
Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

0 Introduction and Overview

Assume that all Greeks are men. Assume also that all men are mortal. It follows logically

that all Greeks are mortal.

This deduction is remarkable in the sense that we can make it even without understanding

anything about Greeks, men, or mortality. The same deduction can take the assumptions

that all Greeks are fish and that all fish fly and conclude that all Greeks fly. As long as the

assumptions are correct, so is the conclusion. If one or more of the assumptions is incor-

rect, then all bets are off and the conclusion need not hold. How are such “content-free”

deductions made? When is such a deduction valid? For example, assume that some Greeks

are men and that some men are mortal; does it follow that some Greeks are mortal? No!

The field of logic deals exactly with these types of deductions – those that do not require

any specific knowledge of the real world, but rather take statements about the world and

deduce new statements from them, new statements that must be true if the original ones are.

Such deductions are a principal way by which we can extend our knowledge beyond any

facts that we directly observe. While in many fields of human endeavor logical deductions

go hand in hand with other techniques of observing and understanding the actual facts of

the world, in the field of mathematics logical deductions serve as the sole paradigmatic

foundation.

A crucial property of logical deduction is that it is purely syntactic rather than semantic.

That is, the validity of a logical deduction can be completely determined by its form, its

syntax. Nothing about the actual meaning of the assumptions or conclusion, such as their

truth or falsehood, is involved. The usefulness, however, of such deductions comes from

the, perhaps surprising, fact that their conclusions do turn out to be true in the meaningful,

semantic, sense. That is, whenever the assumptions are true, the conclusion also happens to

be true – and this happens despite the fact that the deduction process itself was completely

oblivious to said truth! Indeed, the clear separation between syntactic notions and semantic

ones, as well as establishing the connections between them, are the core of the study of

logic. There are several different possible motivations for such study, and these different

motivations influence the type of issues emphasized.

Philosophers usually use logic as a tool of the trade, and mostly focus on the difficult

process of translating between natural human language and logical formulas.1 These are

tricky questions mostly due to the human part of this mismatch: Human language is not

completely precise, and to really understand the meaning of a sentence may require not only

1 Another frequently used plural form of “formula,” which you may encounter in many books, is “formulae.”

For simplicity, in this book we will stick with “formulas.”

1

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 Introduction and Overview

logical analysis but also linguistic analysis and even social understanding. For example,

who exactly is included in the set of Greeks? When we assumed that they are all men,

does that include or exclude women? Without coming to grips with these thorny questions,

one cannot assess whether the assumptions are true and cannot benefit from the logical

deduction that all Greeks are mortal.

Mathematicians also study logic as a tool of the trade. Mathematicians usually apply

logic to precise mathematical statements, so they put less emphasis on the mismatch with

the imprecise human language, but are rather focused on the exact rules of logic and on

exactly understanding the formalization process and power of logic itself. Indeed, to under-

stand the power of logic is to understand the limits of the basic paradigm of mathematics

and mathematical proofs, and thus the field of mathematical logic is sometimes called

meta-mathematics, mathematically studying mathematics itself.

Computer scientists use logic as a tool of the trade in a somewhat different sense,

often relying on logical formalisms to represent various computational abstractions. Thus,

for example, a language to access databases (e.g., SQL) may be based on some logical

formalism (e.g., predicate logic), and abstract computational search problems (e.g., NP

problems) may be treated as finding assignments to logical formulas (e.g., SAT).

The approach of this book is to proceed toward the goal of mathematicians who study

logic, using the tools of computer scientists, and in fact not those computer scientists

who study logic, but rather more applied computer scientists. Specifically, our main goal

is to precisely formalize and understand the notions of a logical formula and a deduc-

tive logic proof, and to establish their relationship with mathematical truth. Our tech-

nique is to actually implement all these logical formulas and logical proofs as bona fide

objects in a software implementation: You will actually be asked to implement, in the

Python programming language, methods and functions that deal with Python objects such

as Formula and Proof. For example, in Chapter 2 you will be asked to implement a func-

tion is_tautology(formula) that determines if the given logical formula is a tautology,

i.e., logically always true; while in Chapter 6 you will be asked to implement a function

proof_or_counterexample(formula) that returns either a formal logical proof of the

given formula – if it happens to be a tautology – or else a counterexample that demonstrates

that this formula is in fact not a tautology.

0.1 Our Final Destination: Gödel’s Completeness Theorem

This book has a very clear end point to which everything leads: Gödel’s completeness

theorem, named after its discoverer, the Austrian (and later American) logician and math-

ematician Kurt Gödel. To understand it, let us first look at the two main syntactic objects

that we will study and their semantics. Our first focus of attention is the formula, a formal

representation of certain logical relations between basic simpler notions. For example a

formalization of “All men are mortal” in the form, say, ‘∀x[Man(x)→Mortal(x)]’ (we will,

of course, specify exact syntactic rules for such formulas). Now comes the semantics, that

is, the notion of truth of such a formula. A formula may be true or false in a particular

setting, depending on the specifics of the setting. Specifically, a formula can be evaluated

only relative to a particular model, where this model must specify all the particulars of the

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

0.1 Our Final Destination: Gödel’s Completeness Theorem 3

setting. In our example, such particulars would include which x in the “universe” are men

and which are mortal. Once such a model is given, it is determined whether a given formula

is true in this model or not.

Our second focus of attention is the notion of a proof. A proof again is a syntactic

object: It consists of a set of formulas called assumptions, an additional formula called

conclusion, and the core of the proof is a list of formulas that has to conform to certain

specific rules ensuring that each formula in the list “follows” in some precise syntactic

sense from previous ones or from assumptions, and that the last formula in the list is the

conclusion. If such a formal proof exists, then we say that the conclusion is (syntactically)

provable from the assumptions, which we denote by assumptions ` conclusion. Now,

again, enter the semantics, which deal with the following question: Is it the case that

in every model in which all the assumptions are true, the conclusion is also true? (This

question is only about the assumptions and the conclusion, and is agnostic of the core of

any proof.) If that happens to be the case, then we say that the conclusion (semantically)

follows from the assumptions, which we denote by assumptions |H conclusion. Gödel’s

completeness theorem states the following under certain conditions.

theorem (Gödel’s Completeness Theorem) For any set of assumptions and any

conclusion, it holds that “assumptions ` conclusion” if and only if “assumptions |H

conclusion”.

This is a very remarkable theorem connecting two seemingly unrelated notions: The

existence of a certain long list of formulas built according to some syntactic rules (this

long list is the syntactic proof just defined), and the mathematical truth that whenever all

assumptions are true, so invariably is the conclusion. On second thought, it does make

sense that if something is syntactically provable then it is also semantically true: We will

deliberately choose the syntactic rules of a proof to only allow true deductions. In fact,

this is the whole point of mathematics: In order to know that whenever we add two even

numbers we get an even number, we do not need to check all possible (infinitely many!)

pairs of even numbers, but rather it suffices to “prove” the rule that if the two numbers that

we add up are even then the result is even as well, and the whole point is that our proof

system is sound: A “proved” statement must be true (otherwise the concept of a proof

would not have been of any use). The other direction, the fact that any mathematical truth

can be proven, is much more surprising: We could have expected that the more possibilities

we build into our proof system, the more mathematical truths it can prove. It is far from

clear, though, that any specific, finite, syntactic set of rules for forming proofs should suffice

for proving, given any set of assumptions, every conclusion that follows from it. And yet,

for the simple syntactic set of logical rules that we will present, this is exactly what Gödel’s

completeness theorem establishes.

One can view this as the final triumph of mathematical reasoning: Our logical notion of

proof completely suffices to establish any consequence of any set of assumptions. Given a

set of axioms of, e.g., a mathematical field (or any other mathematical structure), anything

that holds for all fields can actually be logically proven from the field axioms!

Unfortunately, shortly after proving this completeness theorem, Gödel turned his atten-

tion to the question of finding the “correct” set of axioms to capture the properties of the

natural numbers. What was desired at the time was to find for every branch of mathematics

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 Introduction and Overview

a simple set of axioms that suffices for proving or disproving any possible mathematical

statement in that branch.2 We say “unfortunately” since Gödel showed this to fail in a most

spectacular way, showing that no such set of axioms exists even for the natural numbers: for

every set of axioms there will remain mathematical statements about the natural numbers

that can neither be proved nor disproved! This is called Gödel’s incompleteness theorem.

Despite its name, this theorem does not in fact contradict the completeness theorem: It

is still true that anything that (semantically) follows from a set of axioms is syntactically

provable from it, but unfortunately there will always remain statements such that neither

they nor their negation follow from the set of axioms.

One can view Gödel’s incompleteness theorem as the final defeat of mathematical rea-

soning: There will always remain questions beyond the reach of any specific formalization

of mathematics. But this book – a first course in mathematical logic – focuses only on

the triumph, i.e., on Gödel’s completeness theorem, leaving the defeat, the incompleteness

theorem, for a second course in mathematical logic.

0.2 Our Pedagogical Approach

The mathematical content covered by this book is quite standard for a first course in math-

ematical logic. Our pedagogical approach is, however, unique: We will “prove” everything

by writing computer programs.

Let us motivate this unusual choice. We find that among academic courses in mathe-

matics, the introductory mathematical logic course stands out as having an unusual gap

between student perceptions and our own evaluation of its content: While we (and, we

think, most mathematicians) view the mathematical content as rather easy, students seem

to view it as very confusing relative to other mathematics courses. While we view the

conceptual message of the course as unusually beautiful, students often fail to see this

beauty – even those that easily see the beauty of, say, calculus or algebra. We believe that

the reason for this mismatch is the very large gap that exists between the very abstract point

of view – proving things about proofs – and the very low-level technical proofs themselves.

It is easy to get confused between the proofs that we are writing and the proofs that are our

subjects of discussion. Indeed, when we say that we are “writing proofs to prove things

about proofs,” the first “proofs” and the second “proofs” actually mean two very different

things even though many introductory mathematical logic courses use the same word for

both. This turns out to become even more confusing as the “mechanics” of both the proof

we are writing and the proof that we are discussing are somewhat cumbersome while the

actual point that we are making by writing these proofs is something that we usually take

for granted, so it is almost impossible to see the forest for the trees.

Computer scientists are used to combining many “mechanical details” to get a high-level

abstract goal (this is known as “programming”), and are also used to writing programs that

handle objects that are as complex as the programs themselves (such as compilers). A

large part of computer science exactly concerns the discussion of how to handle such chal-

lenges both in terms of tools (debuggers, assemblers, compilers) and it terms of paradigms

2 This desire, formulated by the German mathematician David Hilbert, was called “Hilbert’s Program.”

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

0.3 How We Travel: Programs That Handle Logic 5

(interfaces, object-orientation, testing). So this book utilizes the tools of a computer scien-

tist to achieve the pedagogical goal of teaching the mathematical basis of logic.

We have been able to capture maybe 95% of the mathematical content of a standard first

course in mathematical logic as programming tasks. These tasks capture the notions and

procedures that are studied, and the solution to each of these programming tasks can be

viewed as capturing the proof for some lemma or theorem. The reader who has actually

implemented the associated function has in effect proved the lemma or theorem, a proof

that has been verified for correctness (to some extent) once it has passed the extensive

array of tests that we provide for the task. The pedagogical gain is that confusing notions

and proofs become crystal clear once you have implemented them yourself. Indeed, in the

earlier sentence “writing proofs to prove things about proofs,” the first “proofs” becomes

“code” and the second “proofs” becomes “Python objects of class Proof.” Almost all the

lemmas and theorems covered by a typical introductory course in mathematical logic are

captured this way in this book. Essentially the only exceptions are theorems that consider

“infinite objects” (e.g., an infinite set of formulas), which cannot be directly captured by a

program that is constrained to dealing with finite objects. It turns out, however, that most

of the mathematical content of even these infinitary proofs can be naturally captured by

lemmas dealing with finite objects. What remains to be made in a purely non-programmatic

mathematical way is just the core of the infinite argument, which is the remaining 5% or

so that we indeed then lay out in the classical mathematical way.

0.3 How We Travel: Programs That Handle Logic

This book is centered around a sequence of programming projects in the Python program-

ming language.3 We provide a file directory that contains a small amount of code that we

have already implemented, together with many skeletons of functions and methods that you

will be asked to complete, and an extensive array of tests that will verify that your imple-

mentation is correct. Each chapter of this book is organized around a sequence of tasks,

each of which calls for completing the implementation of a certain function or method for

which we have supplied the skeleton (which also appears as a code snippet in the book).

All of our code-base, including the already implemented parts of the code, the skeletons,

and the tests, can be downloaded from the book website at www.LogicThruPython.org.

Let us take as an example Task 2 in Chapter 1. Chapter 1 deals with propositional

formulas. You will handle such objects using code that appears in the Python file

propositions/syntax.py, which already contains the constructor for a Python class

Formula for holding a propositional formula as a tree-like data structure.4

3 Specifically, the code snippets in this book have been tested with Python 3.7. Please refer to the book website

at www.LogicThruPython.org for updated information regarding compatibility of newer Python versions

with our code-base.
4 The annotations following various colon signs, as well as following the -> symbol, are called Python type

annotations and specify the types of the variables/parameters that they follow, and respectively of the return

values of the functions that they follow.

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Introduction and Overview

propositions/syntax.py

class Formula:

"""An immutable propositional formula in tree representation, composed from

variable names, and operators applied to them.

Attributes:

root: the constant, variable name, or operator at the root of the

formula tree.

first: the first operand of the root, if the root is a unary or binary

operator.

second: the second operand of the root, if the root is a binary

operator.

"""

root: str

first: Optional[Formula]

second: Optional[Formula]

def __init__(self, root: str, first: Optional[Formula] = None,

second: Optional[Formula] = None):

"""Initializes a `Formula` from its root and root operands.

Parameters:

root: the root for the formula tree.

first: the first operand for the root, if the root is a unary or

binary operator.

second: the second operand for the root, if the root is a binary

operator.

"""

if is_variable(root) or is_constant(root):

assert first is None and second is None

self.root = root

elif is_unary(root):

assert first is not None and second is None

self.root, self.first = root, first

else:

assert is_binary(root)

assert first is not None and second is not None

self.root, self.first, self.second = root, first, second

The main content of Chapter 1 is captured by asking you to implement various methods

and functions related to objects of class Formula. Task 2 in Chapter 1, for example, asks

you to implement the method variables() of this class, which returns a Python set of

all variable names used in the formula. The file propositions/syntax.py thus already

contains also the skeleton of this method.

propositions/syntax.py

class Formula:
.
.
.

def variables(self) -> Set[str]:

"""Finds all variable names in the current formula.

Returns:

A set of all variable names used in the current formula.

"""

Task 1.2

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

0.3 How We Travel: Programs That Handle Logic 7

To check that your implementation is correct, we also provide a corresponding test file,

propositions/syntax_test.py, which contains the following test:

propositions/syntax_test.py

def test_variables(debug=False):

for formula, expected_variables in [

(Formula('T'), set()),

(Formula('x1234'), {'x1234'}),

(Formula('~', Formula('r')), {'r'}),

(Formula('->', Formula('x'), Formula('y')), {'x','y'}),

.

.

.

(Formula(· · ·), {· · · })]:

if debug:

print('Testing variables of', formula)

assert formula.variables() == expected_variables

We encourage you to always browse through the examples within the test code before

starting to implement the task, to make sure that you fully understand any possible nuances

in the specifications of the task.

All the tests of all tasks in Chapter 1 can be invoked by simply executing the Python file

test_chapter01.py, which we also provide. The code for testing the optional tasks of

Chapter 1 is commented out in that file, so if you choose to implement any of these tasks

(which is not required in order to be able to implement any of the non-optional tasks that

follow them), simply uncomment the corresponding line(s) in that file. If you run this file

and get no assertion errors, then you have successfully (as far as we can check) solved all

of the tasks in Chapter 1.

This chapter – Chapter 0 – contains a single task, whose goal is to verify

that you have successfully downloaded our code base from the book website at

www.LogicThruPython.org, and that your Python environment is correctly set up.

task 1 Implement the missing code for the function half(x) in the file

prelim/prelim.py, which halves an even integer. Here is the skeleton of this function

as it already appears in the file:

prelim/prelim.py

def half(x: int) -> int:

"""Halves the given even integer.

Parameters:

x: even integer to halve.

Returns:

An integer `z` such that `z+z=x`.

"""

assert x % 2 == 0

Task 0.1

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Introduction and Overview

The solution to Task 1 is very simple, of course (return x//2, or alternatively,

return int(x/2)), but the point that we want you to verify is that you can execute the file

test_chapter00.py without getting any assertion errors, but only getting the expected

verbose listing of what was tested.

$ python test_chapter00.py
Testing half of 42
Testing half of 8
$

For comparison, executing the file test_chapter00.py with a faulty implementation

of Task 1 would raise an assertion error. For example, implementing Task 1 with, say,

return x//3, would yield the following output:

$ python test_chapter00.py
Testing half of 42
Traceback (most recent call last):

File "test_chapter00.py", line 13, in <module>
test_task1(True)

File "test_chapter00.py", line 11, in test_task1
test_half(debug)

File "prelim/prelim_test.py", line 15, in test_half
assert result + result == 42

AssertionError
$

and implementing Task 1 with, say, return x/2 (which returns a float rather than an

int), would yield the following output:

$ python test_chapter00.py
Testing half of 42
Traceback (most recent call last):

File "test_chapter00.py", line 13, in <module>
test_task1(True)

File "test_chapter00.py", line 11, in test_task1
test_half(debug)

File "prelim/prelim_test.py", line 14, in test_half
assert isinstance(result, int)

AssertionError
$

0.4 Our Roadmap

We conclude this chapter by giving a quick overview of our journey in this book. We study

two logical formalisms: Chapters 1–6 deal with the limited propositional logic, while

Chapters 7–12 move on to the fuller (first-order) predicate logic. In each of these two

parts of the book, we take a somewhat similar arc:

a. Define a syntax for logical formulas (Chapter 1/Chapter 7).

b. Define the semantics of said formulas (Chapter 2/Chapter 7).

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

0.4 Our Roadmap 9

c. Pause a bit in order to simplify things (Chapter 3/Chapter 8).

d. Define (syntactic) formal proofs (Chapter 4/Chapter 9).

e. Prove useful lemmas about said formal proofs (Chapter 5/Chapters 10 and 11).

f. Prove that any formula that is semantically true also has a syntactic formal proof

(Chapter 6/Chapter 12).

Of course, the results that we prove for the simpler propositional logic in Part I of this

book are then also used when dealing with predicate logic in Part II of the book. Here is a

more specific chapter-by-chapter overview:

1. Chapter 1 defines a syntax for propositional logic and shows how to handle it.

2. Chapter 2 defines the notion of the semantics of a propositional formula, giving every

formula a truth value in every given model.

3. Chapter 3 looks at the possible sets of logical operations allowed and discusses which

such subsets suffice.

4. Chapter 4 introduces the notion of a formal deductive proof.

5. Chapter 5 starts analyzing the power of formal deductive proofs.

6. Chapter 6 brings us to the pinnacle of Part I of this book, obtaining the “tautology the-

orem,” which is the mathematical heart of the completeness theorem for propositional

logic (which we will indeed derive from it), and is also a key result that we will use in

Part II of this book when proving the completeness theorem for predicate logic.

7. Chapter 7 starts our journey into predicate logic, introducing both its syntax and its

semantics.

8. Chapter 8 is concerned with allowing some simplifications in our predicate logic,

specifically getting rid of the notions of functions and of equality without weakening

the expressive power of our formalism.

9. Chapter 9 introduces and formalizes the notion of a deductive proof of a formula in

predicate logic.

10. Chapter 10 fixes a set of logical axioms and demonstrates their capabilities by apply-

ing them to several domains from syllogisms, through mathematical structures, to the

foundations of mathematics, e.g., formalizing Russell’s paradox about “the set of all

sets that do not contains themselves.”

11. Chapter 11 proves key results about the power of proofs in predicate logic.

12. Chapter 12 reaches the culmination of our journey by proving Gödel’s completeness

theorem. We also get, “for free,” the “compactness theorem” of predicate logic.

13. Finally, Chapter 13 provides a “sneak peek” into a second course in mathematical logic,

sketching a proof of Gödel’s incompleteness theorem.

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Part I

Propositional Logic

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1 Propositional Logic Syntax

In this chapter we present a formal syntax for formalizing statements within logic. Con-

sider the following example of a natural language sentence that has some logical structure:

“If it rains on Monday then we will either hand out umbrellas or rent a bus.” This sentence

is composed of three basic propositions, each of which may potentially be either true or

false: p1=“it rains on Monday”, p2=“we will hand out umbrellas”, and p3=“we will rent

a bus”. We can interpret this English-language sentence as logically connecting these three

propositions as follows: “p1 implies (p2 or p3)”, which we will write as ‘(p1→(p2|p3))’.

Our goal in this chapter is to formally define a language for capturing these types of

sentences. The motivation for defining this language is that it will allow us to precisely and

formally analyze their implications. For example, we should be able to formally deduce

from this sentence that if we neither handed out umbrellas nor rented a bus, then it did not

rain on Monday. We purposefully postpone to Chapter 2 a discussion of semantics, of the

meaning, that we assign to sentences in our language, and focus in this chapter only on the

syntax, i.e., on the rules of grammar for forming sentences.

1.1 Propositional Formulas

Our language for Part I of this book is called propositional logic. While there are various

variants of the exact rules of this language (allowing for various logical operators or for

various rules about whether and when parentheses may be dropped), the exact variant used

is not very important, but rather the whole point is to fix a single specific set of rules and

stick with it. Essentially everything that we say about this specific variant will hold with

only very minor modifications for other variants as well. Here is the formal definition with

which we will stick.

definition 1.1 (Propositional Formula) The following strings are (valid1) proposi-

tional formulas:

• A variable name: a letter in ‘p’. . . ‘z’, optionally followed by a sequence of digits. For

example, ‘p’, ‘y12’, or ‘z035’.

• ‘T’.

• ‘F’.

• A negation ‘~φ’, where φ is a (valid) propositional formula.

1 What we call valid formulas are often called well-formed formulas in other textbooks.

13

www.cambridge.org/9781108845076
www.cambridge.org

Cambridge University Press & Assessment
978-1-108-84507-6 — Mathematical Logic through Python
Yannai A. Gonczarowski , Noam Nisan
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

14 Propositional Logic Syntax

• ‘(φ&ψ)’ where each of φ and ψ is a propositional formula.

• ‘(φ|ψ)’ where each of φ and ψ is a propositional formula.

• ‘(φ→ψ)’ where each of φ and ψ is a propositional formula.

These are the only (valid) propositional formulas. For example, ‘~((~x&(p007|x))→F)’ is

a propositional formula.

This definition is syntactic: it specifies which strings, that is, finite sequences of charac-

ters, are valid propositional formulas and which are not, by describing the rules through

which such strings can be formed. (Again, we have deliberately not yet assigned any

interpretation to such strings, but the reader will surely guess that the constants ‘T’ and ‘F’

stand for True and False, respectively, that the unary (operating on one subformula) oper-

ator ‘~’ stands for Not, and that the binary (operating on two subformulas) operators ‘&’,

‘|’, and ‘→’ stand for And, Or, and Implies, respectively.) We remark that in many logic

textbooks, the symbol ‘¬’ (negation) is used instead of ‘~’, the symbol ‘∧’ (conjunction)

is used instead of ‘&’, and the symbol ‘∨’ (disjunction) is used instead of ‘|’.

Our choice of symbols in this book was indeed influenced by which symbols are easy

to type on a computer. For your convenience, the file propositions/syntax.py defines

functions for identifying strings that contain the various tokens, or basic building blocks,

allowed in propositional formulas.2 The symbol ‘→’ is not a standard character, so in

Python code we will represent it using the two-character sequence '−>'.

propositions/syntax.py

def is_variable(string: str) −> bool:

"""Checks if the given string is a variable name.

Parameters:

string: string to check.

Returns:

``True`` if the given string is a variable name, ``False`` otherwise.

"""

return string[0] >= 'p' and string[0] <= 'z' and \

(len(string) == 1 or string[1:].isdecimal())

def is_constant(string: str) −> bool:

"""Checks if the given string is a constant.

Parameters:

string: string to check.

Returns:

``True`` if the given string is a constant, ``False`` otherwise.

2 The decorator that precedes the definition of each of these functions in the code that you are given memoizes

the function, so that if any of these functions is called more than once with the same argument, the previous

return value for that argument is simply returned again instead of being recalculated. This has no effect on

code correctness since running these functions has no side effects, and their return values depend only on their

arguments and are immutable, but this does speed-up the execution of your code. It may seem silly to perform

such optimizations with such short functions, but this will in fact dramatically speed-up your code in later

chapters, when such functions will be called many many times from within various recursions. We use this

decorator throughout the code that you are given in various places where there are speed improvements to be

gained.

www.cambridge.org/9781108845076
www.cambridge.org

