Index

!Kung society, 96

affluence
and concept of ideal family size, 280
longevity and, 143

affluence and female fertility
childlessness acceptance, 282
in China, 274–278, 280
costs of assisted reproductive
technology (ART), 255–256
falling marriage rates, 119
history of, 54–60
in India, 270–274
Malthusian paradox, 60–62
same sex marriage, 126–127

affluence and male fertility
Human Development Index (HDI), 137–144
testicular cancer, 134–136
African emigration, 39–45
age and fertility
assisted reproductive technology (ART), 110–111
female, 109–110, 111–113
oxidative stress, 224–225
paternal age, 99
alcohol and fertility, 155
aneuploidy, 106, 110
Anthropocene Era, 297
antioxidant therapy, 316
assisted reproductive technology (ART)
age-dependent, 110–111
consequences of, 254–258
costs of, 255–256
impact on fertility, 261–262
increased success rate of, 111

in Scandinavia, 257–258
as solution to fertility rate collapse, 5
in USA, 257

Baby Bonus policy (Australian), 122
biology of female reproduction
age of menarche, 85–88
fundamentals, 84–85
reproductive years, 88–90
bisphenol A (BPA), 162–163
Black Death, 18
bloodletting, 314–316
bodybuilders’ paradox, 149, 205, 295
breast cancer trends, 139–140
cancer rates and affluence, 137–144
capacitated state (sperm), 187
capacitation (sperm), 187, 189
Celtic curse, 314–316
chemotaxis, 192
childlessness acceptance, 282
Chinese emigration, 37–38
colorectal cancer trends, 141–142
conception process
female reproductive tract, 183
fertilization process in, 187
insemination timing, 183–186
method of conception, 186
spermatozoa, 180–182
spermatozoa ripening in female tract, 186–189
contraception
cultural infertility, 89
delaying childbearing years, 98–99
menstrual cycle, 97–98

© in this web service Cambridge University Press & Assessment www.cambridge.org
COVID-19, immigration and fertility rate, 122–123
and infertility trap, 297–298
cryptorchidism, 144–145
cumulus mass and fertilization, 193
decapacitation factors (sperm), 189
demographic transition
defined, 3, 67, 68
stages, 67–71
demographics
ability of nations to self-correct, 48–51
Australian, 123
complex dynamics of population change, 21–22
embryology and, 13–15
and emergence of infertility, 19–22
generational divide in reproduction, 92–94
geriatric era, 45
history of world population growth, 18
and infertility trap, 279–280
longevity, 22–28
migration and, 32–45
population momentum, 29–31
state of global population, 17
UN projections for population change in individual countries, 34–37
uncertain future of population growth, 45–51
dibromochloropropane, 163–164
DNA damage and oxidative stress, 289–291
Down syndrome, 106–107
economic prosperity
demographic transition, 67–71
and female fertility, 60–62
and fertility, 71–84
foreseeable end to, 285–286
India, 72–74
South Korea, 65–67
Taiwan, 63–65
education
and female fertility, 74–80
and marriage, 80–84
sex, 100–105
Edwards, Bob, 238–242
Ehrlich, Paul, 15–16, 18, 284
embryology
defined, 13
history of, 13–14
environmental and lifestyle factors and infertility trap, 287–291
oxidative stress and male infertility, 288–289
epigenetics and sperm count decline, 153–154
euploidy, 106
fast food and sperm count decline, 158
female fertility and age, 67–71, 109–110, 111–113
female fertility and age, solutions to assisted reproductive technology (ART), 110–111
family-friendly workplace policies, 116
oocyte donation, 113–114
oocyte freezing, 115
female fertility, socioeconomics of affluence and, 54–67, 71–84
education and, 74–80
importance of paid parental leave programmes, 121
marriage and, 80–84, 117–121
pro-natalist government policies, 121–125
and self fulfillment, 71–84
female reproduction
biology of, 84–90
chromosomal abnormalities and infertility, 105–109
contraception and menstrual cycle, 97–98, 186
Down syndrome, 106–107
and infant immaturity, 90–92
Klinefelter syndrome, 107–108
Index

marriage, 94–100
monosomies, 108–109
paternal age, 99
sex education, 100–105
female reproduction and offspring care
generational divide, 92–94
grandparents and, 94
fertility and assisted reproductive technology (ART), 261–262
fertility measurement techniques, 19
fertility rate collapse, global
African, 39–45
Chinese, 37–38, 274–278
educated women delaying families, 3–4
and emergence of infertility, 19–22
evolutionary cost to, 8
in India, 38, 270–274
infertility trap in near future, 5–6, 278–299
lack of contraception research, 19–21
less desire to have large families, 3
lifestyle changes, 4
pollution, 4
rise in affluence and less child mortality, 2–3
solutions for, 4–5
trends of, 270
fertilization process, human
complexity of, 190–199
in conception, 187
food production and female fertility, 60–62

genetics and male infertility
globozoospermia, 248
Klinefelter syndrome, 229–230
mutations, 230–231
natural selection and, 231–232
oxidative stress and, 289–291
as a spectrum, 231
Y chromosome deletion, 225–229
genetics and mutational load carried by children, 258–261

genetics and sperm count decline, 152–153, 219, 220–225
geriatric era, 45
global changes and human fertility
educated women delaying families, 3–4
and emergence of infertility, 19–22
evolutionary cost to, 8
infertility trap in near future, 5–6
less desire to have large families, 3
lifestyle changes, 4
pollution, 4
rise in affluence and less child mortality, 2–3
globozoospermia, 248
government policies, pro-natalist
Baby Bonus policy, 122, 123–124
child tax credits, 122
to ensure younger generation takes care of elders, 124
immigration, 122–123
grandparents and reproductive capacity, 94
Harari, Yuval, 92
Human Development Index (HDI)
breast cancer, 139–140
cancer and socioeconomic status, 137–138
cancer trends, 137–140
colorectal cancer, 141–142
defined, 137
lung cancer, 141
prostate cancer, 140–141
skin cancer, 141
thyroid cancer, 141
human fertility rate fall
in China, 274–278
in India, 270–274
infertility trap in near future, 278–299
trends of, 270
hunter-gatherer societies, 96–97
Huxley, Aldous, 91
hyperactivation (sperm), 187
hypospadias, 144
ICSI (intra-cytoplasmic sperm injection) treatment
default treatment for infertility, 245–247
popularity rise of, 247–253
ideal family size, 280
immigration
and assisted reproductive technology (ART), 257–258
government policies, 122–123
as solution to fertility rate collapse, 4–5, 286
in vitro fertilization (IVF)
consequences of, 254–258
cost of, 283–284
development of, 238–245
ICSI (intra-cytoplasmic sperm injection) treatment for, 245–247
impact on mutational load carried by children, 258–261
importance of, 238
as infertility trap solution, 318–322
oocyte donation, 113–114
oocyte freezing, 115
pre-implantation genetic screening (PGS), 110
India, emigration from, 38
industrial revolution and female fertility, 54–60
infertility, human
age-dependent, 110–111
chromosomal abnormalities and, 105–109
emergence of, 19–22
ICSI (intra-cytoplasmic sperm injection) treatment for, 245–247
lack of contraception research, 19–21
infertility trap factors
demographic, 279–280
economic, 283–286
environmental and lifestyle factors, 5–6, 287–291
evolutionary, 291–299
social, 280–282
infertility trap solutions
antioxidant therapy, 316
counter oxidative stress, 312–316
prioritize reproductive toxicant removal, 316–317
removing reproductive pollutants, 310–312
sex education, 308–310
social adjustments, 322–325
in vitro fertilization (IVF) enhancements, 318–322
Kallmann syndrome, 150–151
Leeuwenhoek, Antony van, 13
longevity
advancements in primary health care, 22–23
affluence and, 24–25, 143
decrease in infant mortality, 24
economic disparities in, 23–24
lifestyles and, 26–28
pollution and, 27
polypharmacy, 27–28
lung cancer trends, 141
male fertility problems
cryptorchidism, 144–145
decreasing sperm counts, 145–152
hypospadias, 144
summary of, 170–171
testicular cancer, 132–136
testicular dysgenesis syndrome (TDS), 145
male infertility
遗传 causes of, 225–232
hormones and, 203–205
human sperm function and, 206–211
ICSI (intra-cytoplasmic sperm injection) treatment for, 245–247
lack of understanding of, 205–206
and oxidative stress, 211–225
and sperm count decline, 172
Malthusian paradox, 60–62
Mann, Thaddeus, 215–218
marijuana and fertility, 154–155
marriage
 civil ceremonies for, 120–121
 divorce rate, 117
and education, 80–84
falling rates of, 119
and infertility trap, 322–325
less need for, 118
options for, 119–120
and reproduction, 94–100
same sex, 126–127
traditional view of, 117
menstrual cycle, 97–98, 186
migration
 to affluent countries, 32
 from Africa, 39–45
 from China, 37–38
European emigration rates, 33–34, 35
European immigration programmes, 32–33
from India, 38
monogamy (marital), 95
monosomies, 108–109
natural selection
 chemotaxis, 192
 in fertilization process, 190–199
 grandads and, 94
 and infertility trap, 291–299
 and male infertility, 231–232
neoteny, 90–91
obesity and testosterone levels, 167–169
oestrogens
 and feminization of fish, 159–160
 reversibility of effects, 169–170
oestrus and conception, 183
oocyte donation, 113–114
oocyte freezing, 115
Our World in Data (online), 45–48
ovists, 13–14
oxidative stress and male infertility
 defined, 211
 DNA damage, 219, 289–291
 aetiology of, 211–212
 and infertility trap, 312–316
lifestyle factors, 288–289
mutations in children, 220–225
reactive oxygen species (ROS)
 history of, 212–213
 process of, 212–213
 and spermatozoa, 213–215
recreational drug use and longevity, 27
Red Queen: Sex and the Evolution of Human Nature, The, 96
rheotactic behaviour,
 spermatozoan, 181
rhythm method of conception, 186
Rosner, Max, 45–47
same sex marriage, 126–127
Sapiens, 92
semen quality. See also sperm count decline
bisphenol A (BPA), 162–163
dibromochloropropane, 163–164
falling testosterone levels, 165–170
parabens, 161–162
sex education
importance of, 100–101
ovocyte fragility, 101–105
as solution to infertility trap, 308–310
Short, Roger Valentine, 14–15, 16
Silent Spring, 15
skin cancer trends, 141
South Korea, 65–67
sperm count decline. See also semen quality
age and, 156
bodybuilders’ paradox, 149
decreased abstinence, 156–158
environmental and lifestyle factors, 154–159
epigenetics, 153–154
fast food, 158
genetics, 152–153
global, 287
Kallmann syndrome, 150–151
and male infertility, 172
oestrogens, 159–160, 169–170
pollution, 159–165
rates of global, 145–152
and sperm quality, 151
Western country diet, 158–159
spermatozoa and conception
biochemical changes to enable, 181
hibernation period, 187
human sperm function and, 206–211
reactive oxygen species (ROS), 213–215
rheotactic behaviour, 181
ripening of, 186–189
thermotactic behaviour, 182–183
Steptoe, Patrick, 238–242
Taiwan, 63–65
testicular anatomy, 204
testicular cancer
and affluence, 134–136
and fertility, 132–133
increasing rates of, 132, 135
testicular dysgenesis syndrome (TDS), 145
testosterone levels
and male infertility, 203–205
and obesity, 167–169
pollution and, 288
and semen quality, 165–170
thermotactic behaviour, spermatozoan, 182–183
thyroid cancer trends, 141
trisomy
defined, 106
Down syndrome, 106–107
Klinefelter syndrome, 107–108
Patau syndrome, 106
Turner syndrome, 108–109
uncapacitated state
(spermatozoan), 187
United Nations Population Division (UNPD), 7–8
war and female fertility, 56–57
world population growth
history of, 18
uncertain future of, 45–51
Y-chromosome deletion and male infertility, 225–229
Yanagimachi, Ryuzo, 206–211
zona pellucida, 194