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This is the first rigorous, self-contained treatment of the theory of deep learning.

Starting with the foundations of the theory and building it up, this is essential reading

for any scientists, instructors, and students interested in artificial intelligence and deep

learning. It provides guidance on how to think about scientific questions, and leads

readers through the history of the field and its fundamental connections to neuro-

science. The author discusses many applications to beautiful problems in the natural

sciences, in physics, chemistry, and biomedicine. Examples include the search for

exotic particles and dark matter in experimental physics, the prediction of molecular

properties and reaction outcomes in chemistry, and the prediction of protein structures

and the diagnostic analysis of biomedical images in the natural sciences. The text is

accompanied by a full set of exercises at different difficulty levels and encourages

out-of-the-box thinking.

Pierre Baldi is Distinguished Professor of Computer Science at University of

California, Irvine. His main research interest is understanding intelligence in brains

and machines. He has made seminal contributions to the theory of deep learning and

its applications to the natural sciences, and has written four other books.
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Preface

By and large, this book grew out of research conducted in my group as well as classes and

lectures given at the University of California, Irvine (UCI) and elsewhere over the years.

It can be used as a textbook for an undergraduate or graduate course in machine learn-

ing, or as an introduction to the topic for scientists from other fields. Basic prerequisites

for understanding the material include college-level algebra, calculus, and probability.

Familiarity with information theory, statistics, coding theory, and computational com-

plexity at an elementary level are also helpful. I have striven to focus primarily on

fundamental principles and provide a treatment that is both self-contained and rigorous,

sometimes referring to the literature for well-known technical results, or to the exercises,

which are an integral part of the book.

In writing this book, one of my goals has been to provide a rigorous treatment from

first principles, as much as possible, in a still rapidly evolving field. This is one of the

meanings of “in science” in the title. In this regard, the flow of the book is dictated

primarily by complexity issues, going from shallow networks in their different forms,

to deep feedforward networks, to recurrent and recursive networks. Two-layer networks,

of which autoencoders are the prototypical example, provide the hinge between shallow

and deep learning. For each kind of network, it is useful to consider special “hardware”

cases, such as networks of linear units. Contrary to widespread belief, the linear case is

often interesting and far from trivial. But this is not the only case where using a particular

hardware model is helpful. Another example is the use of unrestricted Boolean units,

another model that may seem trivial at first sight, but which leads to useful insights for

both autoencoders and deep architectures. Yet another important example is provided by

networks of linear or polynomial threshold gates.

A second characteristic of this book is its connection to biology. Neural networks, deep

learning, and the entire field of AI are deeply rooted in biology, in trying to understand

how the brain works and the space of possible strategies to replicate and surpass its

capabilities. This is evident in Turing’s foundational work on Turing machines, guided

by the fundamental intuition of a brain capable of having only a finite number of states

[736] and in the vocabulary of computer science, which is full of words clearly rooted

in biology such as AI, machine learning, memory, computer vision, computer virus,

genetic algorithms, and so forth. It is regrettable to see young students and practitioners

of machine learning misled to believe that artificial neural networks have little to do with

biology, or that machine learning is the set of techniques used to maximize engineering

or business goals, such as advertising revenues for search engines. In addition, not only

computers and neural networks are inspired by biology, but they are of course also being

www.cambridge.org/9781108845359
www.cambridge.org


Cambridge University Press
978-1-108-84535-9 — Deep Learning in Science
Pierre Baldi 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xii Preface

successfully used to analyze biological data, for instance high-throughput omic data, and

through one of these surprising self-recursions only mankind seems to have produced, the

results of these bioinformatics and systems biology analyses are progressively informing

our understanding of the brain, helping to reveal for instance key gene expression and

protein mechanisms involved in synaptic formation and biological memory.

A third characteristic of this book is precisely in the applications. The second meaning

of “in science” in the title is “for science”. I have focused on applications of deep

learning to the natural sciences – primarily physics, chemistry, and biology for the past

three decades or so. These applications are expanding rapidly today, but were almost

nonexistent in the 1980s. Plenty of textbooks and other material can be found dealing

with applications of neural networks to problems in engineering and other related areas.

A fourth characteristic is the emphasis placed on storage, specifically on the neural-

style of information storage, in fundamental contrast to the Turing-style of information

storage, ironically introduced by Turing precisely while thinking about the brain. This

theme goes together with the importance of recognizing the virtualization process hidden

behind most of today’s neural network applications. In most applications of neural

networks today, there are no neurons and no synapses, only their digital mirage. This

comes at a price that can only be understood by thinking about “learning in the machine”,

as opposed to machine learning. In a physical neural system, learning rules must be local

both in space and time. Among other things, this locality principle helps clarify the

relationship between Hebbian learning and backpropagation and explains why Hebbian

learning applied to feedforward convolutional architectures has never worked. It also

naturally leads to random backpropagation and recirculation algorithms, important topics

that are poorly known because they are not particularly useful for current applications.

For readers primarily interested in applications, or for courses with tight time limitations,

I recommend using the abbreviated sequence of chapters: 2, 3, 6, and 10, covering most

of the practical aspects.

Finally, the field of neural networks has been polluted by fads and a significant amount

of cronyism and collusion over the past few decades, that a fragmented, multigenera-

tional, and often unaware community could do little to stop. Cronyism and collusion are

nothing new in human affairs, but they have distorted and slowed down the development

of the field through the subtle control and manipulation of conferences, publications,

academic and corporate research departments, and other avenues of power and dissem-

ination. Readers should read more widely, check what has been published – where and

when – and decide for themselves which results are supported by mathematical proofs

or sound simulations, and which are not. In the end, towering over human affairs, all

that matters are the beauty of deep learning and the underlying mysteries it is intimately

connected to: from whether silicon can be conscious to the fundamental nature of the

universe.

About the Exercises

The exercises vary in difficulty substantially. Should you become frustrated at trying to

solve one of them, remind yourself that it is only when you are struggling with a problem

that your brain is really learning something.
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In order to solve some of the problems in the book, or more broadly to think about

scientific and other questions, I recommend that my students systematically try at least

four different approaches. The first of course is to simplify. When a question seems too

difficult at first, look for special or simpler cases. When trying to understand a theorem,

look at the case of “small n”, or fix the values of certain parameters, or switch to the

linear case, or try to interpolate. The second is the opposite way of thinking: generalize,

abstract, or extrapolate. Are there other situations that bear some similarity to the current

problem? How can a result be applied to more general cases? Can the conditions under

which a theorem is true be relaxed? The third way of thinking is “to take the limit”, to

look at what happens at the boundaries of a certain domain, under extreme conditions,

to let n go to zero, or to infinity. And finally, the fourth way is always to invert, look at

things somehow from an opposite perspective. Thus, for example, when thinking about

an autoencoder, one may want first to simplify it by studying how to solve the top layer

given the lower layer, which is usually an easier problem; and then to invert this approach

by studying how the lower layer can be solved given the top layer, which is usually a

harder problem.

Of course these four principles are not a panacea to every situation and, for instance,

identifying the right form of “inversion” in a given situation may not be obvious. However,

the discipline of trying to apply these four principles in a systematic manner can be

helpful and, incidentally, remains a major challenge for Artificial Intelligence (AI).
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