Mathematical Logic through Python

Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Gödel’s completeness theorem. A sneak peek to Gödel’s incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed.

Yannai A. Gonczarowski is Assistant Professor of both Economics and Computer Science at Harvard University, and is the first faculty at Harvard to be appointed to both of these departments. He received his PhD in Mathematics and Computer Science from The Hebrew University of Jerusalem. Among his research awards are the ACM SIGecom Dissertation Award and INFORMS AMD Junior Researcher Paper Prize. He is also a professionally trained opera singer.

Noam Nisan is Professor of Computer Science and Engineering at The Hebrew University of Jerusalem, serving as Dean of the School of Computer Science and Engineering during 2018–2021. He received his PhD in Computer Science from the University of California, Berkeley. Among the awards for his research on computational complexity and algorithmic game theory are the Gödel Prize and Knuth Award. This is his fifth book.
To Eshed, whose syntax and semantics logically evolved while this book did
Y.A.G.

To Michal, logically and illogically
N.N.
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>Introduction and Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Our Final Destination: Gödel’s Completeness Theorem</td>
</tr>
<tr>
<td>0.2</td>
<td>Our Pedagogical Approach</td>
</tr>
<tr>
<td>0.3</td>
<td>How We Travel: Programs That Handle Logic</td>
</tr>
<tr>
<td>0.4</td>
<td>Our Roadmap</td>
</tr>
</tbody>
</table>

Part I Propositional Logic

1 Propositional Logic Syntax

1.1 Propositional Formulas | 13
1.2 Parsing | 18
1.3 Infinite Sets of Formulas | 21
1.A Optional Reading: Polish Notations | 22

2 Propositional Logic Semantics

2.1 Detour: Semantics of Programming Languages | 24
2.2 Models and Truth Values | 25
2.3 Truth Tables | 28
2.4 Tautologies, Contradictions, and Satisfiability | 30
2.5 Synthesis of Formulas | 31
2.A Optional Reading: Conjunctive Normal Form | 33
2.B Optional Reading: Satisfiability and Search Problems | 35

3 Logical Operators

3.1 More Operators | 41
3.2 Substitutions | 43
3.3 Complete Sets of Operators | 46
3.4 Proving Incompleteness | 49

4 Proof by Deduction

4.1 Inference Rules | 53
4.2 Specializations of an Inference Rule | 56
4.3 Deductive Proofs | 59
Contents

4.4 Practice Proving 64
4.5 The Soundness Theorem 66

5 Working with Proofs 69
5.1 Using Lemmas 69
5.2 Modus Ponens 73
5.3 The Deduction Theorem 76
5.4 Proofs by Way of Contradiction 79

6 The Tautology Theorem and the Completeness of Propositional Logic 84
6.1 Our Axiomatic System 84
6.2 The Tautology Theorem 86
6.3 The Completeness Theorem for Finite Sets 92
6.4 The Compactness Theorem and the Completeness Theorem for Infinite Sets 94
6.A Optional Reading: Adding Additional Operators 97
6.B Optional Reading: Other Axiomatic Systems 101

Part II Predicate Logic 109

7 Predicate Logic Syntax and Semantics 110
7.1 Syntax 110
7.2 Semantics 121

8 Getting Rid of Functions and Equality 129
8.1 Getting Rid of Functions 129
8.2 Getting Rid of Equality 138

9 Deductive Proofs of Predicate Logic Formulas 143
9.1 Example of a Proof 144
9.2 Schemas 145
9.3 Proofs 160
9.4 Getting Rid of Tautology Lines 171

10 Working with Predicate Logic Proofs 178
10.1 Our Axiomatic System 178
10.2 Syllogisms 184
10.3 Some Mathematics 195

11 The Deduction Theorem and Prenex Normal Form 211
11.1 The Deduction Theorem 211
11.2 Prenex Normal Form 215

12 The Completeness Theorem 231
12.1 Deriving a Model or a Contradiction for a Closed Set 236
12.2 Closing a Set 240
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>The Completeness Theorem</td>
<td>252</td>
</tr>
<tr>
<td>12.4</td>
<td>The Compactness Theorem and the “Provability” Version of the</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Completeness Theorem</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sneak Peek at Mathematical Logic II: Gödel's Incompleteness Theorem</td>
<td>256</td>
</tr>
<tr>
<td>13.1</td>
<td>Complete and Incomplete Theories</td>
<td>256</td>
</tr>
<tr>
<td>13.2</td>
<td>Gödel Numbering</td>
<td>258</td>
</tr>
<tr>
<td>13.3</td>
<td>Undecidability of the Halting Problem</td>
<td>260</td>
</tr>
<tr>
<td>13.4</td>
<td>The Incompleteness Theorem</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Cheatsheet: Axioms and Axiomatic Inference Rules Used in This Book</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>268</td>
</tr>
</tbody>
</table>
Preface

Mathematical Logic 101 is a beautiful course. Gödel’s Theorems are arguably the most profound and deep truths taught throughout the entire undergrad theoretical curriculum. Nonetheless, it seems that among many computer science and engineering students this course suffers from the reputation of being an unintelligible course full of technical, uninsightful proofs. Students lose themselves in endless inductions and do not fully understand what it means, e.g., to “prove that anything that is true can be proven.” Indeed, how can this not be confusing when the two occurrences of “prove” in that sentence have two distinct meanings – the latter referring to a precise very strict mathematical “proof” object that is defined during this course, while the former refers to the free-text proofs that we have been taught since our first year of undergrad? This book drastically reenvisions the Mathematical Logic 101 course, conveying the same material but tapping into the strengths of the ever-growing cohort of programming-oriented students to do so.

How does one help programming-oriented students to not lose themselves among endless little details in proofs, failing to see the overarching message of the course? We set out to make this course less abstract, more intuitive, and maybe even exciting, by tapping into the context where such students are used to comfortably dealing with endless little details on the way to a larger goal without ever missing the forest for the trees: computer programming. We redesigned the entirety of this very theoretical course from scratch to be based upon a series of programming exercises, each corresponding to either a theorem/lemma/corollary or a step toward such.

For example, the main result of the first half of a standard Mathematical Logic 101 course is the “Tautology Theorem” (a variant of the Completeness Theorem for propositional logic), which asserts that every tautology – every statement that holds in every possible model or setting – can be proven to hold using a small set of axioms. The corresponding programming exercise in this book is to write a function (based on functions from previous exercises, of course) whose input is a formula (an object of class Formula, which the students implement in a previous exercise) and whose output is either a model in which this formula does not hold (i.e., a counterexample to the formula being a tautology) or a proof (an object of class Proof, which the students implement in a previous exercise) of this formula. Obviously, whoever can write such a function, including all its recursively implemented helper functions, completely understands the reasoning in the proof of the Tautology Theorem, including all its inductively proven lemmas. (And this holds even more so for students who naturally grasp recursive code far better than they do inductive proofs.) In our experience, students with a background in programming for the most part even understand this proof better having actively coded its functionality themselves than
had they only passively seen the proof being written on the blackboard by a teacher. In
the process of moving from proving to programming, we have in fact also disambiguated
the two meanings of “prove” in the earlier statement of “prove that whatever is true can
be proven”: we transformed the former “prove” into “program in code” and the latter “can
be proven” into “is the conclusion of a valid Proof object.” This disambiguation by way
of defamiliarization of each of these occurrences of “prove” achieves great clarity and
furthermore allows the students to more easily reexamine their intuitions and unconscious
assumptions about proofs.

This book evolved from a course that we have been teaching at the Hebrew University of
Jerusalem since 2017, first as an elective (we limited our class to 50 and then to 100 students
as we fine-tuned the course, and there had been a waiting list) and later as an alternative
for computer science and engineering students to the mandatory Mathematical Logic 101,
to the clear satisfaction of the students, who continuously rank this course highly. In our
experience, having the tasks of a single chapter due each week (if the schedule permits,
then we try to allow an additional week for Chapter 10), with the tasks of Part I (Chapters 1
through 6) being solved by each student individually and the tasks of Part II (Chapters 7
through 12) being solved in pairs, has consistently proven to work well.

We are grateful to the Hebrew University students who took our course for their valuable
questions and comments, and to our earlier students also for the faith they have put in us.
We are indebted to our first TA and beta-solver, Alon Ziv, as well as to our subsequent TAs
Noam Wies, Asaf Yehudai, Ofer Ravid, and Elazar Cohen, and beta-solvers Omri Cohen
and Matan Harsat. A special thanks goes to Chagit Schiff-Blass, at the time a Law and
Cognitive Science student, who showed us that our way of teaching Mathematical Logic
really does appeal to an even more diverse student population than we had imagined, by first
being an excellent beta-solver and then joining our teaching team. We thank Henry Cohn
for valuable advice, and thank Aviv Keren and Shimon Schocken for their valuable detailed
feedback on portions of earlier drafts of this book. We especially thank David Kashtan
for careful and valuable scientific editing of this book on the logic side; any deviations
from standard definitions or nomenclature are, of course, our own responsibility. Finally,
we thank Kaitlin Leach, Rebecca Grainger, and the entire team at Cambridge University
Press for their support and for their flexibility throughout the COVID pandemic. The cover
picture by Vasily Kandinsky is titled “Serious-Fun,” and we hope that this will describe
your experience as you work through this book. We always appreciate feedback from
readers.