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19 Post-Main-Sequence Evolution:
Low-Mass Stars

As a star ages, more and more of the hydrogen in its core becomes consumed by fusion

into helium. Once this core hydrogen is used up, how does the star react and adjust?

Without the hydrogen fusion (H-fusion) to supply its luminosity, one might think that

perhaps the star would simply shrink, cool, and dim, and so die out, much like a candle

when all its wax is used up.

Instead it turns out that stars at this post-main-sequence stage of life actually start

to expand at first keeping roughly the same luminosity and so becoming cooler at the

surface, but eventually becoming much brighter giant or supergiant stars, shining with

a luminosity that can be thousands times that of their core-hydrogen-burning main

sequence.

However, as illustrated in Figure 19.1, the detailed evolution and final states of

stars depends on the stellar mass, with distinct difference for stars with initial masses

below versus above about 8M⊙. Figure 19.2 summarizes the corresponding post-

main-sequence evolutionary tracks in the H–R diagram for the Sun (top) and for stars

with mass up to 10 M⊙ (bottom).

The remainder of this chapter focuses our initial attention on solar-type stars

with M � 8M⊙. The evolution and final states of high-mass stars are discussed in

Chapter 20.

19.1 Hydrogen-Shell Burning and Evolution to the Red-Giant Branch

The apparently counterintuitive post-main-sequence adjustment of stars can actually

be understood through the same basic principles used to understand their initial,

pre-main-sequence evolution. When the core runs out of hydrogen fuel, the lack of

energy generation does indeed cause the core itself to contract. But the result is to

make this core even denser and hotter. Then, much as the hot coals at the heart of a

wood fire help burn the wood fuel around it much faster, the higher temperature of a

contracted stellar core actually makes the overlying shell of hydrogen fuel around the

core burn even more vigorously!

Such shell burning of hydrogen actually makes the star expand. Unlike during the

main sequence – when there is an essential regulation or compatibility between the

luminosity generated in the core and the luminosity that the radiative envelope is able

to transport to the stellar surface – this shell-burning core is actually overluminous
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Figure 19.1 Distinct evolution and final states for stars with initial masses above and

below 8M⊙.

relative to the envelope luminosity that is set by the L ∼ M3 scaling law. As such,

instead of emitting this core luminosity as surface radiation, the excess energy acts to

expand the star, in effect doing work against gravity to reverse the Kelvin–Helmholtz

contraction that occurred during the star’s pre-main-sequence evolution. Initially, the

radiative envelope keeps the luminosity fixed so that, as the star expands, the surface

temperature again declines, with the star thus again evolving horizontally on the H–R

diagram, this time from left to right.

But as the surface temperature approaches the limiting value T ≈ 3500–4000 K,

the envelope again becomes more and more convective, which thus now allows this

full high luminosity of the hydrogen-shell-burning core to be transported to the sur-

face. The star’s luminosity thus increases, now with the temperature staying nearly

constant at the cool value for the Hayashi limit. In the H–R diagram, the star essen-

tially climbs back up the Hayashi track, eventually reaching the region of the cool, red

giants in the upper right of the H–R diagram.

The above describes a general process for all stars, but the specifics depend on the

stellar mass. For masses less than the Sun, the main-sequence temperature is already

quite close to the cool limit, so evolution can proceed almost directly vertically up the

Hayashi track. For masses much greater than the Sun, the luminosity and temperature

on the main sequence are both much higher, and so the horizontal evolutionary phase

is more sustained. And since the luminosity is already very high, these stars become

red supergiants without ever having to reach or climb the Hayashi track.
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Figure 19.2 Schematic H–R diagrams to show the post-main-sequence evolution for a

solar-mass star (top), and for stars with M = 1, 5, and 10M⊙ (bottom). Credit: CSIRO Radio

Astronomy Image Archive.
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19.2 Helium Flash to Horizontal Branch Core Burning

This hydrogen-shell burning also has the effect of increasing further the temperature

of the stellar core, and eventually this reaches a level where the fusion of the helium

itself becomes possible, through what is known as the “triple-α process,”1

3 4He+2 ⇌ 8Be+4 +4 He+2 → 12C+6. (19.1)

The direct fusion of two 4He+2 nuclei initially makes an unstable nucleus of berylium

(8Be+4), which usually just decays back into helium. But if the density and tem-

perature are sufficiently high, then during the brief lifetime of the unstable berylium

nucleus, another helium can fuse with it to make a very stable carbon nucleus 12C+6.

Since the final step of fusing 4He+2 and 8Be+4 involves overcoming an electrostatic

repulsion that is 2 × 4 = 8 times higher than for proton–proton (PP) fusion of hydro-

gen, helium fusion (He-fusion) requires a much higher core temperature, THe ≈ 8 ×
15 MK ≈ 120 MK.

In stars with more than a few solar masses, this ignition of the helium in the

core occurs gradually, since the higher core temperature from the addition of helium

burning (He-burning) increases the gas pressure, making the core tend to expand in a

way that regulates the burning rate.

In contrast, for the Sun and other stars with masses M < 2M⊙, the number

density of electrons ne in the helium core is so high2 that their core becomes electron

degenerate. As discussed in Section 18.3 for the brown-dwarf stars that define the

lower mass limit for hydrogen burning (H-burning), electron degeneracy occurs when

the mean distance between electrons ∼ n
−1/3
e becomes comparable to the de Broglie

wavelength λ̄e = h̄/pe. The properties of such degeneracy are discussed further in

Section 19.4 on the degenerate white-dwarf end-states of solar-type stars.

But in the present context, a key point is that the response to any heat addition is

quite different than for an ideal gas. By the Virial Theorem for a gravitationally bound

ideal gas, the added heating from any increase in nuclear burning leads to an expansion

that cools the gas, thus reducing the burning and so keeping it stable. In contrast,

for a degenerate gas, the expansion from adding heat actually makes the temperature

increase even further. Thus, once the evolutionary increase in core temperature reaches

a level that ignites fusion of helium into carbon, the degenerate nature of the gas leads

to a helium flash, in which a substantial fraction of the core of helium is fused into

carbon over a very short timescale.

As illustrated in the top panel of Figure 19.2, this flash marks the “tip” of the

Red Giant Branch (RGB) in the H–R diagram. Somewhat surprisingly, the sudden

1 Because helium nuclei are sometimes referred as “α-particles.” In this formula, the left subscript denotes

the atomic mass (number of proton and neutrons), while the right superscript denotes the nuclear charge

(number of protons).
2 Recall that, on the main sequence, the radii of stars is (very) roughly proportional to their mass, R ∼ M .

But since density scales as ρ ∼ M/R3, the density of low-mass stars tends generally to be higher than in

high-mass stars, roughly scaling as ρ ∼ 1/M2. This overall scaling of average stellar density also

applies to the relative densities of stellar cores, and so helps to explain why the cores of low-mass stars

tend to become electron degenerate, while those of higher-mass stars do not.
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130 19 Post-Main-Sequence Evolution: Low-Mass Stars

addition of energy is largely absorbed by the expansion of the core and the overlying

stellar envelope. Since the expanded core is no longer very degenerate, the star thus

simply settles down to a more quiescent, stable phase of He-burning. The expanded

core also means the shell burning of hydogen actually declines, causing the luminosity

to decrease from the tip of the Red Giant Branch, where the helium flash occurs, to a

somewhat hotter, dimmer region known as the Horizontal Branch in the H–R diagram.

This Horizontal Branch (HB) can be loosely thought of as the He-burning analog

of the H-burning main sequence, but a key difference is that it lasts a much shorter

time, typically only 10 to 100 million years, much less than the many billion years for

a solar mass star on the main sequence. This is partly because the luminosity for HB

stars is so much higher than for a similar mass on the main sequence, implying a much

higher burn rate of fuel. But another factor is that the energy yield per-unit-mass, ǫ,

for He-fusion to carbon is about a tenth of that for H-fusion to helium, namely about

ǫHe ≈ 0.06 percent versus the ǫH ≈ 0.7 percent for H-burning (see Figure 20.1).

With the lower energy produced, and the higher rate of energy lost in luminosity, the

lifetime is accordingly shorter.

19.3 Asymptotic Giant Branch to Planetary Nebula to White Dwarf

Once the core runs out of helium, He-burning also shifts to an inner shell around the

core, which itself is still surrounded by a outer shell of more vigorous H-burning. This

again tends to increase the core luminosity, but now, because the star is cool and thus

mostly convective, this energy is mostly transported to the surface with only a modest

further expansion of the stellar radius. This causes the star to again climb in luminosity

along what is called the Asymptotic Giant Branch (AGB), which parallels the Hayashi

track at just a somewhat hotter surface temperature.

In the Sun and stars of somewhat higher mass, up to M � 8M⊙, there can be further

ignition of the carbon fusing with helium to form oxygen. But further synthesis up

the periodic table requires overcoming the greater electrical repulsion of more highly

charged nuclei. This, in turn, requires a temperature higher than occurs in the cores

of lower-mass stars, for which the onset of electron degeneracy prevents contraction

to a denser, hotter core. Further core burning thus ceases, leaving the core as an inert,

degenerate ball of carbon and oxygen, with final mass on order of 1 M⊙, with the

remaining mass contained in the surrounding envelope of mostly hydrogen.

But such AGB stars tend also to be pulsationally unstable and, because of the

very low surface gravity, such pulsations can over time actually eject the entire stellar

envelope. This forms a circumstellar nebula that is heated and ionized by the very hot

remnant core. As seen in the left panel of Figure 20.4, the resulting circular nebular

emission glow somewhat resembles the visible disk of a planet, so these are called

“planetary nebulae,” though they really have nothing much to do with actual planets.

After a few thousand years, the planetary nebula dissipates, leaving behind just the

degenerate remnant core, a white-dwarf star.
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19.4 White-Dwarf Stars

The electron-degenerate nature of white-dwarf stars endows them with some rather

peculiar, even extreme, properties. As noted, they typically consist of roughly a solar

mass of carbon and oxygen, but have a radius comparable to that of the Earth, Re ≈
R⊙/100. This small radius makes them very dense, with ρwd ≈ 106ρ̄⊙ ≈ 106 g/cm3,

i.e., about a million times (!) the density of water, and so a million times the density

of normal main-sequence stars such as the Sun. It also gives them very strong surface

gravity, with gwd ≈ 104g⊙ ≈ 106 m/s2, or about 100 000 times Earth’s gravity!

As noted in Section 18.3 for the brown-dwarf stars that define the lower mass limit

for H-burning, a gas becomes electron degenerate when the electron number density

ne becomes so high that the mean distance between electrons becomes comparable to

their reduced de Broglie wavelength,

n
−1/3
e ≈ λ̄ ≡

h̄

pe
=

h̄

meve
, (19.2)

where the electron thermal momentum pe equals the product of its mass me and

thermal speed ve, and h̄ ≡ h/2π is the reduced Planck constant. The associated

electron pressure is

Pe = nevepe = n
5/3
e

h̄2

me
=

(

ρZ

Amp

)5/3
h̄2

me
, (19.3)

where the last equality uses the relation between electron density and mass density,

ρ = neAmp/Z, with Z and Amp the average nuclear charge and atomic mass. For

example, for a carbon white dwarf, the atomic number Z = 6 gives the number of free

(ionized) electrons needed to balance the +Z charge of the carbon nucleus, while the

atomic weight Amp = 12mp gives the associated mass from the carbon atoms. The

hydrostatic equilibrium (cf. Eq. (15.1)) for pressure-gradient support against gravity

then requires, for a white-dwarf star with mass Mwd and radius Rwd,

Pe

Rwd
≈ ρ

GMwd

R2
wd

. (19.4)

Using the density scaling ρ ∼ Mwd/R
3
wd, we can combine Eqs. (19.3) and (19.4) to

solve for a relation between the white-dwarf radius and its mass,

Rwd ≈
3.6

GM
1/3
wd

h̄2

me

(

Z

Amp

)5/3

≈ 0.01R⊙

(

M⊙

Mwd

)1/3

, (19.5)

where the approximate evaluation uses the fact that for both carbon and oxygen the

ratio Z/A = 1/2, and the factor 3.6 comes from a detailed computation not covered

here. For a typical mass of order the solar mass, we see that a white dwarf is very

compact, comparable to the radius of the Earth, Re ≈ 0.01 R⊙. But note that this

radius actually decreases with increasing mass.
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132 19 Post-Main-Sequence Evolution: Low-Mass Stars

19.5 Chandrasekhar Limit for White-Dwarf Mass: M < 1.4M⊙

This fact that white-dwarf radii decrease with higher mass means that, to provide

the higher pressure to support the stronger gravity, the electron speed ve must

strongly increase with mass. Indeed, at some point this speed approaches the speed

of light, ve ≈ c, implying that the associated electron pressure now takes the scaling

(cf. Eq. (19.3)),

Pe = necpe = n
4/3
e h̄c =

(

ρZ

Amp

)4/3

h̄c. (19.6)

Applying this in the hydrostatic relation (19.4), we now find that the radius R cancels!

Instead we can solve for an upper limit for a white-dwarf’s mass,

Mwd ≤ Mch =
√

3π

(

h̄c

G

)3/2 (

Z

Amp

)2

≈ 1.4M⊙, (19.7)

where the subscript refers to “Chandrasekhar,” the astrophysicist who first derived

this mass limit, and the proportionality factor
√

3π comes from a detailed calculation

beyond the scope of the discussion here.

As discussed in later sections (see, for example, Section 31.1), when accretion of

matter from a binary companion puts a white dwarf over this limit, it triggers an

enormous “white-dwarf supernova” explosion, with a large, relatively well-defined

peak luminosity, L ≈ 1010 L⊙. This provides a very bright standard candle that can

be used to determine distances as far as 1 Gpc, giving a key way to calibrate the

expansion rate of the universe.

But in the present context, this limit means that sufficiently massive stars with

cores above this mass cannot end their lives as a white dwarf. Instead, they end

as violent “core-collapse supernovae,” leaving behind an even more-compact final

remnant, either a neutron star or black hole, as we discuss in the next chapter.

19.6 Questions and Exercises

Quick Questions

1. Note that pressure can be written as P = Nvp for speed v and momentum

p = mv in a medium with N atoms of mass m. Show that this recovers the ideal

gas form for pressure by identifying the thermal speed scaling with temperature,

kT /2 = mv
2
th/2.

2. Derive a general formula for the escape speed vesc for a white dwarf of mass M .

What is the value (in km/s) for M = M⊙ and how does this compare with the

Sun’s escape speed?

3. What is the maximum escape speed (in km/s) of a white dwarf?

4. Derive a general formula for log g of a white-dwarf star of mass M , and compare

this with log g⊙.
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Exercises

1. Planetary nebula emission and expansion

Suppose we observe the Hα line from a spherical planetary nebula, and find it has

a maximum wavelength of 656.32 nm and minimum wavelength of 656.24.

a. Estimate how fast the nebula is expanding. Give your answer in both km/s and

au/year.

b. Now suppose that over a time of 10 years the nebula’s angular diameter is

observed to expand from 10 arcsec to 10.1 arcsec. What is the distance to the

nebula (in pc)?

c. What is actual physical diameter of the nebula (in au)?

2. White-dwarf cooling time

a. How many carbon nuclei are there in a pure-carbon white dwarf of mass 1 M⊙?

b. If the carbon is full ionized, how many electrons are there?

c. Each particle in a gas (even a degenerate gas) of temperature T has a thermal

energy (3/2)kT . If this fully ionized carbon white dwarf has a constant temper-

ature of 107 K through nearly all of its interior mass, what is its total thermal

energy (in J)?

d. Assuming it has a radius of 0.01 R⊙ and radiates like a 30 000 K blackbody,

compute its luminosity, Lwd (in L⊙).

e. Now use these results to estimate this white dwarf’s cooling lifetime, tcool

(in yr).

3. White-dwarf supernova

Consider a pure-carbon white dwarf at the Chandrasekhar mass limit that collapses

suddenly from a radius R ≈ Re, igniting a sudden conversion of the carbon to iron.

a. Considering the relative binding energy per nucleon of iron versus carbon (e.g.,

from Figure 20.1), estimate the associated nuclear energy release En (in J) if

the entire stellar mass is converted to iron.

b. Assuming the initial white dwarf has a uniform density, compute its gravita-

tional binding energy Eg, and compare this with the nuclear energy release En

from part a.

c. Assuming just 1 percent of this nuclear energy is radiated as light within two

weeks of the collapse, estimate the average luminosity Lavg, in units of L⊙.

d. If the peak luminosity during this time is twice this average (i.e. Lpeak =
2Lavg), what is the absolute magnitude, Mpeak, at peak brightness?

e. Using a telescope with a detection limit of apparent magnitude m = +20, what

is maximum distance d (in Mpc) that the peak brightness of such an explosion

can be detected?

4. Helium stars 4

This exercise builds further on the helium-star exercises in Chapters 15, 17,

and 18.

a. For a fully ionized mixture in which the hydrogen, helium, and metal mass

fractions are now X = 0, Y = 0.98, and Z = 0.02, compute again the mean

molecular weight µ̄ for such a helium star.
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b. Use this to generalize Eq. (15.9) to give the scaling of the interior temperature

Tint of a helium star as a function of its mass M and radius R.

c. As discussed following Eq. (19.1), assume that fusion of He → C requires a

temperature that is a factor 4 × 2 = 8 higher than the ∼ 15 MK for H-fusion.

Now set this THe−fusion = Tint to derive a radius–mass scaling R(M) for such

stars on the “helium main sequence.”

d. Again use the scaling in Chapter 17 to derive helium-modified mass–luminosity

scaling, L(M).

e. Combine the results for c and d to estimate for such helium-main-sequence val-

ues for the constants A and b in the scaling relation LHeMS/L⊙ ≈ A(T/T⊙)b.

5. Algol paradox and binary mass exchange

The system Algol includes a short period (P = 2.87 days) binary consisting of an

early-type main-sequence star (Aa1, B8V, M = 3.2M⊙) and a later-type subgiant

(Aa2, K0IV, M = 0.7M⊙). The orbit is nearly circular.

a. Explain why this represents a “paradox” in the context of single-star evolution.

b. What is the binary separation a = a1 + a2 (in au)?

c. What are the distances of each component a1,a2 from the center of mass?

d. Relative to this center of mass, what is the location of the Roche point between

the stars? (See Exercise 2 of Chapter 7.)

e. Suppose the mass ratio between the stars was once reversed; what could happen

when the initially more-massive star evolved from its main sequence, to a radius

that reaches this Roche point?

f. Discuss how this can resolve the Algol paradox.
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