx→PsxÞ are

both true inA. We claim that∀xPx is also true inA. If not, then some element of

A fails to satisfy PA. Since P0 is true inA, this element cannot be 0A and so is of

the form sn0ÞA
�

for some n ≥ 1 (here, sn0 is 0 preceded by n s’s). Let n be the

least number such that sn0ÞA
�

fails to satisfy PA. Then n ≥ 1 and Psn�10 is true

in A. Since 8xðPx→PsxÞ is true in A, it follows that Psn�10→Psn0 is true in

A, and hence, Psn0 is true inA. This contradicts the choice of n, and it follows

that ∀xPx must have been true in A after all. Accordingly,

P0∧ 8xðPx→PsxÞ→ 8xPx

is true inA; since the interpretation of Pwas an arbitrary property defined on A,

we conclude that the Ind is true in A.

Second-order successor arithmetic (SOSA) is defined to be the weakened

version of BSOAwhose postulates are B1, B2, and Ind.We show that SOSA is

categorical; each of its models being isomorphic to N.

To prove this, letA be a model of SOSA. Then, by the exhaustion principle,

the domain of A consists of the interpretations of the terms on the list

ð�Þ 0; s0; ss0; sss0;…

The truth of B2 in A implies that the sentences 0 6¼ s0; 0 6¼ ss0 ; 0 6¼ sss0 are

all true inA. It now follows from the truth of B1 inA that distinct members of

the list (*) receive distinct interpretations in A. (For if not, then, for example,

sss0 ¼ sssss0 would be true in A, and three applications of B1 would show

0 ¼ ss0 to be true in A, contradicting what we have already established.) It

follows that the diagram of A looks like:
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0A → 1A → 2A → 3A → . . . :

Clearly, this diagram can be relabelled so as to convert it into the diagram of the

standard interpretation N, namely,

0→ 1→ 2→ 3→ . . . :

Therefore, A and N are isomorphic.

By complicating this argument, it can be shown that each model of BSOA is

isomorphic to N so that BSOA is also categorical.

The categoricity of BSOA means that – unlike BFOA – it furnishes a

complete characterization of the natural number system in the following sense:

For any sentence σ in the vocabulary of BSOA, σ is a logical consequence of

BSOA if and only if σ is true in the standard interpretation N.

To prove this, we observe that if σ is a logical consequence of BSOA, it must be

true in every model of it, and so in particular, it must be true in N. Conversely,

suppose σ is true in N, and let A be any model of BSOA. Since BSOA is

categorical,A is isomorphic toN, so since σ is true inN, it must also be true in

A. Therefore, σ is a logical consequence of BSOA.

We finally note that Ind has several non-isomorphic models, which shows

that taken by itself, it is not categorical. These models are based on the following

four diagrams, in which the denotations of s and 0 are displayed: as usual, each

arrow goes from an element to its ‘successor’.

It is evident that no one of these diagrams can be converted into another by

relabelling nodes since they all contain different numbers of nodes: 1, 2, 3, ∞,

respectively. The interpretations are therefore non-isomorphic.

Note that B1 is false in interpretation (c), and B2 is false in both (a) and (b).

1.3 The Limitations of Second-Order Logic

While second-order logic has great expressive power, that very expressive

power is the source of certain limitations, which we now describe.

One of the most useful metatheorems of first-order logic is the compactness

theorem. This states that if each finite subset of a set Σ of first-order sentences has

a model, then so does Σ. But the fact that the property of having a finite domain is

expressible in second-order logic leads to the failure of the compactness theorem.
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This can be seen as follows. For each n ≥ 1write σn for the first-order sentence

∃v1∃v2 . . . ∃vn v1 6¼ v2 ∧ . . . ∧ v1 6¼ vn ∧ v2 6¼ v3 ∧ . . . ∧ v2 6¼ vn ∧ . . .ð

∧ vn�1 6¼ vnÞ

(σn says that the domain has at least n elements). Now, let Σ be the set of

sentences Fin; σ1; σ2; . . . gf where Fin is the second-order sentence express-

ing finitude formulated earlier. Then, clearly, each finite subset of Σ has a model,

but Σ itself does not. Accordingly, the compactness theorem fails for second-

order logic.

The most important metatheoretical feature of first-order logic is that the

semantic notion ⊨ of first-order logical consequence can be recast in a

purely syntactic form. This can be done by furnishing first-order logic8

with a derivability apparatus, thus turning into a deductive system. There

are various ways of doing this. Here, we describe a method based on the

idea of a formal derivation or proof, resting in its turn on a body of formal

axioms and rules of inference.

The axioms and rules of inference for classical first-order logic in L are

specified as follows. As axioms, we take all formulas of the form:

(i) α→ ðβ→ αÞ

(ii) ½α→ ðβ→ γÞ→ ½ðα→ βÞ→ ðα→ γÞ�

(iii) α→ ðβ→ α∧ βÞ

(iv) α∧ β→ α α∧ β→ β

(v) α→ α∨ β β→ α∨ β

(vi) ðα→ γÞ→ ½ðβ→ γÞ→ ðα∨ β→ γÞ�

(vii) ðα→ βÞ→ ½ðα→:βÞ→:α�

(viii) :α→ ðα→ βÞ

(ix) ðα↔ βÞ→ ½ðα→ βÞ∧ ðβ→ αÞ� ½ðα→ βÞ∧ ðβ→ αÞ�→ ðα↔ βÞ

(x) ::α→ α

(xi) αðtÞ→ ∃xαðxÞ 8xαðxÞ→ αðtÞ (x free in α and t free for x in α9)

(xii) x ¼ x

(xiii) αðxÞ∧ x ¼ y→ αðyÞ

As rules of inference, we take

Modus ponens
α; α → β

β
;

Quantifier Rules
β → αðxÞ
β → 8xαðxÞ

αðxÞ → β

∃xαðxÞ → β
ðx not free in βÞ:

8 We emphasize that here we are concerned with classical logic. In Section 3, intuitionistic logic

will enter the picture.
9 A term t is said to be free for x in a formula α if no variable occurring in t becomes bound when t is

substituted for x in α.
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