

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 193

Editorial Board

J. BERTOIN, B. BOLLOBÁS, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO

LECTURES ON RANDOM LOZENGE TILINGS

Over the past 25 years, there has been an explosion of interest in the area of random tilings. The first book devoted to the topic, this timely text describes the mathematical theory of tilings. It starts from the most basic questions (which planar domains are tileable?) before discussing advanced topics about the local structure of very large random tessellations. The author explains each feature of random tilings of large domains, discussing several different points of view and leading on to open problems in the field. The book is based on upper-division courses taught to a variety of students, but it also serves as a self-contained introduction to the subject.

Test your understanding with the exercises provided, and discover connections to a wide variety of research areas in mathematics, theoretical physics, and computer science, such as conformal invariance, determinantal point processes, Gibbs measures, high-dimensional random sampling, symmetric functions, and variational problems.

Vadim Gorin is a faculty member at the University of Wisconsin–Madison and a member of the Institute for Information Transmission Problems at the Russian Academy of Sciences. He is a leading researcher in the area of integrable probability, and has been awarded several prizes, including the Sloan Research Fellowship and the Prize of the Moscow Mathematical Society.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Roard

J. Bertoin, B. Bollobás, W. Fulton, B. Kra, I. Moerdijk, C. Praeger, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing, visit www.cambridge.org/mathematics.

Already Published

- 153 R. Beals & R. Wong Special Functions and Orthogonal Polynomials
- 154 V. Jurdjevic Optimal Control and Geometry: Integrable Systems
- 155 G. Pisier Martingales in Banach Spaces
- 156 C. T. C. Wall Differential Topology
- 157 J. C. Robinson, J. L. Rodrigo, & W. Sadowski The Three-Dimensional Navier-Stokes Equations
- 158 D. Huybrechts Lectures on K3 Surfaces
- 159 H. Matsumoto & S. Taniguchi Stochastic Analysis
- 160 A. Borodin & G. Olshanski Representations of the Infinite Symmetric Group
- 161 P. Webb Finite Group Representations for the Pure Mathematician
- 162 C. J. Bishop & Y. Peres Fractals in Probability and Analysis
- 163 A. Bovier Gaussian Processes on Trees
- 164 P. Schneider Galois Representations and (φ, Γ) -Modules
- 165 P. Gille & T. Szamuely Central Simple Algebras and Galois Cohomology (2nd Edition)
- 166 D. Li & H. Queffelec Introduction to Banach Spaces, I
- 167 D. Li & H. Queffelec Introduction to Banach Spaces, II
- 168 J. Carlson, S. Müller-Stach, & C. Peters Period Mappings and Period Domains (2nd Edition)
- 169 J. M. Landsberg Geometry and Complexity Theory
- 170 J. S. Milne Algebraic Groups
- 171 J. Gough & J. Kupsch Quantum Fields and Processes
- 172 T. Ceccherini-Silberstein, F. Scarabotti, & F. Tolli Discrete Harmonic Analysis
- 173 P. Garrett Modern Analysis of Automorphic Forms by Example, I
- 174 P. Garrett Modern Analysis of Automorphic Forms by Example, II
- 175 G. Navarro Character Theory and the McKay Conjecture
- 176 P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt, & D. Persson Eisenstein Series and Automorphic Representations
- 177 E. Peterson Formal Geometry and Bordism Operators
- 178 A. Ogus Lectures on Logarithmic Algebraic Geometry
- 179 N. Nikolski Hardy Spaces
- 180 D.-C. Cisinski Higher Categories and Homotopical Algebra
- 181 A. Agrachev, D. Barilari, & U. Boscain A Comprehensive Introduction to Sub-Riemannian Geometry
- 182 N. Nikolski Toeplitz Matrices and Operators
- 183 A. Yekutieli Derived Categories
- 184 C. Demeter Fourier Restriction, Decoupling and Applications
- 185 D. Barnes & C. Roitzheim Foundations of Stable Homotopy Theory
- 186 V. Vasyunin & A. Volberg The Bellman Function Technique in Harmonic Analysis
- 187 M. Geck & G. Malle The Character Theory of Finite Groups of Lie Type
- 188 B. Richter Category Theory for Homotopy Theory
- 189 R. Willett & G. Yu Higher Index Theory
- 190 A. Bobrowski Generators of Markov Chains
- 191 D. Cao, S. Peng, & S. Yan Singularly Perturbed Methods for Nonlinear Elliptic Problems
- 192 E. Kowalski An Introduction to Probabilistic Number Theory

Lectures on Random Lozenge Tilings

VADIM GORIN

University of Wisconsin–Madison Institute for Information Transmission Problems

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108843966
DOI: 10.1017/9781108921183

© Vadim Gorin 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-84396-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface		
1	Lecture 1: Introduction and Tileability		1
	1.1	Preamble	1
	1.2	Motivation	3
	1.3	Mathematical Questions	4
	1.4	Thurston's Theorem on Tileability	9
	1.5	Other Classes of Tilings and Reviews	14
2	Lecture 2: Counting Tilings through Determinants		16
	2.1	Approach 1: Kasteleyn Formula	16
	2.2	Approach 2: Lindström-Gessel-Viennot Lemma	20
	2.3	Other Exact Enumeration Results	25
3	Lecture 3: Extensions of the Kasteleyn Theorem		27
	3.1	Weighted Counting	27
	3.2	Tileable Holes and Correlation Functions	29
	3.3	Tilings on a Torus	30
4	Lecture 4: Counting Tilings on a Large Torus		35
	4.1	Free Energy	35
	4.2	Densities of Three Types of Lozenges	37
	4.3	Asymptotics of Correlation Functions	40
5	Lecture 5: Monotonicity and Concentration for Tilings		42
	5.1	Monotonicity	42
	5.2	Concentration	44
	5.3	Limit Shape	46
6	Lecture 6: Slope and Free Energy		48
	6.1	Slope in a Random Weighted Tiling	48
	6.2	Number of Tilings of a Fixed Slope	50

VI		Comenis	
	6.3 6.4	Concentration of the Slope Limit Shape of a Torus	52 53
7		•	54
1	7.1	ure 7: Maximizers in the Variational Principle Review	5 ²
	7.2	The Definition of Surface Tension and Class of Functions	55
	7.3	Upper Semicontinuity	57
	7.4	Existence of the Maximizer	60
	7.5	Uniqueness of the Maximizer	61
8	Lectu	are 8: Proof of the Variational Principle	63
9	Lecture 9: Euler-Lagrange and Burgers Equations		
	9.1	Euler–Lagrange Equations	70
	9.2	Complex Burgers Equation via a Change of Coordinates	71
	9.3	Generalization to q^{Volume} -Weighted Tilings	74
	9.4	Complex Characteristics Method	75
10	Lectu	ure 10: Explicit Formulas for Limit Shapes	77
	10.1	Analytic Solutions to the Burgers Equation	77
	10.2	Algebraic Solutions	81
	10.3	Limit Shapes via Quantized Free Probability	82
11	Lecture 11: Global Gaussian Fluctuations for the Heights		
	11.1	Kenyon–Okounkov Conjecture	86
	11.2		88
	11.3	Gaussian Free Field in Complex Structures	92
12	Lectu	ure 12: Heuristics for the Kenyon-Okounkov Conjecture	94
13	Lectu	ure 13: Ergodic Gibbs Translation-Invariant Measures	102
	13.1	Tilings of the Plane	102
	13.2	Properties of the Local Limits	104
	13.3	Slope of EGTI Measure	106
	13.4	Correlation Functions of EGTI Measures	108
	13.5	Frozen, Liquid, and Gas phases	109
14	Lectu	ure 14: Inverse Kasteleyn Matrix for Trapezoids	113
15	Lecture 15: Steepest Descent Method for Asymptotic Analysis		
	15.1	Setting for Steepest Descent	120
	15.2	Warm-Up Example: Real Integral	120
	15.3	One-Dimensional Contour Integrals	121
	15.4	Steepest Descent for a Double Contour Integral	123

		Contents	vii
16	Lectu	re 16: Bulk Local Limits for Tilings of Hexagons	126
17	Lectu	re 17: Bulk Local Limits Near Straight Boundaries	135
18	Lecture 18: Edge Limits of Tilings of Hexagons		
	18.1	Heuristic Derivation of Two Scaling Exponents	142
	18.2	Edge Limit of Random Tilings of Hexagons	144
	18.3	The Airy Line Ensemble in Tilings and Beyond	149
19	Lecture 19: The Airy Line Ensemble and Other Edge Limits		151
	19.1	Invariant Description of the Airy Line Ensemble	151
	19.2	Local Limits at Special Points of the Frozen Boundary	153
	19.3	From Tilings to Random Matrices	154
20	Lectu	are 20: GUE-Corners Process and Its Discrete Analogues	161
	20.1	Density of GUE-Corners Process	161
	20.2	GUE-Corners Process as a Universal Limit	165
	20.3	A Link to Asymptotic Representation Theory and Analysis	168
21	Lectu	re 21: Discrete Log-Gases	173
	21.1	Log-Gases and Loop Equations	173
	21.2	Law of Large Numbers through Loop Equations	176
	21.3	Gaussian Fluctuations through Loop Equations	179
	21.4	Orthogonal Polynomial Ensembles	182
22	Lectu	re 22: Plane Partitions and Schur Functions	185
	22.1	Plane Partitions	185
	22.2	Schur Polynomials	187
	22.3	Expectations of Observables	189
23	Lectu	are 23: Limit Shape and Fluctuations for Plane Partitions	196
	23.1	Law of Large Numbers	196
	23.2	Central Limit Theorem	202
24	Lectu	Lecture 24: Discrete Gaussian Component in Fluctuations	
	24.1	Random Heights of Holes	207
	24.2	Discrete Fluctuations of Heights through GFF Heuristics	208
	24.3	Approach through Log-Gases	212
	24.4	Two-Dimensional Dirichlet Energy and One-	
		Dimensional Logarithmic Energy	215
	24.5	Discrete Component in Tilings on Riemann Surfaces	222
25	Lectu	re 25: Sampling Random Tilings	224
	25.1	Markov Chain Monte Carlo	224
	25.2	Coupling from the Past	228

viii	Contents			
	25.3	Sampling through Counting	232	
	25.4	Sampling through Bijections	232	
	25.5	Sampling through Transformations of Domains	233	
	References		237	
	Index		249	

Preface

These are lecture notes for a one-semester class devoted to the study of random tilings. It was 18.177 taught at the Massachusetts Institute of Technology during the spring of 2019. The brilliant students who participated in the class, ¹ Andrew Ahn, Ganesh Ajjanagadde, Livingston Albritten, Morris (Jie Jun) Ang, Aaron Berger, Evan Chen, Cesar Cuenca, Yuzhou Gu, Kaarel Haenni, Sergei Korotkikh, Roger Van Peski, Mehtaab Sawhney, and Mihir Singhal, provided tremendous help in typing the notes.

Additional material was added to most of the lectures after the class was over. Hence, when using this review as a textbook for a class, one should not expect to cover all the material in one semester; something should be left out.

I would like to thank my wife, Anna Bykhovskaya, for her advice, love, and support. I also thank Amol Aggarwal, Alexei Borodin, Richard Kenyon, Christian Krattenthaler, Arno Kuijlaars, Igor Pak, Jiaming Xu, Marianna Russkikh, and Semen Shlosman for their useful comments and suggestions. I am grateful to Christophe Charlier, Maurice Duits, Sevak Mkrtchyan, and Leonid Petrov for the help with the simulations of random tilings.

Funding acknowledgments. The work of Vadim Gorin was partially supported by National Science Foundation (NSF) Grants DMS-1664619 and DMS-1949820, by the NEC Corporation Fund for Research in Computers and Communications, and by the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin–Madison with funding from the Wisconsin Alumni Research Foundation. Lectures 6 and 13 of this work were supported by the Russian Science Foundation (Project 20-41-09009).

In alphabetical order by last name.