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Preface

This book is for students already invested in Structural Mechanics. They know about

forces and moments, and couples from pairs of applied forces. They understand the

concepts of equilibrium, compatibility and stiffness; of how beams and pin-jointed

frameworks differ in their constituent behaviour; of the nature of supports; and of the

concept of statical equivalency.

I reflect the usual gradation in complexity and form, moving from bodies to bars,

to cables, and to beams, and sometimes, mixing them up. I consider different metrics

of structural design: of safe loading, of failure by plastic collapse and buckling, of

cross-sectional limitations and joint design, for example.

In particular, I focus on how to think about (and solve) ‘Structures’ problems better.

Formulaic analysis methods are not overly represented because they can be applied

without understanding fully how they work. Instead, I present a dialogue of how

solving proceeds, collated as short chapters of worked examples – without the usual

repetitive exercises at their ends.

I apologise for my greyscale figures. I am a child of the hard-copy age where colour

was taxed, limiting that part of my presentation still. I dispense with denoting vectors

in boldface because the direction of quantity is always implied. Parameters that vary

are italicised, but labels are roman and upright; ‘A’ can be a point in an area ‘A’.

Greek letters typically denote fundamental quantities or dimensionless groups, but

not always.

Purpose

I consider mostly statically indeterminate (or indeterminate, alone) structures but not

exclusively, since despite more solving effort (because with equilibrium there are also

geometrical compatibility and material laws, our three imperatives, to include), the

scope for more efficient, more confident solutions is broadened. Also, because most

practical structures are indeterminate.

For example, indeterminacy is often couched in terms of extra statical unknowns

from ‘too many’ members or supports. Furthermore, a determinate structure (and

thus a soluble one by equilibrium alone) can be wrought by subtracting certain of

their number from the original indeterminate structure, which we then label to be

redundancies.

www.cambridge.org/9781108843812
www.cambridge.org


Cambridge University Press
978-1-108-84381-2 — Solving Problems of Simple Structural Mechanics
Keith Alexander Seffen 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Preface

But indeterminacy is a function of how the structure is built entirely: no particular

member or support naturally identifies as being redundant. We can rightly set any

statical quantity to be redundant in our analysis, especially if less working out fol-

lows – when finding elastic displacements via Virtual Work, for example.

Many good textbooks, however, insist that the imperatives, conceptually, stand

alone from each other, which is reinforced by their sequential employment during

solution. That equilibrium only depends on the initial geometry despite the distortions

which follow, with the material obediently furnishing a governing linear connection

between them. Of course, adhering to small displacements is one reason.

But it is precisely because they are linked during solution that indeterminacy allows

us to probe deeper into fundamental behaviour. For example (again), mechanistic

and thus significant (and potentially disastrous) departures from initial geometry can

combine favourably with redundancy, to suggest a new type of non-linear stiffening

overall as distortions accrue; see Chapter 4.

During plastic design, material ductility is mandatory, in order that any viable

equilibrium solution, i.e. one of our choosing, expresses a safe loading. Put another

way, we can choose the wrong equilibrium solution in view of compatibility yet

achieve a safe working, which is anathema to our sense of engineering precision.

Compensating for our apparent error is wrought by the action of indeterminacy,

specifically, by the plastic deformation being able to redistribute elsewhere in the

structure because its material is ductile. In trade-off, the cross-section has to increase

in size which, however, increases the safety factor for our structure.

Indeterminacy thus cultivates analytical advantage and kinematical insight. It

should not be portrayed as the bane of structural simplicity, where solving determi-

nate cases is largely an instructive exercise. I hope my examples provide suitable

demonstration and a different insight into solving Structures. Their content is now

described.

Layout

The following chapter quickly revises some key concepts: geometry and distortion,

the generalised Hooke’s laws for bars and beams, and well-known energy methods.

There are then 21 chapters in 6 parts.

Simple Structures

The first structures are rigid bodies acted upon by frictional forces in Chapter 1. All

examples have one statical unknown; and when Columb’s Inequality (F ≤ µN ) is

satisfied at the point of slipping, each system becomes determinate. Their equilibrium

geometry can also be solved by graphical means – more quickly so, for the examples

chosen.
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Preface ix

Chapter 2 deals with the displacements of rigid bodies supported on elastic springs

or by fluid buoyancy. These reaction forces depend on the very displacements they

induce, and the deformed geometry must feature to define them; in effect, these forces

assume a constitutive character. Nevertheless, by maintaining small displacements,

overall equilibrium can be assessed via the initial layout.

Geometry and equilibrium come together again in Chapter 3 for loaded cables,

which are infinitely flexible; their deformed equilibrium is governed similarly to

beams.

Truss Frameworks

The next three chapters (Part II) deal with elastic truss frameworks.

We deploy Maxwell’s Rule in Chapter 4 to calculate the number of redundancies.

This rule is a statement of absolute rigidity, derived from counting the bars, joints

and supports. A positive tally expresses the degree of indeterminacy, and vice versa

for the number of mechanistic motions. For certain truss layouts, indeterminacy and

mechanistic action can become conflated, where their stiffness ‘emerges’ only when

there is deformation; Maxwell’s Rule is modified accordingly.

Elastic bar extensions are calculated from the method of Virtual Work in Chapter 5.

Because indeterminacy promotes infinitely many equilibrium sets of bar tensions, we

can explore their variety in order to enhance the Virtual Work process. Several truss

examples are presented, including one with mis-fitting bars.

Truss design by the Lower Bound method is considered in Chapter 6. The method

is rarely applied to trusses, but in this example the exact elasto-plastic response is

soluble, in order to highlight the method’s efficacy, in particular the role played by the

members’ ductility in redistributing the loading capacity during permanent yielding of

the material.

Beams and Frames: Character

Characterising beam and frame behaviour is then garnered in the three chapters

of Part III.

Bending moment and shear force diagrams are their equilibrium signatures. In

Chapter 7, we think about the loads themselves, especially about point loadings –

in isolation; what happens away from loads is equally important for drawing diagrams

properly. The sign convention, which commands little mention elsewhere, is strictly

enforced at all times, and drawing diagrams becomes an holistic, assured exercise.

The level of redundancy in beams (and frames) is determined in Chapter 8 by ad

hoc counting procedures based on inserting pins or cutting the structure. Further-

more, using symmetry (and anti-symmetry) concepts in Chapter 9, we can declare

certain statical quantities to be zero; the arguments are also developed for kinematical

quantities.
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x Preface

We limit ourselves to singly symmetrical/anti-symmetrical layouts, where the mid-

line performance is key. Both halves of the structure are compared by flipping or

spinning, where contradictory (and hence zero) parameters can be identified.

Beams and Frames: Analysis

The techniques above then contribute to our analysis of indeterminate structures (Part

IV). Our analytical basis is the Force Method, which separates the structure into con-

stituent determinate parts, sharing equal and opposite redundant forces and moments.

Compatibility of their corresponding deflections furnishes a complete solution.

We therefore revise determinate beams and cantilevers in Chapter 10, making use

of polynomial functions for their exact displacements. Particular layouts of initial

geometry and loading lead to a list of standard case results, which underpin the

method of Deflection Coefficients in Chapter 11 for solving indeterminate cases.

The stiffness of a simply-supported beam loaded by a couple is found in Chapter 12.

Despite its determinate nature, the analysis is somewhat involved. The beam is then

modified – and made redundant – by adding another roller support, which, importantly,

is collocated with the couple. The new stiffness is much easier to calculate even though

indeterminacy would prepare us for more effort. Furthermore, the bending moment

performance around the new support enables us to think about the performance of a

more detailed junction, of two or more beams meeting.

Design Choices

Making informed choices for the design of a structure then follow in Part V.

We recall first in Chapter 13 that pin-joints are an idealisation, yet many rigidly

connected frameworks are treated as pin-jointed. We compare two identical layouts

of a simple arch with rigid and pinned joints, loaded by point forces to promote

axial forces as well as bending. As their member slenderness increases, we find a

diminishing rigidity for all joints.

Chapter 14 introduces short-cuts for calculating the second moment of area for

symmetrical cross-sections in which the neutral axis is the usual major (or minor)

axis. When the applied bending moment is no longer parallel to either axis, the cor-

responding neutral axis is altogether different from the bending direction; calculating

the elastic stiffness is no longer straightforward.

Optimal structural performance is then explored in two ways. First, at the level

of cross-section, by comparing bending and torsional stiffness; the latter prepares us

for analysis of ‘pseudo’ three-dimensional frames – grillages. Second, in terms of

structural stiffness and strength from transverse loading alone, in order to highlight

the ‘natural’ limits of cross-sectional proportions either way.

Establishing the strength of a cross-section takes place in Chapter 15. A Lower

Bound approach permits any viable equilibrium solution, which may reduce our
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Preface xi

working with marginal sacrifice in the accurate strength. The interaction between mul-

tiple stress resultants also relates to joint detailing. Further Lower Bound demonstra-

tion for designing the diverse supports of multi-span beams is given in

Chapter 16.

Analysis of indeterminate grillages is introduced in Chapter 17. Bending and

torsion (and shearing) are automatically coupled because of out-of-plane loading, to

a degree prescribed by the grillage layout and nature of its joints. We explore this

coupling character by solving a variety of examples (using, in part, the method of

Deflection Coefficients).

Deliberately Deformed

The role of deformed geometry is then celebrated in the final part – Part VI.

For collapse of an indeterminate beam or frame, we determine the least number of

hinges required and their positions in Chapter 18, and thence the family of collapse

modes. General collapse motions are calculated from the method of Instantaneous

Centres for multiple, interacting loads; and the correct mechanism ultimately corre-

lates with the best Lower Bound equilibrium solution.

Beam buckling in Chapter 19 focuses on the mathematical nature of the solution

and the apparent paradox that displacements remain unresolved even though they

must feature in the formulation; and that buckling for actual imperfect structures is

a misnomer. Chapter 20 considers more elaborate buckling cases where the nature of

the governing loads changes dramatically with deformation.

Finally, we consider the effect of heating a material upon the structural response in

Chapter 21. The inclusion of temperature effects at a material level is straightforward,

but the outcome structurally is more complex. The primary example is a bimetallic

strip, whose performance deliberately celebrates displacements increasing when most

structural design does not.
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Author’s Note

Straining

Often we have to deal with relatively small changes in geometrical quantities because

of simplifying assumptions. Consider, for example, a narrow right-angled triangle. We

find the length of the hypotenuse to be
√

L2 + a2 where a is the smallest side-length;

or L
√

1 + (a/L)2.

We make further progress using the Binomial Theorem, which states,

(1 + x)n = 1 + nx +
n(n − 1)

2!
· x2 . . . . (0.1)

Thus, our hypotenuse length becomes

L

[

1 +
1

2

( a

L

)2

−
1

8

( a

L

)4

. . .

]

≈ L

[

1 +
1

2

( a

L

)2
]

(0.2)

when a is much smaller than L, and a/L much less unity: for x ≪ 1, we may set

(1 + x)n equal to 1 + nx.

When a rigid bar of length L pivots in plane by a small angle θ about one end, the

other experiences a small normal displacement Lθ. If the bar is inclined at a general

angle α to the horizontal, the vertical and horizontal displacement components are

Lθ · cos α and Lθ · sin α, respectively: or, incidentally, L cos α · θ and L sin α · θ,

the same. The components multiply the absolute rotation by the projections of the bar

length onto the required directions.

Now consider an elastic bar, which also extends by a small length e. The in-plane

displacement components of one end relative to the other are now e and Lθ. Clearly,

the axial strain of the bar, e/L, is unaffected by the rotation, no matter its size.

If the strain is computed instead from the change in bar length according to the dis-

placement components of its end, we first observe a new length of
√

(L + e)2 + (Lθ)2.

Using the Binomial Theorem and retaining terms up to second order, we have

L(1 + e/L + (1/2) · [(e/L)2 + θ2]).

Discounting the much smaller squared terms sets the length to be L(1+e/L), hence,

our expected strain. Even though the orthogonal displacement components may be of

similar size, the axial strain is garnered only from e, the component along the bar.

However, when e is negligible compared to Lθ, we can make two claims about

the strain. Either there is no strain because there is only pure rigid body rotation or,
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xiv Author’s Note

if second-order terms are kept, the new length is L(1 + (1/2) · θ2), similar to the

hypotenuse expression. There is thus an apparent axial strain equal to θ2/2.

This is not physically possible but arises analytically because Lθ has been assumed

to act normal to the original bar axis. Movement of the rotating end on a strict circular

path also produces a second-order axial component of displacement, equivalent to an

equal and opposite (and thence negating) strain compared to above.

These second-order effects in the kinematics of deformation are an example of

geometrical non-linearity. They are, for most problems, negligible, but in certain

cases they provide valuable insight when first-order effects are remiss. Invoking them,

however, requires careful thought about how they are formulated, as we have just seen.

Curving

The curvature of a circle of radius R is obviously 1/R; or 2π/2πR, the total angle

enclosed (or subtended) by the circle, divided by the circumference. More generally,

a portion of circumference with arc-length s, equal to Rθ, sets 1/R = θ/s and the

curvature as the ratio of the local subtended angle to arc-length.

This definition can be contracted to elemental values when the curvature (and R)

varies along the ‘curve’. Denoting by κ:

κ = lim
δs→0

δθ

δs
=

dθ

ds
. (0.3)

When beams deflect, they engage displacements transverse to their original stress-

free layout. Geometrical continuity demands curving of the beam, and thus displace-

ments are related to curvature and curvature itself to the structural response of the

beam. We should also imagine the beam to be slender, i.e. very thin compared to its

length, as if condensed into a line for the beam axis.

An orthogonal coordinate system can be superposed conveniently onto an origi-

nally straight beam with x along and v normal for displacements. The gradient of the

deflected shape is now dv/ds along an intrinsic coordinate s on the displaced beam.

Over a small deflected element of original length δx, the displacements change by

δv, and Pythagoras sets δs2 = δv2 +δx2. Dividing through by δx, using the Binomial

Theorem, and observing the limit, we find

ds

dx
≈ 1 +

1

2

(

dv

dx

)2

. (0.4)

When dv/dx is small, the second term above is negligible compared to unity, setting

δs ≈ δx and dv/ds ≈ dv/dx. This is known as the shallow gradient assumption,

which predicates small displacements for moderate length, slender beams.

We can now replace θ by dv/dx and δs by δx in the original definition of curvature,

Eq (0.3), to give

κ =
d

dx

(

dv

dx

)

=
d2v

dx2
. (0.5)
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The direction of curvature at a given position on the beam axis can be specified by

where the centre of curvature lies relative to the axis, i.e. the origin of the local radius

of curvature, much like the centre of our first circle.

For example, let the displacements be described by v = Ax2/2, an upwardly

curving parabola. Equation (0.5) returns a constant curvature, κ = A, and thus a

centre of radius located 1/A above the original beam line. For this, our definition of

positive curvature, Eq. (0.5) remains; if not, the right-hand side is multiplied by −1.

Stiffness and Hooke

At a material level, elastic stress is linearly related to strain by the Young’s Modulus,

E, through Hooke’s Law. This is our constitutive law for direct behaviour, when the

stress acts normal to an exposed cross-section.

Shearing, on the other hand, acts tangentially with an equivalent modulus, G. For

isotropic materials, G = E/2(1+ ν) ≈ 0.38E when the Poisson’s Ratio, ν, equals 0.3

(as in most Engineering metals).

Multiplying a uniformly distributed stress, σ, by a cross-sectional area, A, we have

an axial force, F , say. Applying F as equal and opposite forces to the ends of an

elastic bar, it extends relatively and axially by e. The axial strain, ǫ, is e/L given an

unstressed bar length, L. From Hooke’s Law, σ = Eǫ:

F

A
= E ·

e

L
→ F =

EA

L
· e. (0.6)

The force is in linear relation to the extension, with a constant of proportionality now

equal to our bar’s axial stiffness. Reflecting the character of constitutive behaviour at

a structural level is said to express a generalised Hooke’s Law.

Note that we have invoked three imperatives. We have an equilibrium statement

F = σA and a compatibility statement e = ǫL, bound together by the original mate-

rial Hooke’s Law. The internal force represents an aggregated stress performance, or

a stress resultant. The uni-dimensional nature of Eq. (0.6) also suggests no difference

between a physical bar, with area, and a theoretical elastic line of the same stiffness.

We proceed in the same way for describing beam bending. Before, we said that the

beam axis becomes curved, but what is this axis? We can select any given horizontal

plane within the original (and horizontal) beam for now (which in side view manifests

as a line).

Successive planes above and below this must curve differently, in order to preserve

their separation when there are no stresses and thus no straining through the depth.

Imagine now a uniformly curved portion of beam subtending θ on the reference plane.

Another plane, originally y above, has a current length (y + R)θ, where κ = 1/R is

the reference plane curvature. The plane above becomes strained by an amount yκ,

comparing its lengths before and after curving.

The linear variation of strain with height y leads to the familiar assumption that

plane sections remain plane, and a given cross-sectional plane rotates during curving

(about a line on the horizontal reference plane).
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xvi Author’s Note

From Hooke’s Law, the axial stresses are linear too and produce a turning effect

about the reference plane. Their aggregation is another stress resultant, our bending

moment. Its formal calculation considers an elemental force, σ · w(y)δy, where w(y)

is the current width of cross-section at height y; hence M =
∫

σw(y)ydy

Replacing σ by Eǫ with ǫ = yκ, we find M = Eκ
∫

y2w(y)dy. The integral

term is the second moment of area (from the second-degree variation), abbreviated to

I , setting M = EIκ, our generalised Hooke’s Law for beam bending: of a stress

resultant, its commensurate deformation, and a stiffness term made of a material

constant and a geometrical property of the cross-section.

We also have a uni-dimensional expression, analogous to curving of an elastic line

with EI as its bending stiffness; I , of course, is calculated from the actual cross-

section.

To perform its integration, we must know the integration limits for y, which depend

on the position of the reference plane. There is no axial force applied, demanding axial

equilibrium of the stresses from bending.

We already know each elemental force, and formally integrating them over the

cross-section sets
∫

σw(y)dy = 0: or, Eκ
∫

yw(y)dy = 0. Writing w(y)dy as an

elemental area, dA, we therefore observe
∫

ydA = 0, which is how we locate the

centroid of the cross-section in the y direction: the reference plane passes through it.

The axial stresses can now be determined from cross-sectional properties. Given

that ǫ = σ/E also equals yκ, with κ = M/EI , we can re-arrange and obtain

σ = My/I .

Energy Methods

Energy methods ultimately describe the equilibrium or kinematic behaviour of a struc-

ture, usually from applying a work ‘recipe’ for the relevant parameters. For example,

the method of Virtual Work is a statement of internal energy stored vs external effort,

where, for a truss:

�jointsW · � = �barsT · e. (0.7)

The external loads applied to pin-joints are W , and joint displacements are �; bar

tensions are T and axial extensions, e. Note that W and T are always in equilibrium,

and � forms a compatible set with e in which the joints displace in exact accordance

with how the bars extend and rotate.

The energetic terms come from linear elastic behaviour, where normally we

expect a ‘half’ pre-multiplying both sides (even though it would cancel across).

This is because Eq. (0.7) is about the effect of perturbations – small changes to the

configuration of the truss system. For example, if a loaded joint is displaced a little

more, the value of applied load does not change.

The Virtual Work performed is therefore small amounts of surplus energy and

effort from imposing extra, or virtual, loads and displacements etc. The operation

of Eq. (0.7) also decouples equilibrium from compatibility: our virtual equilibrium
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set applies to the actual kinematics, as do any virtual kinematics upon the real

equilibrium set.

Virtual Work can also be used to provide new theorems1 such as the Lower and

Upper Bound Theorems, whose purpose guarantees different outcomes for a loaded

structure in view of failure.

If we are able to find any equilibrium solution that nowhere violates material yield-

ing, the structure will stand safely; but it will collapse if we can postulate a mechanism

compatible with how members fail. These seem obvious statements but are non-trivial

to prove.

When the structure is originally indeterminate, there is more than one solution for

both, with different loading values. They overlap exactly when the values are the same,

and a safe structure is about to collapse.

We are not, however, obliged to find the correct solution, which may reduce our

work considerably but which may lead to conservative behaviour. Consequently,

a Lower Bound solution always gives a safe loading value that can potentially be

increased, and an Upper Bound collapse load can potentially reduce.

1 J Heyman, Basic Structural Theory, Appendix B, Cambridge University Press, 2008.
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