1

2

3

Cambridge University Press 978-1-108-84535-9 — Deep Learning in Science Pierre Baldi Table of Contents <u>More Information</u>

Contents

Prefa	ice	<i>page</i> xi
Intro	duction	1
1.1	Carbon-Based and Silicon-Based Computing	1
1.2	Early Beginnings Until the Late 1940s	4
1.3	From 1950 to 1980	10
1.4	From 1980 to Today	12
1.5	Roadmap	14
1.6	Exercises	15
Basio	c Concepts	16
2.1	Synapses	16
2.2	Units or Neurons	17
2.3	Activations	17
2.4	Transfer Functions	18
2.5	Discrete versus Continuous Time	22
2.6	Networks and Architectures	23
2.7	Functional and Cardinal Capacity of Architectures	26
2.8	The Bayesian Statistical Framework	28
2.9	Information Theory	31
2.10	Data and Learning Settings	33
2.11	Learning Rules	35
2.12	Computational Complexity Theory	36
2.13	Exercises	37
Shall	ow Networks and Shallow Learning	41
3.1	Supervised Shallow Networks and their Design	41
3.2	Capacity of Shallow Networks	46
3.3	Shallow Learning	52
3.4	Extensions of Shallow Learning	56
3.5	Exercises	58

Cambridge University Press 978-1-108-84535-9 — Deep Learning in Science Pierre Baldi Table of Contents <u>More Information</u>

viii	Conte	ents	
4	Two-I	Laver Networks and Universal Approximation	63
	4.1	Functional Capacity	63
	4.2	Universal Approximation Properties	65
	4.3	The Capacity of $A(n, m, 1)$ Architectures	68
	4.4	Exercises	69
5	Autoe	71	
	5.1	A General Autoencoder Framework	72
	5.2	General Autoencoder Properties	73
	5.3	Linear Autoencoders	75
	5.4	Non-Linear Autoencoders: Unrestricted Boolean Case	84
	5.5	Other Autoencoders and Autoencoder Properties	90
	5.6	Exercises	96
6	Deep	Networks and Backpropagation	99
	6.1	Why Deep?	99
	6.2	Functional Capacity: Deep Linear Case	101
	6.3	Functional Capacity: Deep Unrestricted Boolean Case	102
	6.4	Cardinal Capacity: Deep Feedforward Architectures	103
	6.5	Other Notions of Capacity	104
	0.0 6 7	Learning by Backpropagation	105
	0./	Arekitesture Design	109
	0.8 6.0	Architecture Design Dractical Training Issues	111
	6.10	The Bias_Variance Decomposition	114
	6.11	Dropout	110
	6.12	Model Compression/Distillation and Dark Knowledge	124
	6.13	Multiplicative Interactions: Gating and Attention	125
	6.14	Unsupervised Learning and Generative Models	127
	6.15	Exercises	131
7	The L	ocal Learning Principle	137
	7.1	Virtualization and Learning in the Machine	137
	7.2	The Neuronal View	138
	7.3	The Synaptic View: the Local Learning Principle	139
	7.4	Stratification of Learning Rules	141
	7.5	Deep Local Learning and its Fundamental Limitations	142
	7.6	Local Deep Learning: the Deep Learning Channel	144
	7.7	Local Deep Learning and Deep Targets Equivalence	147
	7.8	Exercises	149
8	The D	Deep Learning Channel	151
	8.1	Random Backpropagation (RBP) and its Variations	152
	8.2	Simulations of Random Backpropagation	154
	8.2	Simulations of Random Backpropagation	154

Cambridge University Press 978-1-108-84535-9 — Deep Learning in Science Pierre Baldi Table of Contents <u>More Information</u>

			Contents	ix
	8.3	Understanding Random Backpropagation		155
	8.4	Mathematical Analysis of Random Backpropagation		157
	8.5	Further Remarks About Learning Channels		162
	8.6	Circular Autoencoders		164
	8.7	Recirculation: Locality in Both Space and Time		165
	8.8	Simulations of Recirculation		167
	8.9	Recirculation is Random Backpropagation		168
	8.10	Mathematical Analysis of Recirculation		170
	8.11	Exercises		173
9	Recu	rrent Networks		177
	9.1	Recurrent Networks		177
	9.2	Cardinal Capacity of Recurrent Networks		178
	9.3	Symmetric Connections: The Hopfield Model		179
	9.4	Symmetric Connections: Boltzmann Machines		182
	9.5	Exercises		185
10	Recu	rsive Networks		189
	10.1	Variable-Size Structured Data		189
	10.2	Recursive Networks and Design		190
	10.3	Relationships between Inner and Outer Approaches		199
	10.4	Exercises		201
11	Appli	cations in Physics		204
	11.1	Deep Learning in the Physical Sciences		204
	11.2	Antimatter Physics		208
	11.3	High Energy Collider Physics		214
	11.4	Neutrino Physics		224
	11.5	Dark Matter Physics		228
	11.6	Cosmology and Astrophysics		230
	11.7	Climate Physics		233
	11.8	Incorporating Physics Knowledge and Constraints		235
	11.9	Conclusion: Theoretical Physics		237
12	Appli	cations in Chemistry		239
	12.1	Chemical Data and Chemical Space		240
	12.2	Prediction of Small Molecule Properties		242
	12.3	Prediction of Chemical Reactions		245
13	Applications in Biology and Medicine			
	13.1	Biomedical Data		257
	13.2	Life in a Nutshell		258
	13.3	Deep Learning in Proteomics		261
	13.4	Deep Learning in Genomics and Transcriptomics		268

Cambridge University Press 978-1-108-84535-9 — Deep Learning in Science Pierre Baldi Table of Contents <u>More Information</u>

X	Conte	Contents				
	13.5	Deep Learning in Biomedical Imaging	270			
	13.6	Deep Learning in Health Care	273			
14	Conc	Conclusion				
	14.1	Explainability and the Black-Box Question	275			
	14.2	ANNs versus BNNs	277			
Appen	dix A	Reinforcement Learning and Deep Reinforcement Learning	282			
	A.1	Brief History and Background	282			
	A.2	Main Algorithmic Approaches	287			
	A.3	Limitations and Open Problems	298			
	A.4	Other Directions of Research	302			
	A.5	Deep Reinforcement Learning	303			
	A.6	Exercises	306			
Appen	dix B	Hints and Remarks for Selected Exercises	308			
Refere	nces		313			
Index			365			