Index

!Kung society, 96

affluence
 and concept of ideal family size, 280
 longevity and, 143

affluence and female fertility
 childlessness acceptance, 282
 in China, 274–278, 280
 costs of assisted reproductive technology (ART), 255–256
 falling marriage rates, 119
 history of, 54–60
 in India, 270–274
 Malthusian paradox, 60–62
 same sex marriage, 126–127

affluence and male fertility
 Human Development Index (HDI), 137–144
 testicular cancer, 134–136

African emigration, 39–45

age and fertility
 assisted reproductive technology (ART), 110–111
 female, 109–110, 111–113
 oxidative stress, 224–225
 paternal age, 99
 alcohol and fertility, 155
 aneuploidy, 106, 110
 Anthropocene Era, 297
 antioxidant therapy, 316
 assisted reproductive technology (ART)
 age-dependent, 110–111
 consequences of, 254–258
 costs of, 255–256
 impact on fertility, 261–262
 increased success rate of, 111
 in Scandinavia, 257–258
 as solution to fertility rate collapse, 5
 in USA, 257

Baby Bonus policy (Australian), 122

breast cancer trends, 139–140

bloodletting, 314–316

bodybuilders’ paradox, 149, 205, 295

Black Death, 18

cancer rates and affluence, 137–144

capacitated state (sperm), 187

capacitation (sperm), 187, 189

Celtic curse, 314–316

cancer trends, 141–142

chemotaxis, 192

cultural infertility, 89

colonialism, 99

colloidal state (sperm), 187

colorectal cancer trends, 141–142

contraception
 cultural infertility, 89
 delaying childbearing years, 98–99
 menstrual cycle, 97–98

delaying childbearing years, 98–99

conception process
 female reproductive tract, 183
 fertilization process in, 187
 insemination timing, 183–186
 rhythm method of conception, 186

spermatozoa, 180–182

screening, 218–219

spermatozoon ripening in female tract, 186–189

testicular cancer, 134–136

Bisphenol A (BPA), 162–163

breast cancer trends, 139–140

contraception
 cultural infertility, 89
 delaying childbearing years, 98–99
 menstrual cycle, 97–98

331
Index

marriage, 94–100
monosomies, 108–109
paternal age, 99
sex education, 100–105
female reproduction and offspring care
generational divide, 92–94
grandparents and, 94
fertility and assisted reproductive technology (ART), 261–262
fertility measurement techniques, 19
fertility rate collapse, global
African, 39–45
Chinese, 37–38, 274–278
educated women delaying families, 3–4
and emergence of infertility, 19–22
evolutionary cost to, 8
in India, 38, 270–274
infertility trap in near future, 5–6, 278–299
lack of contraception research, 19–21
less desire to have large families, 3
lifestyle changes, 4
pollution, 4
rise in affluence and less child mortality, 2–3
solutions for, 4–5
trends of, 270
fertilization process, human complexity of, 190–199
in conception, 187
food production and female fertility, 60–62

genetics and male infertility
globozoospermia, 248
Klinefelter syndrome, 229–230
mutations, 230–231
natural selection and, 231–232
oxidative stress and, 289–291
as a spectrum, 231
Y chromosome deletion, 225–229
genetics and mutational load carried by children, 258–261

human fertility rate fall
in China, 274–278
in India, 270–274
infertility trap in near future, 278–299
trends of, 270

hunter-gatherer societies, 96–97
Huxley, Aldous, 91
hyperactivation (sperm), 187
hypospadias, 144

geriatric era, 45
global changes and human fertility educated women delaying families, 3–4
and emergence of infertility, 19–22
evolutionary cost to, 8
infertility trap in near future, 5–6
less desire to have large families, 3
lifestyle changes, 4
pollution, 4
rise in affluence and less child mortality, 2–3
globozoospermia, 248
government policies, pro-natalist
Baby Bonus policy, 122, 123–124
child tax credits, 122
to ensure younger generation takes care of elders, 124
immigration, 122–123
grandparents and reproductive capacity, 94

Harari, Yuval, 92
Human Development Index (HDI)
breast cancer, 139–140
cancer and socioeconomic status, 137–138
cancer trends, 137–140
colorectal cancer, 141–142
defined, 137
lung cancer, 141
prostate cancer, 140–141
skin cancer, 141
thyroid cancer, 141

Huxley, Aldous, 91

hyperactivation (sperm), 187
hypospadias, 144
ICSI (intra-cytoplasmic sperm injection) treatment
default treatment for infertility, 245–247
popularity rise of, 247–253
ideal family size, 280
immigration
and assisted reproductive technology (ART), 257–258
government policies, 122–123
as solution to fertility rate collapse, 4–5, 286
in vitro fertilization (IVF)
consequences of, 254–258
cost of, 283–284
development of, 238–245
ICSI (intra-cytoplasmic sperm injection) treatment for,
245–247
impact on mutational load carried by children, 258–261
importance of, 238
as infertility trap solution, 318–322
oocyte donation, 113–114
oocyte freezing, 115
pre-implantation genetic screening (PGS), 110
India, emigration from, 38
industrial revolution and female fertility, 54–60
infertility, human
age-dependent, 110–111
chromosomal abnormalities and, 105–109
emergence of, 19–22
ICSI (intra-cytoplasmic sperm injection) treatment for,
245–247
lack of contraception research, 19–21
infertility trap factors
demographic, 279–280
economic, 283–286
environmental and lifestyle factors, 5–6, 287–291
evolutionary, 291–299
social, 280–282
infertility trap solutions
antioxidant therapy, 316
counter oxidative stress, 312–316
prioritize reproductive toxicant removal, 316–317
removing reproductive pollutants, 310–312
sex education, 308–310
social adjustments, 322–325
in vitro fertilization (IVF) enhancements, 318–322
Kallmann syndrome, 150–151
Leeuwenhoek, Antony van, 13
longevity
advancements in primary health-care, 22–23
affluence and, 24–25, 143
decrease in infant mortality, 24
economic disparities in, 23–24
lifestyles and, 26–28
pollution and, 27
polypharmacy, 27–28
lung cancer trends, 141
male fertility problems
cryptorchidism, 144–145
declining sperm counts, 145–152
hypospadias, 144
summary of, 170–171
testicular cancer, 132–136
testicular dysgenesis syndrome (TDS), 145
male infertility
 genetic causes of, 225–232
hormones and, 203–205
human sperm function and, 206–211
ICSI (intra-cytoplasmic sperm injection) treatment for,
245–247
lack of understanding of, 205–206
and oxidative stress, 211–225
and sperm count decline, 172
Malthusian paradox, 60–62
Mann, Thaddeus, 215–218
Index

marijuana and fertility, 154–155
marriage
civil ceremonies for, 120–121
divorce rate, 117
and education, 80–84
falling rates of, 119
and infertility trap, 322–325
less need for, 118
options for, 119–120
and reproduction, 94–100
same sex, 126–127
traditional view of, 117
menstrual cycle, 97–98, 186
migration
to affluent countries, 32
from Africa, 39–45
from China, 37–38
European emigration rates, 33–34, 35
European immigration programmes, 32–33
from India, 38
monogamy (marital), 95
monosomies, 108–109
natural selection
chemotaxis, 192
in fertilization process, 190–199
grandads and, 94
and infertility trap, 291–299
and male infertility, 231–232
neoteny, 90–91
obesity and testosterone levels, 167–169
oestrogens
and feminization of fish, 159–160
reversibility of effects, 169–170
oestrus and conception, 183
oocyte donation, 113–114
oocyte freezing, 115
Our World in Data (online), 45–48
ovists, 13–14
oxidative stress and male infertility defined, 211
DNA damage, 219, 289–291
aetiology of, 211–212
and infertility trap, 312–316
lifestyle factors, 288–289
mutations in children, 220–225
reactive oxygen species (ROS), 212–215
Thaddeus Mann and, 215–218
paid parental leave programmes, 323–324
parabens, 161–162
Patau syndrome, 106
physiological intra-cytoplasmic sperm injection (PICSI), 251
pollution
and infertility trap, 310–312
and sperm count decline, 159–165
and testosterone levels, 288
polyandry, 95
polygamy, 95
polygyny, 95
polypharmacy defined, 28
and longevity, 27–28
Population Bomb, The, 15–16
population momentum defined, 29
and infertility trap, 279–280
projection inaccuracy, 7–8
UN projections for, 30
pre-implantation genetic screening (PGS), 110
progesterone, 191–192, 193
prostate cancer trends, 140–141
Purdy, Jean, 242–243
reactive oxygen species (ROS) history of, 212–213
process of, 212–213
and spermatozoa, 213–215
recreational drug use and longevity, 27
Red Queen: Sex and the Evolution of Human Nature, The, 96
rheotactic behaviour,
spermatozoan, 181
rhythm method of conception, 186
Rosner, Max, 45–47
same sex marriage, 126–127
Sapiens, 92
semen quality. See also sperm count decline
bisphenol A (BPA), 162–163
dibromochloropropane, 163–164
falling testosterone levels, 165–170
parabens, 161–162
sex education
importance of, 100–101
oocyte fragility, 101–105
as solution to infertility trap, 308–310
Short, Roger Valentine, 14–15, 16
Silent Spring, 15
skin cancer trends, 141
South Korea, 65–67
sperm count decline. See also semen quality
age and, 156
bodybuilders’ paradox, 149
decreased abstinence, 156–158
environmental and lifestyle factors, 154–159
epigenetics, 153–154
fast food, 158
genetics, 152–153
global, 287
Kallmann syndrome, 150–151
and male infertility, 172
oestrogens, 159–160, 169–170
pollution, 159–165
rates of global, 145–152
and sperm quality, 151
Western country diet, 158–159
spermatozoa and conception
biochemical changes to enable, 181
hibernation period, 187
human sperm function and, 206–211
reactive oxygen species (ROS), 213–215
rheotactic behaviour, 181
ripening of, 186–189
thermotactic behaviour, 182–183
Steptoe, Patrick, 238–242
Taiwan, 63–65
testicular anatomy, 204
testicular cancer
and affluence, 134–136
and fertility, 132–133
increasing rates of, 132, 135
testicular dysgenesis syndrome (TDS), 145
testosterone levels
and male infertility, 203–205
and obesity, 167–169
pollution and, 288
and semen quality, 165–170
thermotactic behaviour, 182–183
thyroid cancer trends, 141
trisomy
defined, 106
Down syndrome, 106–107
Klinefelter syndrome, 107–108
Patau syndrome, 106
Turner syndrome, 108–109
uncapacitated state
(spermatozoan), 187
United Nations Population Division (UNPD), 7–8
war and female fertility, 56–57
world population growth
history of, 18
uncertain future of, 45–51
Y-chromosome deletion and male infertility, 225–229
Yanagimachi, Ryuzo, 206–211
zona pellucida, 194