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What Is the Mordell Conjecture

(Faltings’s Theorem)?

Diophantine geometry is the field of mathematics that concerns integer

solutions and rational solutions of polynomial equations. It is named after

Diophantus of Alexandria from around the third century who wrote a series

of books called Arithmetica. Diophantine geometry is one of the oldest fields

of mathematics, and it continues to be a major field in number theory and

arithmetic geometry. If integer solutions and rational solutions are put aside,

then polynomial equations determine an algebraic variety. Since around the

start of the twentieth century, algebro-geometric methods have played an

important role in the study of Diophantine geometry.

In 1922, Mordell (Figure 1.1) made a surprising conjecture in a paper

where he proved the so-called Mordell–Weil theorem for elliptic curves

(see Theorem 3.42). This conjecture, called the Mordell conjecture before

Faltings’s proof appeared, states that the number of rational points is finite

on any geometrically irreducible algebraic curve of genus at least 2 defined

over a number field. It is not certain on what grounds Mordell made this

conjecture, but it was audacious at the time, and attracted the attention of

many mathematicians. While some partial results were obtained, the Mordell

conjecture stood as an unclimbed mountain before the proof by Faltings. Thus,

when Faltings (Figure 1.2) proved the Mordell conjecture in a paper published

in 1983, the news was circulated around the globe with much enthusiasm.

Faltings’s proof was momentous, using sophisticated and profound theories of

arithmetic geometry. He proved the Shafarevich conjecture, the Tate conjec-

ture, and the Mordell conjecture concurrently, and he was awarded the Fields

Medal in 1986. Nevertheless, first-year students at universities can understand

the statement of the Mordell conjecture, except for the notion of genus.

Let f (X,Y ) be a two-variable polynomial with coefficients in a number

field K (e.g., the field Q of rational numbers). We assume the following:
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2 What Is the Mordell Conjecture?

Figure 1.1 Louis J. Mordell.

Source: Archives of the Mathematisches Forschungsinstitut Oberwolfach.

Figure 1.2 Gerd Faltings.

Source: Archives of the Mathematisches Forschungsinstitut Oberwolfach.

1. f (X,Y ) is irreducible as a polynomial in C[X,Y ]. Namely, if

f (X,Y ) = g(X,Y )h(X,Y ) with g(X,Y ),h(X,Y ) ∈ C[X,Y ], then g(X,Y )

or h(X,Y ) is a constant.

2. The algebraic curve C defined by f (X,Y ) = 0, extended to the projective

plane, is smooth. In other words, let F(X,Y,Z) ∈ C[X,Y,Z] be the

homogeneous polynomial with

F(X,Y,1) = f (X,Y ) and deg F(X,Y,Z) = deg f (X,Y ).

Then the only solution in C3 of

F(X,Y,Z) = (∂F/∂X)(X,Y,Z) = (∂F/∂Y )(X,Y,Z)

= (∂F/∂Z)(X,Y,Z) = 0

is (0,0,0).

In this setting, the algebraic curve C has genus at least 2 if and only if the

degree of f is at least 4. Thus, the Mordell conjecture states that if the degree

of f is at least 4, then the number of points (a,b) ∈ K2 with f (a,b) = 0

is finite. Here, the assumption that f is irreducible is essential. Indeed, for

www.cambridge.org/9781108845953
www.cambridge.org


Cambridge University Press
978-1-108-84595-3 — The Mordell Conjecture
Hideaki Ikoma , Shu Kawaguchi , Atsushi Moriwaki 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

What Is the Mordell Conjecture? 3

any polynomial h(X,Y ) ∈ K[X,Y ], we set f (X,Y ) = Xh(X,Y ). Then

f (X,Y ) = 0 has infinitely many solutions {(0,b) | b ∈ K}. On the other hand,

the assumption that C is smooth is not essential. This assumption is made only

to avoid the notion of genus.

Let us look at some examples. For simplicity, we assume for the moment

that K is the field Q of rational numbers.

The quadratic polynomial f (X,Y ) = X2 + Y 2 − 1 satisfies assumptions

1 and 2, and the set of all rational solutions of f (X,Y ) = 0 (i.e., points

(a,b) ∈ Q2 with f (a,b) = 0) is equal to

{(

1 − t2

1 + t2
,

2t

1 + t2

)
∣

∣

∣

∣

t ∈ Q

}

∪ {(−1,0)}.

Indeed, we associate a point (a,b) �= (−1,0) with f (a,b) = 0 to the slope t of

the line Y = t (X + 1) that passes (−1,0) and (a,b). Then the set of rational

solutions of f (X,Y ) = 0 other than (−1,0) is in bijective correspondence

with Q. In this case, there are infinitely many rational points on the curve C

defined by f (X,Y ) = 0.

Next, we consider the quadratic polynomial f (X,Y ) = X2 +Y 2 + 1. It sat-

isfies assumptions 1 and 2, but there are no rational solutions of f (X,Y ) = 0.

In general, if f (X,Y ) is a quadratic polynomial satisfying assumptions 1 and

2, then either there are infinitely many rational solutions of f (X,Y ) = 0 or

there are none. In other words, either there are infinitely many rational points

on the curve C defined by f (X,Y ) = 0 or there are none.

What about cubic polynomials? First we consider the cubic polynomial

f (X,Y ) = X3 + Y 3 − 1. It satisfies assumptions 1 and 2. According to

Euler (the cubic case of Fermat’s last theorem), there are exactly four rational

solutions (±1,0),(0, ± 1) for f (X,Y ) = 0.

Next, we consider the cubic polynomial f (X,Y ) = Y 2 − X3 − 877X. It

is easy to see that f (X,Y ) satisfies assumptions 1 and 2, and (0,0) is a ratio-

nal solution of f (X,Y ) = 0. On the other hand, it is difficult to find a rational

solution of f (X,Y ) = 0 other than (0,0). Perhaps surprisingly, there are in

fact infinitely many rational solutions of f (X,Y ) = 0, and the x-coordinate of

the next “simple” rational solution (to be precise, the x-coordinate of a rational

point with the next smallest Weil height in Chapter 3) is

(

612776083187947368101

78841535860683900210

)2

,

a result due to Bremner and Cassels. In general, the algebraic curve C

defined by a cubic polynomial satisfying assumptions 1 and 2, extended to

the projective plane, is equipped with the structure of an abelian group. Thus,
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Figure 1.3 A curve of genus 2.

the set of rational points on C (on the projective plane) is also equipped

with the structure of an abelian group, and the Mordell–Weil theorem (see

Theorem 3.42) states that this group is finitely generated. In summary, if

f (X,Y ) is a cubic polynomial satisfying assumptions 1 and 2, then there may

be infinitely many rational points on the curve C defined by f (X,Y ) = 0, but

they are finitely generated as an abelian group.

What about polynomials of degree 4 or higher? This is where the Mordell

conjecture comes in. It states that under assumptions 1 and 2, there are only

finitely many rational points on the curve defined by the polynomial.

For any polynomial φ(X) in X of degree 4 or higher with coefficients in Q,

we put f (X,Y ) = Y − φ(X). Then {(a,φ(a)) | a ∈ Q} are rational points on

the curve C defined by f (X,Y ) = 0, and the curve C is smooth (on the affine

plane). This may look strange at first glance, but in fact C has a singular point

at the point (0 : 1 : 0) at infinity on the projective plane, so assumption 2 is not

satisfied.

Let f (X,Y ) be a polynomial of degree d satisfying assumptions 1 and 2,

and let C be the curve defined by f (X,Y ) = 0 (extended on the projective

plane). The genus of C, which we have not explained so far, is equal to the

number (d − 1)(d − 2)/2. Thus, the genus is 0 if d = 1,2, 1 if d = 3,

and at least 3 if d ≥ 4. The genus of the curve defined by Y − φ(X) = 0

is 0. Now the meaning of the Mordell conjecture becomes clearer. It states

that the distribution of rational points is determined by the genus of the

curve (Figure 1.3). Further, the genus of a curve is a topological invariant,

realized geometrically as the number of “holes” of the curve. Thus, the Mordell

conjecture states that a topological invariant controls rational points.

With its generality and innovativeness, no one thought that the Mordell

conjecture would be solved before the turn of the century. The solution by

Faltings was a monumental achievement in twentieth-century mathematics. In

this book, we will call the Mordell conjecture “Faltings’s theorem.”

Perhaps Faltings’s success lifted a mental block associated with the Mordell

conjecture. Subsequently, Vojta and Bombieri found a relatively elementary

proof in line with classical Diophantine geometry [5, 29]. The purpose of

the present book is to give a self-contained proof of Faltings’s theorem by

www.cambridge.org/9781108845953
www.cambridge.org


Cambridge University Press
978-1-108-84595-3 — The Mordell Conjecture
Hideaki Ikoma , Shu Kawaguchi , Atsushi Moriwaki 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

What Is the Mordell Conjecture? 5

following [5, 29], giving detailed accounts for some of the computations.

Because the proof uses important results and techniques from Diophantine

geometry, such as the theory of heights, the Mordell–Weil theorem, Siegel’s

lemma, and Roth’s lemma, this book also serves as an introduction to

Diophantine geometry. In this book, the reader will find the names of many

great mathematicians who have contributed to the advancement of the field. In

some sense, the path to Faltings’s theorem ran alongside the advancement of

mathematics more generally.

Lastly, we remark on some recent developments. In [9], Faltings proved

that, if a subvariety X of an abelian variety defined over a number field does

not contain a translation of a positive dimensional abelian subvariety, then the

number of rational points on X is finite. A smooth projective curve of genus

at least 2 is regarded as a subvariety of an abelian variety via the Jacobian

embedding, and it does not contain a translation of a positive dimensional

abelian subvariety. Thus, this result, often called Faltings’s big theorem,

generalizes Faltings’s theorem on the Mordell conjecture. In this direction, the

next big challenge will certainly be Lang’s conjecture: if (the analytification

of) a smooth projective variety X defined over a number field is a hyperbolic

manifold, then the number of rational points on X should be finite. A smooth

projective curve of genus at least 2 is a hyperbolic manifold, and thus,

Lang’s conjecture is a generalization of the Mordell conjecture. Very recently,

Lawrence and Venkatesh [16] gave another proof of Faltings’s theorem based

on a detailed analysis of the variation of p-adic Galois representations, which

does not use abelian varieties. Still the proofs of the Mordell conjecture that

are known so far do not directly use hyperbolicity, and thus, are not applicable

to Lang’s conjecture. For example, the proof by Vojta and Bombieri in this

book does not use the geometry of hyperbolic manifolds directly but instead

uses some properties that are derived from the assumption that the genus g of

the curve be at least 2 (e.g., g >
√

g, ampleness of a canonical bundle, and an

embedding into the Jacobian variety). New ideas are needed for a direct proof

of the Mordell conjecture that contributes to Lang’s conjecture.
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