Contents

Preface page xi

0 Introduction and Overview
 0.1 Our Final Destination: Gödel’s Completeness Theorem 2
 0.2 Our Pedagogical Approach 4
 0.3 How We Travel: Programs That Handle Logic 5
 0.4 Our Roadmap 8

Part I Propositional Logic

1 Propositional Logic Syntax
 1.1 Propositional Formulas 13
 1.2 Parsing 18
 1.3 Infinite Sets of Formulas 21
 1.A Optional Reading: Polish Notations 22

2 Propositional Logic Semantics
 2.1 Detour: Semantics of Programming Languages 24
 2.2 Models and Truth Values 25
 2.3 Truth Tables 28
 2.4 Tautologies, Contradictions, and Satisfiability 30
 2.5 Synthesis of Formulas 31
 2.A Optional Reading: Conjunctive Normal Form 33
 2.B Optional Reading: Satisfiability and Search Problems 35

3 Logical Operators
 3.1 More Operators 41
 3.2 Substitutions 43
 3.3 Complete Sets of Operators 46
 3.4 Proving Incompleteness 49

4 Proof by Deduction
 4.1 Inference Rules 53
 4.2 Specializations of an Inference Rule 56
 4.3 Deductive Proofs 59
Table of Contents

Part I Predicate Logic

6 The Tautology Theorem and the Completeness of Propositional Logic
- 6.1 Our Axiomatic System
- 6.2 The Tautology Theorem
- 6.3 The Completeness Theorem for Finite Sets
- 6.4 The Compactness Theorem and the Completeness Theorem for Infinite Sets
- 6.5 Optional Reading: Adding Additional Operators
- 6.6 Optional Reading: Other Axiomatic Systems

7 Predicate Logic Syntax and Semantics
- 7.1 Syntax
- 7.2 Semantics

8 Getting Rid of Functions and Equality
- 8.1 Getting Rid of Functions
- 8.2 Getting Rid of Equality

9 Deductive Proofs of Predicate Logic Formulas
- 9.1 Example of a Proof
- 9.2 Schemas
- 9.3 Proofs
- 9.4 Getting Rid of Tautology Lines

10 Working with Predicate Logic Proofs
- 10.1 Our Axiomatic System
- 10.2 Syllogisms
- 10.3 Some Mathematics

11 The Deduction Theorem and Prenex Normal Form
- 11.1 The Deduction Theorem
- 11.2 Prenex Normal Form

12 The Completeness Theorem
- 12.1 Deriving a Model or a Contradiction for a Closed Set
- 12.2 Closing a Set

Part II Predicate Logic

7 Predicate Logic Syntax and Semantics
- 7.1 Syntax
- 7.2 Semantics

8 Getting Rid of Functions and Equality
- 8.1 Getting Rid of Functions
- 8.2 Getting Rid of Equality

9 Deductive Proofs of Predicate Logic Formulas
- 9.1 Example of a Proof
- 9.2 Schemas
- 9.3 Proofs
- 9.4 Getting Rid of Tautology Lines

10 Working with Predicate Logic Proofs
- 10.1 Our Axiomatic System
- 10.2 Syllogisms
- 10.3 Some Mathematics

11 The Deduction Theorem and Prenex Normal Form
- 11.1 The Deduction Theorem
- 11.2 Prenex Normal Form

12 The Completeness Theorem
- 12.1 Deriving a Model or a Contradiction for a Closed Set
- 12.2 Closing a Set
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3 The Completeness Theorem</td>
<td>252</td>
</tr>
<tr>
<td>12.4 The Compactness Theorem and the “Provability” Version of the Completeness Theorem</td>
<td>253</td>
</tr>
<tr>
<td>13 Sneak Peek at Mathematical Logic II: Gödel’s Incompleteness Theorem</td>
<td>256</td>
</tr>
<tr>
<td>13.1 Complete and Incomplete Theories</td>
<td>256</td>
</tr>
<tr>
<td>13.2 Gödel Numbering</td>
<td>258</td>
</tr>
<tr>
<td>13.3 Undecidability of the Halting Problem</td>
<td>260</td>
</tr>
<tr>
<td>13.4 The Incompleteness Theorem</td>
<td>262</td>
</tr>
<tr>
<td>Cheatsheet: Axioms and Axiomatic Inference Rules Used in This Book</td>
<td>266</td>
</tr>
<tr>
<td>Index</td>
<td>268</td>
</tr>
</tbody>
</table>