Animal Population Ecology

Animal population ecology comprises the study of variations, regulation, and interactions of animal populations. This book discusses the fundamental notions and findings of animal populations on which most of the ecological studies are based. In particular, the author selects the logistic law of population growth, the nature of competition, sociality as an antithesis of competition, the mechanism underlying the regulation of populations, predator–prey interaction processes, and interactions among closely related species competing over essential resources. These are the notions that are considered to be well-established facts or principles and are regularly taught at ecology classes or introduced in standard textbooks. However, the author demonstrates that these notions are still inadequately understood, or even misunderstood, creating myths that would misguide ecologists in carrying out their studies. He delves deeply into those notions to reveal their real nature and draws a road map to the future development of ecology.

T. ROYAMA is well known for his field studies of great tit and spruce budworm, and his contribution to theoretical ecology through the innovative application of stochastic processes. His previous book, *Analytical Population Dynamics* (Chapman & Hall, 1992), had a significant impact on population ecology. He was also a recipient of a Gold Medal of Entomological Society of Canada in 1994.

ECOLOGY, BIODIVERSITY AND CONSERVATION

General Editor: Michael Usher, University of Stirling

Editorial Board:

Jane Carruthers, University of South Africa, Pretoria Joachim Claudet, Centre National de la Recherche Scientifique (CNRS), Paris Tasman Crowe, University College Dublin Andy Dobson, Princeton University, New Jersey Valerie Eviner, University of California, Davis Julia Fa, Manchester Metropolitan University Janet Franklin, University of California, Riverside Rob Fuller, British Trust for Ornithology Chris Margules, James Cook University, North Queensland Dave Richardson, University of Stellenbosch, South Africa Peter Thomas, Keele University Des Thompson, NatureScot Lawrence Walker, University of Nevada, Las Vegas

The world's biological diversity faces unprecedented threats. The urgent challenge facing the concerned biologist is to understand ecological processes well enough to maintain their functioning in the face of the pressures resulting from human population growth. Those concerned with the conservation of biodiversity and with restoration also need to be acquainted with the political, social, historical, economic and legal frameworks within which ecological and conservation practice must be developed. The new Ecology, Biodiversity, and Conservation series will present balanced, comprehensive, up-to-date, and critical reviews of selected topics within the sciences of ecology and conservation biology, both botanical and zoological, and both 'pure' and 'applied'. It is aimed at advanced final-year undergraduates, graduate students, researchers, and university teachers, as well as ecologists and conservationists in industry, government and the voluntary sectors. The series encompasses a wide range of approaches and scales (spatial, temporal, and taxonomic), including quantitative, theoretical, population, community, ecosystem, landscape, historical, experimental, behavioural and evolutionary studies. The emphasis is on science related to the real world of plants and animals rather than on purely theoretical abstractions and mathematical models. Books in this series will, wherever possible, consider issues from a broad perspective. Some books will challenge existing paradigms and present new ecological concepts, empirical or theoretical models, and testable hypotheses. Other books will explore new approaches and present syntheses on topics of ecological importance.

Ecology and Control of Introduced Plants Judith H. Myers and Dawn Bazely Invertebrate Conservation and Agricultural Ecosystems T. R. New

www.cambridge.org

Cambridge University Press 978-1-108-84442-0 — Animal Population Ecology Tomo Royama Frontmatter <u>More Information</u>

> Risks and Decisions for Conservation and Environmental Management Mark Burgman Ecology of Populations Esa Ranta, Per Lundberg, and Veijo Kaitala Nonequilibrium Ecology Klaus Rohde The Ecology of Phytoplankton C. S. Reynolds Systematic Conservation Planning Chris Margules and Sahotra Sarkar Large-Scale Landscape Experiments: Lessons from Tumut David B. Lindenmayer Assessing the Conservation Value of Freshwaters: An International Perspective Philip J. Boon and Catherine M. Pringle Insect Species Conservation T. R. New Bird Conservation and Agriculture Jeremy D. Wilson, Andrew D. Evans, and Philip V. Grice Cave Biology: Life in Darkness Aldemaro Romero Biodiversity in Environmental Assessment: Enhancing Ecosystem Services for Human Well-Being Roel Slootweg, Asha Rajvanshi, Vinod B. Mathur, and Arend Kolhoff Mapping Species Distributions: Spatial Inference and Prediction Janet Franklin Decline and Recovery of the Island Fox: A Case Study for Population Recovery Timothy J. Coonan, Catherin A. Schwemm, and David K. Garcelon Ecosystem Functioning Kurt Jax Spatio-Temporal Heterogeneity: Concepts and Analyses Pierre R. L. Dutilleul Parasites in Ecological Communities: From Interactions to Ecosystems Melanie J. Hatcher and Alison M. Dunn Zoo Conservation Biology John E. Fa, Stephan M. Funk, and Donnamarie O'Connell Marine Protected Areas: A Multidisciplinary Approach Joachim Claudet Biodiversity in Dead Wood Jogeir N. Stokland, Juha Siitonen, and Bengt Gunnar Jonsson Landslide Ecology Lawrence R. Walker and Aaron B. Shiels Nature's Wealth: The Economics of Ecosystem Services and Poverty Pieter J.H. van Beukering, Elissaios Papyrakis, Jetske Bouma, and Roy Brouwer

Cambridge University Press 978-1-108-84442-0 — Animal Population Ecology Tomo Royama Frontmatter <u>More Information</u>

> Birds and Climate Change: Impacts and Conservation Responses James W. Pearce-Higgins and Rhys E. Green Marine Ecosystems: Human Impacts on Biodiversity, Functioning and Services Tasman P. Crowe and Christopher L. J. Frid Wood Ant Ecology and Conservation Jenni A. Stockan and Elva J. H. Robinson Detecting and Responding to Alien Plant Incursions John R. Wilson, F. Dane Panetta and Cory Lindgren Conserving Africa's Mega-Diversity in the Anthropocene: The Hluhluwe-iMfolozi Park Story Joris P. G. M. Cromsigt, Sally Archibald and Norman Owen-Smith National Park Science: A Century of Research in South Africa Jane Carruthers Plant Conservation Science and Practice: The Role of Botanic Gardens Stephen Blackmore and Sara Oldfield Habitat Suitability and Distribution Models: With Applications in R Antoine Guisan, Wilfried Thuiller and Niklaus E. Zimmermann Ecology and Conservation of Forest Birds Grzegorz Mikusiński, Jean-Michel Roberge and Robert J. Fuller Species Conservation: Lessons from Islands Jamieson A. Copsey, Simon A. Black, Jim J. Groombridge and Carl G. Jones Soil Fauna Assemblages: Global to Local Scales Uffe N. Nielsen Curious About Nature Tim Burt and Des Thompson Comparative Plant Succession Among Terrestrial Biomes of the World Karel Prach and Lawrence R. Walker Ecological-Economic Modelling for Biodiversity Conservation Martin Drechsler Freshwater Biodiversity: Status, Threats and Conservation Dudgeon Joint Species Distribution Modelling: With Applications in R Ovaskainen and Abrego

Animal Population Ecology

An Analytical Approach

T. ROYAMA Canadian Forest Service (retired)

Cambridge University Press 978-1-108-84442-0 — Animal Population Ecology Tomo Royama Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108844420 DOI: 10.1017/9781108951135

© T. Royama 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Royama, Tomo, 1930– author.

Title: Animal population ecology : an analytical approach / Tomo Royama, Canadian Forest Service (retired).

Description: Cambridge, UK ; New York, NY : Cambridge University Press, 2021. | Series: Ecology, biodiversity and conservation | Includes bibliographical references and index.

Identifiers: LCCN 2020042223 (print) | LCCN 2020042224 (ebook) | ISBN 9781108844420 (hardback) | ISBN 9781108948166 (paperback) | ISBN 9781108951135 (epub)

Subjects: LCSH: Animal populations. | Animal ecology.

Classification: LCC QL752 .R69 2021 (print) | LCC QL752 (ebook) | DDC 591.7/88–dc23 LC record available at https://lccn.loc.gov/2020042223

LC ebook record available at https://lccn.loc.gov/2020042224

ISBN 978-1-108-84442-0 Hardback ISBN 978-1-108-94816-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-108-84442-0 — Animal Population Ecology Tomo Royama Frontmatter <u>More Information</u>

To the memories of my mentorsDavid E. LackShunro UtidaGeorge, C. VarleyPatrick A. P. MoranNikolaas TinbergenR. Franklin MorrisCharles S. EltonMaurice E. Solomon

Contents

Prologue				
1	Hunting Strategies of Predators as Revealed in			
	Field Studies of Great Tits	7		
	1.1 Preamble	7		
	1.2 Search Image Theory by Lukas Tinbergen	8		
	1.3 Alternative Theory: Hunting by Profitability	11		
	1.4 Profitability Curve	21		
	1.5 Allotment of Hunting Time among			
	Different Sites	23		
	1.6 Hunting by Profitability as Principle	25		
2	The Paradox of Crypsis: Is it Effective against			
	Visual Predation?	26		
3	Logistic Law of Population Growth: What Is It			
	Really?	31		
	3.1 Preamble	31		
	3.2 The Classical Logistic Equation	32		
	3.3 Fundamental Nature of Population Processes	34		
	3.4 Ecological Significance of the Differential			
	Equation: $dx/dt = xf(x)$	34		
	3.5 Discrete-Time Processes	39		
	3.6 Classical Logistic Model as Particular Case			
	of Model (3.10)	46		
	3.7 Reinterpretations of Parameters ρ and K	48		
	3.8 Structual Problem of the Common-Version			
	Logistic Model	50		
	3.9 Final Remarks of Chapter	51		
Appendices				
	Appendix 3A: How to Solve a Differential Equation			
	in the Models (3.1)	52		

Cambridge University Press 978-1-108-84442-0 — Animal Population Ecology Tomo Royama Frontmatter <u>More Information</u>

x · Table of Contents

	Appendix 3B: The Derivative $d(e^u)/du = e^u$	55
	Appendix 3C: The Derivative $d(\ln v)/dv \equiv 1/v, v > 0$	56
	Appendix 3D: The Anomaly in the Common Version	
	Logistic Equation (3.3c)	56
	Appendix 3E: Mathematical Attributes of the Verhulst	
	Equation (3.3a)	56
4	Reproduction Curves and Their Utilities	58
	4.1 Original Ideas	58
	4.2 Drawing a Reproduction Curve	61
	4.3 Generating the Population Series	61
	4.4 Mathematical Roles that the Model	
	Parameters Play	63
	4.5 Problems with Population Size as a	
	Non-negative Quantity	66
	4.6 Logarithmic Transformation of a	
	Reproduction Curve	68
	4.7 An Application to Actual Data	71
	4.8 Variation in Dynamical Pattern of the Model	
	Process (4.4b)	75
	4.9 Examples of Variations in Dynamical Pattern	78
	4.10 Difference between Discrete-Time and	
	Continuous-Time Processes	82
	4.11 Ecological Feasibility of Variations in	
	Discrete-Time Processes	83
	4.12 Endogenous and Exogenous Processes	85
	4.13 Application of an Endogenous-Exogenous	
	Process Model to Wildlife Management	89
	4.14 The Origins of the Myths of the Logistic Law	90
	4.15 Final Remarks of Chapter	91
	Appendices	
	Appendix 4A: The Derivative of a Function Is a	
	Measure of the Slope of the Curve	
	Generated by the Function	92
	Appendix 4B: The Derivatives of a Few	
	Standard Functions	95
	Appendix 4C: L'Hôpital's Rule	96
	Appendix 4D: Prototype Curve and Its Translation	96
5	Generalization of the Logistic Model	98
	5.1 Preamble	98
	5.2 Negative Binomial Distribution	100

	Table of Contents	· xi	
	5.3 Ecological Application of the Negative		
	Binomial Distribution	105	
	5.4 A General Model of Intraspecific Competition	108	
	5.5 Model (3.10) as a Particular Case of Model (5.12) 5.6 Interpretation of the Hassell Model: $r_t = x_{t+1}/x_t = r_m/(1 + ax_t)^b$		
	5.7 One More Model to Examine		
	Appendices		
	Appendix 5A: Why $0! = 1$?		
	Appendix 5B: Why the Name 'Negative Binomial'?	115	
	Appendix 5C: How to Calculate the Mean and		
	Variance of the Random Number <i>m</i>		
	in (5.4)	116	
	Appendix 5D: Why Do the Terms jk^{j-1} Qr(j) in (5.6)		
	Vanish in the Limit $(j \to \infty)$?	118	
	Appendix 5E: Convergence of the Sum $\{\Sigma[(h + j - 1)]/\}$		
	$h!(j-1)!](kq)^{j-1}$ to $(1-kq)^{-(h+1)}$	119	
6	Scramble and Contest Competition:		
	What Is the Difference?	120	
	6.1 Preamble	120	
	6.2 Drawing Reproduction Curves Based		
	on Model (5.12)	121	
	6.3 Broader Interpretation of Parameter h	126	
	6.4 In the Weirdland of a Negative Hit	128	
	6.5 Nature of Competition	130	
	6.6 What Determines Parameter <i>h</i> in Actual Processes?	132	
	6.7 Scramble and Contest as Elements		
	of Competition	136	
	6.8 Concluding Remarks of Chapter	140	
	Appendices		
	Appendix 6A: The Logarithm of a Negative Real		
	Number is a Complex Number	140	
	Appendix 6B: How to Estimate Parameters $(R_m, h, c/h)$		
	to Fit Model (6.1a) to the Observed		
	Reproduction Curve in Figure 6.3a	143	
7	Regulation of Populations: Its Myths and		
	Real Nature	145	
	7.1 A Brief History	145	
	7.2 Biological Population Processes As		
	Stochastic Processes		

xii · Table of Contents

7.3 Defining Population Persistence	150
7.4 Investigations into Mechanisms for	
Persistent State	151
7.5 Density-Dependent Processes under	
Exogenous Influences	153
7.6 Density-Independent Processes	154
7.7 Algebra of Stipulation (7.3) for	
Population Persistence	158
7.8 Random Walk As Unregulated Processes	161
7.9 Density-Dependent Regulation	162
7.10 Precise Nature of Density-Dependent	
Regulation	167
7.11 Density-Independent Regulation	169
7.12 Logical Problem in Climatic-Control Theories	170
7.13 Myth of Density-Dependent Regulation	174
7.14 Concluding Remarks of Chapter	177
Appendices	
Appendix 7A: Rules of Operations on the Expectations	
Used in the Present Chapter	177
Appendix 7B: Derivation of Relationship (7.5)	178
Appendix 7C: Calculation of an Autocovariance	
Function (ACVF)	180
Predator–Prey Interaction Processes	181
8.1 Preamble	181
8.2 Formulation of Endogenous Models of the	
Interaction Processes	181
8.3 Simulation of the Dynamics of	
Predator-Prey Interactions	186
8.4 Variation in Dynamical Patterns	190
8.5 Effects of Random Exogenous Influences	197
8.6 Reproduction Surfaces of a	
Predator–Prey Process	206
8.7 Revealing Conditional Reproduction Curve	
in Observed Series	212
8.8 Problems Inherent to Earlier Models	217
8.9 Interactions between Predator Complex and	
0.7 Interactions between r redator Complex and	

8

		Table of Contents	· xiii
	Appendices		
	Appendix 8A:	Ecological Mechanism Underlying the	
		Equation $q(x_t) = [1 - \exp(-bx_t)]$	
		in (8.2)	221
	Appendix 8B: 1	How to Find the Equilibrium Levels	
		of the X and Y Series in the	
	1	Simultaneous Equations (8.4)	222
	Appendix 8C:	How to Generate Correlated Series	
		of Random Numbers	223
9	Interspecific C	Competition Processes	225
	9.1 Preamble	-	225
	9.2 Formulatio	n of Competition Model	225
	9.3 Simulations	5	227
	9.4 Criteria for	Coexistence and Elimination	228
	9.5 Reconsideration of the 'Competitive		
	Exclusion I	Principle'	245
	9.6 Alternative	Ways of Viewing Nature	248
	9.7 Struggle for	r Existence vs Optimization	
	of Profitabi	lity	249
	Appendices		
	Appendix 9A:	How to Calculate x^{**} and y^{**}	250
	Appendix 9B: 1	Infeasibility of Category (v)	
	i	in Table 9.1, Section 9.4	250
	Appendix 9C:	How to Incorporate the Effect of	
		Random Exogenous Influences in	
		the Model	251
10	Observations.	Analyses, and Interpretations:	
	A Personal Vi	ew through the Spruce	
	Budworm Stu	ıdies	252
	10.1 An Outlin	ne of the Spruce Budworm Studies	253
	10.2 Earlier Vi	ew of Outbreaks	254
	10.3 Thoughts	on the Basic Processes of	
	Ecological	l Studies	267
	10.4 Concludin	ng Remarks in the Quest for Certitude	270
References			271
	Index		273