Fundamentals of Astrophysics

This concise textbook, designed specifically for a one-semester course in astrophysics, introduces astrophysical concepts to undergraduate science and engineering students with a background in college-level, calculus-based physics. The text is organized into five parts covering: stellar properties; stellar structure and evolution; the interstellar medium and star/planet formation; the Milky Way and other galaxies; and cosmology. Structured around short easily digestible chapters, instructors have flexibility to adjust their course's emphasis as it suits them. Exposition drawn from the author's decade of teaching his course guides students toward a basic but quantitative understanding, with "quick questions" to spur practice in basic computations, together with more challenging multipart exercises at the end of each chapter. Advanced concepts such as the quantum nature of energy and radiation are developed as needed. The text's approach and level bridges the wide gap between introductory astronomy texts for nonscience majors and advanced undergraduate texts for astrophysics majors.

Stan Owocki is a professor at the Department of Physics and Astronomy at the University of Delaware, following positions at Harvard and University of California San Diego. He has coauthored more than 300 scientific papers, with his research focusing on mass loss from luminous, massive stars. His teaching at undergraduate to graduate levels includes the development of his flagship "Fundamentals of Astrophysics" course, which forms the basis for this textbook.

CAMBRIDGE

Fundamentals of Astrophysics

STAN OWOCKI University of Delaware

© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108844390 DOI: 10.1017/9781108951012

© Stan Owocki 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-84439-0 Hardback ISBN 978-1-108-94812-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

3

4

5

Cambridge University Press 978-1-108-84439-0 — Fundamentals of Astrophysics Stan Owocki Frontmatter <u>More Information</u>

Contents

Parl	I Stellar Properties	
Intro	oduction	
1.1	Observational versus Physical Properties of Stars	
1.2	Powers-of-Ten Scale Steps from Us to the Universe	
1.3	Questions and Exercises	
Astr	onomical Distances	1
2.1	Angular Size	1
2.2	Trigonometric Parallax	1
2.3	Determining the Astronomical Unit (au)	1
2.4	Solid Angle	1
2.5	Questions and Exercises	1
Stell	lar Luminosity	1
3.1	"Standard Candle" Methods for Distance	1
3.2	Intensity or Surface Brightness	4
3.3	Apparent and Absolute Magnitude and the Distance Modulus	
3.4	Questions and Exercises	2
Surf	ace Temperature from a Star's Color	2
4.1	The Wave Nature of Light	2
4.2	Light Quanta and the Blackbody Emission Spectrum	4
4.3	Inverse-Temperature Dependence of Wavelength for Peak Flux	4
4.4	Inferring Stellar Temperatures from Photometric Colors	
4.5	Questions and Exercises	
Stell	ar Radius from Luminosity and Temperature	
5.1	Bolometric Intensity	

vi	Contents		
	5.2 The Stefan-Boltzmann I aw for Surface Flux from a Blackbody	32	
	5.3 Questions and Exercises	33	
6	Composition and Ionization from Stellar Spectra	35	
	6.1 Spectral Line Absorption and Emission	35	
	6.2 Elemental Composition of the Sun and Stars	37	
	6.3 Stellar Spectral Type: Ionization as a Temperature Diagnostic	38	
	6.4 Hertzsprung–Russell (H–R) Diagram	39	
	6.5 Questions and Exercises	41	
7	Surface Gravity and Escape/Orbital Speed	43	
	7.1 Newton's Law of Gravitation and Stellar Surface Gravity	43	
	7.2 Surface Escape Speed $V_{\rm esc}$	44	
	7.3 Speed for Circular Orbit	45	
	7.4 Virial Theorem for Bound Orbits	46	
	7.5 Questions and Exercises	40	
8	Stellar Ages and Lifetimes		
	8.1 Shortness of Chemical Burning Timescale for the Sun and Stars	49	
	8.2 Kelvin–Helmholtz Timescale for Gravitational Contraction	49	
	8.3 Nuclear Burning Timescale	50	
	8.4 Age of Stellar Clusters from Main-Sequence Turnoff Point	51	
	8.5 Questions and Exercises	52	
9	Stellar Space Velocities	54	
	9.1 Transverse Speed from Proper Motion Observations	54	
	9.2 Radial Velocity from Doppler Shift	56	
	9.3 Questions and Exercises	57	
10	Using Binary Systems to Determine Masses and Radii	59	
	10.1 Visual (Astrometric) Binaries	59	
	10.2 Spectroscopic Binaries	61	
	10.3 Eclipsing Binaries	63	
	10.4 Mass-Luminosity Scaling from Astrometric and Eclipsing Binarie	s 64	
	10.5 Questions and Exercises	65	
11	Stellar Rotation	69	
	11.1 Rotational Broadening of Stellar Spectral Lines	69	
	11.2 Rotational Period from Starspot Modulation of Brightness	71	
	11.3 Questions and Exercises	72	

	Contents	vii
12	Light Intensity and Absorption	74
	10.1 Interest versus Elvy	74
	12.1 Intensity versus Flux	74 76
	12.2 Absorption Mean-Free-r ath and Optical Deput	70
	12.4 Questions and Exercises	79
13	Observational Methods	82
	13.1 Telescopes as Light Buckets	82
	13.2 Angular Resolution	83
	13.3 Radio Telescopes	84
	13.4 Space-Based Missions	85
	13.5 Polarimetry: Detecting Linear and Circular Polarization	86
	13.6 Questions and Exercises	87
14	Our Sun	89
	14.1 Imaging the Solar Disk	89
	14.2 Corona and Solar Wind	92
	14.3 Convection as a Driver of Magnetic Structure and Activity	94
	14.4 Questions and Exercises	96
	Part II Stellar Structure and Evolution	99
15	Hydrostatic Balance between Pressure and Gravity	101
	15.1 Hydrostatic Equilibrium	101
	15.2 Pressure Scale Height and Thinness of Surface Layer	103
	15.3 Hydrostatic Balance in the Stellar Interior and the Virial Temperature	104
	15.4 Questions and Exercises	105
16	Transport of Radiation from Interior to Surface	107
	16.1 Random Walk of Photon Diffusion from Stellar Core to Surface	107
	16.2 Diffusion Approximation at Depth	108
	16.3 Atmospheric Variation of Temperature with Optical Depth	109
	16.4 Questions and Exercises	110
17	Structure of Radiative versus Convective Stellar Envelopes	112
	17.1 $L \sim M^3$ Relation for Hydrostatic, Radiative Stellar Envelopes	112
	17.2 Horizontal-Track Kelvin-Helmholtz Contraction to the Main Sequence	113
	17.3 Convective Instability and Energy Transport	113
	17.4 Hayashi Track Contraction of Fully Convective Proto-Stars	116
	17.5 Questions and Exercises	117

viii	Contents	
18	Hydrogen Fusion and the Mass Range of Stars	119
	18.1 Core Temperature for Hydrogen Fusion18.2 Main-Sequence Scalings for Radius–Mass and Luminosity–Temperature	119 121
	18.3 Lower Mass Limit for Hydrogen Fusion: Brown-Dwarf Stars	122
	18.4 Upper Mass Limit for Stars: The Eddington Limit	123
	18.5 Questions and Exercises	124
19	Post-Main-Sequence Evolution: Low-Mass Stars	126
	19.1 Hydrogen-Shell Burning and Evolution to the Red-Giant Branch	126
	19.2 Helium Flash to Horizontal Branch Core Burning	129
	19.3 Asymptotic Giant Branch to Planetary Nebula to White Dwarf	130
	19.4 White-Dwart Stars 19.5 Chandrasekher Limit for White Dwarf Messy $M < 1.4M$	131
	19.5 Chandrasekhai Elinit for white-Dwarf Mass. $M < 1.4 M_{\odot}$ 19.6 Questions and Exercises	132
20	Post-Main-Sequence Evolution: High-Mass Stars	135
	20.1 Multiple Shell Burning and Horizontal Loops in the H–R Diagram	135
	20.2 Core-Collapse Supernovae	137
	20.3 Neutron Stars	138
	20.4 Black Holes	138
	20.5 Observations of Stellar Remnants	140
	20.6 Gravitational Waves from Merging Black Holes or Neutron Stars	142
	20.7 Questions and Exercises	146
	Part III Interstellar Medium and Formation of Stars and Planets	149
21	The Interstellar Medium	151
	21.1 Star–Gas Cycle	151
	21.2 Cold–Warm–Hot Phases of Nearly Isobaric ISM	152
	21.3 Molecules and Dust in Cold ISM: Giant Molecular Clouds	155
	21.4 HII Regions	157
	21.5 Galactic Organization and Star-Gas Interaction along Spiral Arms	159
	21.6 Questions and Exercises	160
22	Star Formation	162
	22.1 Jeans Criterion for Gravitational Contraction	162
	22.2 Cooling by Molecular Emission	163
	22.3 Free-Fall Timescale and the Galactic Star-Formation Rate	164
	22.4 Fragmentation into Cold Cores and the Initial Mass Function	164
	22.5 Angular Momentum Conservation and Disk Formation	166
	22.0 Questions and Exercises	168

		Contents	ix
00	Ovinin of Dispetery Cystems		171
23	origin of Planetary Systems		1/1
	23.1 The Nebular Model		171
	23.2 Observations of Proto-Planetary Disks		171
	23.3 Our Solar System		173
	23.4 The Ice Line: Gas Giants versus Rocky Dwarfs		174
	23.5 Equilibrium Temperature		175
	23.6 Questions and Exercises		175
24	Water Planet Earth		177
	24.1 Formation of the Moon by Giant Impact		177
	24.2 Water from Icy Asteroids		177
	24.3 Our Magnetic Shield		178
	24.4 Life from Oceans: Earth versus Icy Moons		179
	24.5 Questions and Exercises		180
25	Extra-Solar Planets		182
	25.1 Direct-Imaging Method		182
	25.2 Radial-Velocity Method		182
	25.3 Transit Method		184
	25.4 The Exoplanet Census: 4000+ and Counting		186
	25.5 Search for Earth-Size Planets in the Habitable Zone		187
	25.6 Questions and Exercises		188
	Part IV Our Milky Way and Other Galaxies		191
26	Our Milky Way Galaxy		193
	26.1 Disk, Halo, and Bulge Components of the Milky Way		193
	26.2 Virial Mass for Clusters from Stellar Velocity Dispersion		197
	26.3 Galactic Rotation Curve and Dark Matter		197
	26.4 Supermassive Black Hole at the Galactic Center		200
	26.5 Questions and Exercises		202
27	External Galaxies		205
	27.1 Cepheid Variables as Standard Candles to External Galaxie	es	205
	27.2 Galactic Redshift and Hubble's Law for Expansion		207
	27.3 Tully–Fisher Relation		208
	27.4 Spiral, Elliptical, and Irregular Galaxies		210
	27.5 Role of Galaxy Collisions		212
	27.6 Ouestions and Exercises		213
	Karonomo ana Enterenero		210

X	Contents	
28	Active Galactic Nuclei and Quasars	215
	28.1 Basic Properties and Model	215
	28.2 Lyman- α Clouds	217
	28.3 Gravitational Lensing of Quasar Light by Foreground Galaxy Clusters	218
	28.4 Gravitational Redshift	219
	28.5 Apparent "Superluminal" Motion of Quasar Jets	220
	28.6 Questions and Exercises	221
29	Large-Scale Structure and Galaxy Formation and Evolution	224
	29.1 Galaxy Clusters and Superclusters	224
	29.2 Lensing of Colliding Galaxy Clusters Confirms Dark Matter	226
	29.3 Dark Matter: Hot versus Cold, WIMPs versus MACHOs	226
	29.4 Galaxy Evolution over Cosmic Time	229
	29.5 Questions and Exercises	231
	Part V Cosmology	233
30	Newtonian Dynamical Model of Universe Expansion	235
	30.1 Critical Density	235
	30.2 Gravitational Deceleration of Increasing Scale Factor	236
	30.2.1 Empty Universe, $\Omega_m = 0$	237
	30.2.2 Critical Universe, $\Omega_m = 1$	238
	30.2.3 Closed Universe, $\Omega_{\rm m} > 1$	239
	30.2.4 Open Universe, $\Omega_m < 1$	239
	30.3 Redshift versus Distance: Hubble Law for Various Expansion Models	239
	30.4 Questions and Exercises	241
31	Accelerating Universe with a Cosmological Constant	243
	31.1 White-Dwarf Supernovae as Distant Standard Candles	243
	31.2 Cosmological Constant and Dark Energy	244
	31.3 Critical, Flat Universe with Dark Energy	245
	31.4 The "Flatness" Problem	248
	31.5 Questions and Exercises	249
32	The Hot Big Bang	251
	32.1 The Temperature History of the Universe	251
	32.2 Discovery of the Cosmic Microwave Background	252
	32.3 Fluctuation Maps from the COBE, WMAP, and Planck Satellites	253
	32.4 Questions and Exercises	255

		Contents	Xi
33	Eras in the Evolution of the Universe		257
	33.1 Matter-Dominated versus Radiation-Dominated Eras		257
	33.2 Recombination Era		258
	33.3 Era of Nucleosynthesis		261
	33.4 Particle Era		262
	33.5 Era of Cosmic Inflation		264
	33.6 Questions and Exercises		266
Appendix A	Atomic Energy Levels and Transitions		269
Appendix B	Equilibrium Excitation and Ionization Balance		274
Appendix C	Atomic Origins of Opacity		277
Appendix D	Radiative Transfer		281
	Index		285

CAMBRIDGE

Preface

This book grew directly out of class notes developed from over a decade of teaching a one-semester course of the same title to second- and third-year undergraduate science and engineering majors at the University of Delaware (UD). Although structured within UD's Department of Physics and Astronomy, in which I am a faculty member, generally only about a third of the *c*. 30 students in the class are physics or astronomy majors; others major in engineering (mechanical and chemical), biology (including biophysics), chemistry, and computer science. The main prerequisite is a year of college-level, calculus-based physics, along with associated math courses. There is *no* presumption of prior, direct study of higher-level physics such as relativity, quantum physics, electricity and magnetism, and thermodynamics. Indeed, there is no presumption of prior study in astronomy, not even from a descriptive "Astronomy for Poets" course. This and such upper-level physics concepts are introduced as needed.

Grounded in development for that course, this text is specifically targeted to be a bridge between the copious number of introductory astronomy texts aimed mainly at nonscience majors, and the handful of astrophysics books aimed at upper-level physics majors, which thus assume a background well beyond just first-year physics. Its moderate length, moreover, also distinguishes this from books that are at a similar level, but are so extensive as to be more suited as a reference than an instructional text.

Within this context, the goal of this book is to help guide such students to a broad understanding of the *Fundamentals of Astrophysics*, ranging from basic properties of stars to the principles of Big-Bang cosmology, all within the structure of a onesemester course. The aim for coverage within a single semester naturally presents some significant challenges, for both the students and the instructor. Over more than a decade as an instructor, I have in various semesters experimented with de-emphasizing some topics, sections, and even chapters, in favor of others. For instance, as the course notes developed to include areas of increasing topical interest, e.g., the discovery and modeling of the ever-growing number of exoplanets, it has been necessary to deemphasize or even skip other chapters or topics, for example streamlining coverage on galaxies to focus on the Hubble expansion with the goal of getting through at least to the scale-factor and Cosmic Microwave Background (CMB) sections of the cosmology chapters.

This need for flexibility in instructor choice was the main factor setting the book's basic structure, with a large number (33) of relatively short (\sim 5–10 pages) chapters that themselves are broken up into \sim 1–3 page "sections." In general, I find most

xiv Preface

chapters can be covered in one or two lectures, and some shorter ones can even be combined into a single lecture.

The chapters are, in turn, organized into five "parts." The longest of these is Part I on the basic properties of stars, which aims to provide students with an understanding of how we are able to determine their physical properties from measurements of mere points of light; it includes 14 relatively brief chapters, concluding with one on the Sun. (Although this provides a reality check on our idealized portrait of stars as static spheres of gas, I often skip it for brevity, as well as other less-central topics such as stellar rotation.) Part II then reviews stellar structure and evolution within the framework of single stars. Less basic aspects such as evolution of interacting binaries are deferred, e.g., to a student exercise on the Algol paradox.

Part III then links discussion of the interstellar medium (ISM) with formation of stars and planetary systems. The last is a burgeoning topic of ever-growing scientific and even public interest, and the aim here is to give a basic overview of the detection and modeling methods. Part IV next extends the discussion to our Milky Way and other galaxies, including the Hubble expansion of the universe. This leads naturally to the Part V review of Big-Bang cosmology, grounded within a Newtonian treatment of the expansion, and the associated formation of the CMB. The main text concludes with a chapter on the eras of the early universe, including the notion of an early era of rapid inflation.

To supplement this five-part narrative grounded in astrophysics, four appendices summarize key background physics topics on: (1) atomic structure; (2) excitation and ionization; (3) opacity; and (4) radiative transfer.

In keeping with the broad educational mantra that students learn best by doing, each chapter ends with a section containing questions and exercises. The former are relatively short and focus on one or two concepts that the students should be able to answer relatively quickly once they have read and studied the chapter; I often use selected questions for in-class discussions or quizzes, to encourage and test students on doing the assigned reading (which frankly can be quite a challenge).

The exercises are longer, with multiple parts, and are generally intended for weekly homework assignments. Some are still pretty straightforward "plug-ins" to chapter formulae; but others are intended to be more challenging and thought-provoking, in some cases even introducing extensions not directly covered in the text (e.g., the "Ledoux criterion" in Exercise 4 of Chapter 17). Others aim to connect astrophysical concepts to student major interests, e.g., the "space elevator" (Exercise 6 in Chapter 10), which relates gravitational binding of orbits to mechanical engineering. The very last exercise (Exercise 5 in Chapter 33) directs the students to research the concept of a "multiverse," and discuss whether this even constitutes a scientific theory.

Finally, while this book was developed and written for a one-semester course, it could readily also serve as the core text for a two-semester sequence, allowing for a more leisurely and in-depth coverage of the full breadth, supplemented perhaps by linkage to related advanced topics, such as those listed in the instructor resources, which can be found at www.cambridge.org/owocki.