Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter More Information

Primate Cognitive Studies

Researchers have studied nonhuman primate cognition along different paths, including social cognition, planning and causal knowledge, spatial cognition and memory, and gestural communication, as well as comparative studies with humans. This volume describes how primate cognition is studied in labs, zoos, sanctuaries, and in the field, bringing together researchers examining similar issues in all of these settings and showing how each benefits from the others. Readers will discover how lab-based concepts play out in the real world of free primates. This book tackles pressing issues such as replicability, research ethics, and open science. With contributors from a broad range of comparative, cognitive, neuroscience, developmental, ecological, and ethological perspectives, the volume provides a state-ofthe-art review pointing to new avenues for integrative research.

BENNETT L. SCHWARTZ is Professor of Psychology at Florida International University. He conducts research on human metacognition and memory and has published more than 100 journal articles, books, and book chapters. He is currently Editor-in-Chief of *New Ideas in Psychology* and Associate Editor of *Metacognition and Learning* and *Acta Psychologica*.

MICHAEL J. BERAN is Professor of Psychology and Co-Director of the Language Research Center at Georgia State University. He has published more than 200 journal articles and 50 edited book chapters and encyclopedia articles. He is the co-editor of *Foundations of Metacognition* (2012) and author of *Self-control in Animals and People* (2018).

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter <u>More Information</u>

Primate Cognitive Studies

Edited by Bennett L. Schwartz Florida International University

Michael J. Beran Georgia State University

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter More Information

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108845434 DOI: 10.1017/9781108955836

© Cambridge University Press 2022

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-84543-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter <u>More Information</u>

Contents

	List of Figures	page viii
	List of Tables	xi
	List of Contributors	X11
	Acknowledgments	XV
1	The Purpose of Primate Cognitive Studies BENNETT L. SCHWARTZ AND MICHAEL J. BERAN	1
2	A History of Primates Studying Primates DAVID A. WASHBURN AND SARAH G. WALTERS	12
3	Genetic and Environmental Influences on Chimpanzee Brai and Cognition	n 29
4	The Evolution of Cognition in Primates, Including Humans DAVID A. LEAVENS	57
5	State of the Field: Developmental Primate Cognition ELIZA L. NELSON, JACQUELINE ALVAREZ, BRENDA JIMENE AND KASEY PADRON	z, 88
6	Current Perspectives on Primate Perception AUDREY E. PARRISH AND CHRISTIAN AGRILLO	115
7	The Comparative Study of Categorization J. DAVID SMITH, BROOKE N. JACKSON, ANDRES F. SANCHEZ AND BARBARA A. CHURCH	, 135
8	Numerical Cognition in Nonhuman Primates	167
9	The Natural History of Primate Spatial Cognition: An Organismic Perspective CHARLES R. MENZEL AND KEN SAYERS	188
10	Progress and Prospects in Primate Tool Use and Cognition KATHELIJNE KOOPS AND CRICKETTE SANZ	238

v

vi	Contents		
	11	Sequencing, Artificial Grammar, and Recursion in Primates STEPHEN FERRIGNO	260
	12	The Evolution of Episodic Cognition: The Sense of Time GEMA MARTIN-ORDAS	291
	13	Metacognition VICTORIA L. TEMPLER	314
	14	Bridging the Conceptual Gap between Inferential Reasoning and Problem Solving in Primates JOSEP CALL	341
	15	The Eyes Have It: Using Non-Invasive Eye Tracking to Advance Comparative Social Cognition Research LAUREN H. HOWARD AND ELIZABETH V. LONSDORF	365
	16	Social Cooperation in Primates stella r. Mayerhoff, jhonatan m. saldaña santisteban, and sarah f. Brosnan	390
	17	Primate Communication: Affective, Intentional, or Both? RAPHAELA HEESEN, CHRISTINE SIEVERS, THIBAUD GRUBER, AND ZANNA CLAY	411
	18	Theory of Mind in Nonhuman Primates LAURA S. LEWIS AND CHRISTOPHER KRUPENYE	439
	19	A Requiem for Ape Language Research: The Cognitive Foundations of Language LISA A. HEIMBAUER AND MARK A. KRAUSE	483
	20	Primate Empathy: A Flexible and Multi-Componential Phenomenon JAKE S. BROOKER, CHRISTINE E. WEBB, AND ZANNA CLAY	505
	21	Replication and Reproducibility in Primate Cognition Research BENJAMIN G. FARRAR, CHRISTOPHER KRUPENYE, ALBA MOTES-RODRIGO, CLAUDIO TENNIE, JULIA FISCHER,	522
	22	DREW M. ALTSCHUL, AND LJERKA OSTOJIĆ Ethical Considerations in Conducting Primate Cognition Research STEPHEN R. ROSS, JESSE G. LEINWAND, AND LYDIA M. HOPPER	532 551
	23	Collaboration and Open Science Initiatives in Primate Research MANYPRIMATES	584

		Contents	vii
24	Studying Primate Cognition: From the Wild to Captivity and Back JULIA FISCHER	609	
25	Do Monkeys Belong in the Ape House? Comparing Cognition across Primate Species JENNIFER VONK AND JARED EDGE	632	
	Index	674	

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter <u>More Information</u>

Figures

2.1	Number of primate-psychology publications by decade,	
	per PsycINFO	page 20
3.1	Schematic of our research group's approach to examining	
	the influence and genetic and environmental variables	
	on individual variation in cognition and the brain	31
3.2	Heritability in lobe dimensions and select sulci in humans	
	and chimpanzees	35
3.3	Rendering of chimpanzee brain and three serial sections	
	displayed in the coronal plane of the basal forebrain region	37
3.4	Mean percent correct $(+/- s.e.)$ on the Primate Cognition	
	Testing Battery task measures between standard-raised and	
	enculturated apes	39
3.5	The asymmetry values for Lana and Panzee for superior	
	longitudinal fasciculus I, II, and III in comparison to the	
	remaining chimpanzees in the sample	40
3.6	Brain regions in which gray matter volumes are higher	
	or lower in more intelligent chimpanzees after adjustment	
	for their sex and age	41
3.7	Mean number of communicative behaviors $(+/- s.e)$	42
3.8	Comparison of the presence of absence of the PCGS between	
	chimpanzees that reliably produced AG sounds and those	
	who did not	44
3.9	Chimpanzees showing larger leftward asymmetries in the	
	gray matter volume of the posterior but not anterior	
	superior temporal gyrus compared to individuals that perform	
	more poorly	46
4.1	Schematic representations of two views on the locus of cognitio	n 58
4.2	The increasing sophistication of the dance language	
	with phylogenetic development of the dance	59
4.3	Six systematically confounded variables lead to 63	
	possible explanations for a group difference	65
4.4	"Prime movers" in the evolution of primate cognition	68
5.1	PRISMA flow chart for the secondary analysis performed	
	on the ManyPrimates (2019) dataset	91

viii

	Lis	t of Figures	ix
6.1	The Jastrow, Ebbinghaus, Delboeuf, Ponzo, Müller-Lyer, and		
	Zöllner illusions	117	
6.2	The "rotating snakes" illusion	122	
6.3	Amodal completion and "Petter's law"	124	
6.4	Amodal completion with "complete" and "broken" rods	125	
6.5	Three sets of illusory contours	126	
7.1	A dot-distortion category	138	
7.2	The proportion of times a macaque endorsed items as a		
	category member	139	
7.3	Examples of categories and stimuli	140	
7.4	Performance by three macaques in a category task	141	
7.5	A hypothetical ecological exclusive-or (XOR) category task	142	
7.6	Rule-based and information-integration category structures	146	
7.7	Humans' and macaques' performance in rule-based		
	and information-integration tasks	147	
7.8	Capuchin monkeys' performance in rule-based and		
	information-integration tasks	148	
7.9	Category structures used to test the generalizability of trained		
	category knowledge	148	
7.10	Learning by pigeons in information-integration (II)		
	and rule-based (RB) tasks	152	
7.11	Examples of difficult same and different trials	156	
8.1	Addition: 2+2+2+2	181	
9.1	New World monkey family Pitheciidae (titis, sakis, and		
	uakaris) and outgroup taxa	196	
10.1	Adult male chimpanzee uses a stone hammer and anvil		
	to crack open oil palm nuts at Bossou, Guinea	240	
10.2	Juvenile female chimpanzee uses a leaf sponge to gather		
	water from a tree hollow in the Goualougo Triangle,		
	Republic of Congo	247	
10.3	The proposed Comparative Socio-ecological and Development	al	
	Approach (CSDA) to studying the evolution of tool use		
	in primates	250	
11.1	Various artificial grammar types tested in nonhuman primates	264	
11.2	Procedure and results from Ferrigno et al. (2020a)	277	
11.3	Procedure and results from Jiang et al. (2018)	280	
13.1	Cladogram of how relatively well characterized are		
	the metacognitive abilities of species or phylogenic group	316	
14.1	Diagram depicting the problems and solutions as well		
	as the relations that connect inference by exclusion		
	and insightful problem solving	342	
15.1	Screen capture examples from familiarization videos		
	(social and nonsocial conditions) and memory test picture	375	

<u>x</u>	List of Figures		
	15.2	The percent of time that human infants, chimpanzees and gorillas, and capuching attended to block towers	
		during test trials	377
	16.1	The Assurance game, or Stag Hunt	398
	17.1	Attempt at summarizing the current state of the art on communicative control and (presumed) arousal involved in the use of the <i>alert has</i> vessilization, the <i>play fase</i> expression	
	21.1	and <i>reach</i> gesture used by chimpanzees The performance of four primate species across two	423
	21.1	different sites on the cylinder task	538

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter <u>More Information</u>

Tables

3.1	Component scores and item loadings for the Principal	
	Components Analysis of the Primate Cognition Testing	
	Battery tasks pag	e 33
3.2	Heritability in chimpanzee general, physical, and social	
	intelligence as measured by the Primate Cognition	
	Testing Battery	34
3.3	Percentage of chimpanzees that produce AGs and AGBs	
	for the samples of apes reported in Figure 3.7	43
4.1	A representative list of allegedly human-unique cognitive	
	capacities and their demonstrations in nonhuman primates	71
5.1	Infant and juvenile age class studies synthesized by species,	
	major topic(s)/technique(s), whether a statistical age analysis was	
	reported, and whether a longitudinal design was used	93
5.2	Mixed age class studies in which a statistical age analysis	
	was reported synthesized by species, major topic(s)/technique(s),	
	and whether a longitudinal design was used	95
8.1	Example studies that provide evidence for the approximate	
	number system in food-choice tasks	171
9.1	Natural history of space use in Aotus, Saimiri, LCA Pitheciidae,	
	Callicebus, Pithecia, and Chiropotes and Cacajao	202
10.1	Ontogenetic studies of primate object manipulation and	
	tool use in natural settings	243
14.1	A non-exhaustive list of types of inferential reasoning	
	and problem solving (and representative references) in primates	357
14.2	Types of explanations for choosing cup B after cup A	
	is shown to be empty in the 2-cup, 1-item task	359
14.3	Types of explanations for selecting the string connected	
	to the food in the broken string task	359
18.1	Theory of mind capacities and precursors across primate clades	443
19.1	General information about ape language projects and the subjects	486

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter More Information

Contributors

CHRISTIAN AGRILLO, University of Padova DREW M. ALTSCHUL, University of Edinburgh JACQUELINE ALVAREZ, Florida International University MICHAEL J. BERAN, Georgia State University MANUEL BOHN, Max Planck Institute for Evolutionary Anthropology JAKE S. BROOKER, Durham University SARAH F. BROSNAN, Georgia State University JOSEP CALL, University of St. Andrews CHARLOTTE CANTELOUP, University of Lausanne BARBARA A. CHURCH, Georgia State University ZANNA CLAY, Durham University SONJA J. EBEL, Philipps University of Marburg JARED EDGE, Oakland University BENJAMIN G. FARRAR, University of Cambridge and Institute for Globally Distributed Open Research and Education (IGDORE) STEPHEN FERRIGNO, Harvard University JULIA FISCHER, German Primate Center and University of Göttingen THIBAUD GRUBER, University of Geneva DANIEL HANUS, Max Planck Institute for Evolutionary Anthropology LISA A. HEIMBAUER, SUNY Delhi State University of New York at Delhi RAPHAELA HEESEN, Durham University R. ADRIANA HERNANDEZ-AGUILAR, University of Barcelona WILLIAM D. HOPKINS, University of Texas MD Anderson Cancer Center

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter More Information

LYDIA M. HOPPER, Johns Hopkins University

LAUREN H. HOWARD, Franklin and Marshall College

BROOKE N. JACKSON, Georgia State University BRENDA JIMENEZ, Florida International University MARINE JOLY, University of Portsmouth SARAH JONES, Berea College STEFANIE KEUPP, German Primate Center KATHELIJNE KOOPS, University of Cambridge and University of Zurich MARK A. KRAUSE, Southern Oregon University CHRISTOPHER KRUPENYE, Johns Hopkins University and Durham University DAVID A. LEAVENS, University of Sussex JESSE G. LEINWAND, Lincoln Park Zoo LAURA S. LEWIS, HARVARD University and University of St. Andrews MIQUEL LLORENTE, University of Girona ELIZABETH V. LONSDORF, Franklin and Marshall College

List of Contributors

xiii

GEMA MARTIN-ORDAS, University of Stirling

STELLA R. MAYERHOFF, Georgia State University

CHARLES R. MENZEL, Georgia State University

ALBA MOTES-RODRIGO, University of Tübingen

ELIZA L. NELSON, Florida International University

CATHAL O'MADAGAIN, Université Mohammed VI Polytechnique

LJERKA OSTOJIĆ, University of Rijeka

KASEY PADRON, Florida International University

AUDREY E. PARRISH, The Citadel

CHRISTOPHER I. PETKOV, Newcastle University

DARBY PROCTOR, Florida Institute of Technology

JASMINE ROMAN, Berea College

STEPHEN R. ROSS, Lincoln Park Zoo

JHONATAN M. SALDAÑA SANTISTEBAN, Georgia State University

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter <u>More Information</u>

> xiv List of Contributors ANDRES F. SANCHEZ, Georgia State University CRICKETTE SANZ, Washington University in St. Louis and Wildlife Conservation Society Congo Program KEN SAYERS, Southwest National Primate Research Center BENNETT L. SCHWARTZ, Florida International University CHET C. SHERWOOD, George Washington University CHRISTINE SIEVERS, York University J. DAVID SMITH, Georgia State University KIRSTEN SUTHERLAND, Max Planck Institute for Evolutionary Anthropology ANNA SZABELSKA, Psychological Science Accelerator DERRY TAYLOR, University of Portsmouth VICTORIA L. TEMPLER, Providence College CLAUDIO TENNIE, University of Tübingen CHRISTOPH J. VÖLTER, University of Veterinary Medicine JENNIFER VONK, Oakland University SARAH G. WALTERS, Covenant College DAVID A. WASHBURN, Covenant College CHRISTINE E. WEBB, Harvard University NICOLÁS G. WIGGENHAUSER, Stony Brook University

Cambridge University Press & Assessment 978-1-108-84543-4 — Primate Cognitive Studies Edited by Bennett L. Schwartz , Michael J. Beran Frontmatter More Information

Acknowledgments

The editors wish to thank all of the authors who helped make this volume possible – not just in terms of the writing that these people did to produce their chapters, but in terms of the tremendous commitment each of them has shown to truly learning more about and understanding better our primate cousins. Humans share this planet with many other species, and yet we are not always the best stewards of this one tiny rock we inhabit in this vast universe. Each of the contributors to this volume knows that any hope we have for becoming better stewards includes knowing our place within our larger primate family. They also know that gaining such knowledge requires spending time studying other primates and advocating for them. Nonhuman primate research, whether in the field, the lab, the sanctuary, or the zoo, is essential to the continued goal of better connecting humans to the rest of the natural world while allowing us to know more about how we became who we are as a species.

Bennett Schwartz also wishes to thank Leslie Frazier and Sarina Schwartz. Michael Beran thanks his wife, Mary, and his kids, Samantha and Alexandra, who he hopes will have the chance to grow up and still share a world with the many wonderful primates represented in this book.