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Mathematical Logic through Python

Using a unique pedagogical approach, this text introduces mathematical logic by guiding

students in implementing the underlying logical concepts and mathematical proofs via

Python programming. This approach, tailored to the unique intuitions and strengths of

the ever-growing population of programming-savvy students, brings mathematical logic

into the comfort zone of these students and provides clarity that can only be achieved

by a deep hands-on understanding and the satisfaction of having created working code.

While the approach is unique, the text follows the same set of topics typically covered in a

one-semester undergraduate course, including propositional logic and first-order predicate

logic, culminating in a proof of Gödel’s completeness theorem. A sneak peek to Gödel’s

incompleteness theorem is also provided. The textbook is accompanied by an extensive

collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs

and basic proficiency in Python is assumed.
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To Eshed, whose syntax and semantics logically evolved while this book did

Y.A.G.

To Michal, logically and illogically

N.N.
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Preface

Mathematical Logic 101 is a beautiful course. Gödel’s Theorems are arguably the most

profound and deep truths taught throughout the entire undergrad theoretical curriculum.

Nonetheless, it seems that among many computer science and engineering students this

course suffers from the reputation of being an unintelligible course full of technical, unin-

sightful proofs. Students lose themselves in endless inductions and do not fully understand

what it means, e.g., to “prove that anything that is true can be proven.” Indeed, how can this

not be confusing when the two occurrences of “prove” in that sentence have two distinct

meanings – the latter referring to a precise very strict mathematical “proof” object that is

defined during this course, while the former refers to the free-text proofs that we have been

taught since our first year of undergrad? This book drastically reenvisions the Mathematical

Logic 101 course, conveying the same material but tapping into the strengths of the ever-

growing cohort of programming-oriented students to do so.

How does one help programming-oriented students to not lose themselves among end-

less little details in proofs, failing to see the overarching message of the course? We

set out to make this course less abstract, more intuitive, and maybe even exciting, by

tapping into the context where such students are used to comfortably dealing with endless

little details on the way to a larger goal without ever missing the forest for the trees:

computer programming. We redesigned the entirety of this very theoretical course from

scratch to be based upon a series of programming exercises, each corresponding to either a

theorem/lemma/corollary or a step toward such.

For example, the main result of the first half of a standard Mathematical Logic 101 course

is the “Tautology Theorem” (a variant of the Completeness Theorem for propositional

logic), which asserts that every tautology – every statement that holds in every possible

model or setting – can be proven to hold using a small set of axioms. The corresponding

programming exercise in this book is to write a function (based on functions from previous

exercises, of course) whose input is a formula (an object of class Formula, which the

students implement in a previous exercise) and whose output is either a model in which

this formula does not hold (i.e., a counterexample to the formula being a tautology) or a

proof (an object of class Proof, which the students implement in a previous exercise) of

this formula. Obviously, whoever can write such a function, including all its recursively

implemented helper functions, completely understands the reasoning in the proof of the

Tautology Theorem, including all its inductively proven lemmas. (And this holds even

more so for students who naturally grasp recursive code far better than they do inductive

proofs.) In our experience, students with a background in programming for the most part

even understand this proof better having actively coded its functionality themselves than
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xii Preface

had they only passively seen the proof being written on the blackboard by a teacher. In

the process of moving from proving to programming, we have in fact also disambiguated

the two meanings of “prove” in the earlier statement of “prove that whatever is true can

be proven”: we transformed the former “prove” into “program in code” and the latter “can

be proven” into “is the conclusion of a valid Proof object.” This disambiguation by way

of defamiliarization of each of these occurrences of “prove” achieves great clarity and

furthermore allows the students to more easily reexamine their intuitions and unconscious

assumptions about proofs.

This book evolved from a course that we have been teaching at the Hebrew University of

Jerusalem since 2017, first as an elective (we limited our class to 50 and then to 100 students

as we fine-tuned the course, and there had been a waiting list) and later as an alternative

for computer science and engineering students to the mandatory Mathematical Logic 101,

to the clear satisfaction of the students, who continuously rank this course highly. In our

experience, having the tasks of a single chapter due each week (if the schedule permits,

then we try to allow an additional week for Chapter 10), with the tasks of Part I (Chapters 1

through 6) being solved by each student individually and the tasks of Part II (Chapters 7

through 12) being solved in pairs, has consistently proven to work well.

We are grateful to the Hebrew University students who took our course for their valuable

questions and comments, and to our earlier students also for the faith they have put in us.

We are indebted to our first TA and beta-solver, Alon Ziv, as well as to our subsequent TAs

Noam Wies, Asaf Yehudai, Ofer Ravid, and Elazar Cohen, and beta-solvers Omri Cohen

and Matan Harsat. A special thanks goes to Chagit Schiff-Blass, at the time a Law and

Cognitive Science student, who showed us that our way of teaching Mathematical Logic

really does appeal to an even more diverse student population than we had imagined, by first

being an excellent beta-solver and then joining our teaching team. We thank Henry Cohn

for valuable advice, and thank Aviv Keren and Shimon Schocken for their valuable detailed

feedback on portions of earlier drafts of this book. We especially thank David Kashtan

for careful and valuable scientific editing of this book on the logic side; any deviations

from standard definitions or nomenclature are, of course, our own responsibility. Finally,

we thank Kaitlin Leach, Rebecca Grainger, and the entire team at Cambridge University

Press for their support and for their flexibility throughout the COVID pandemic. The cover

picture by Vasily Kandinsky is titled “Serious-Fun,” and we hope that this will describe

your experience as you work through this book. We always appreciate feedback from

readers.
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