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Introduction

Toute théorie physique est fondée sur l’analogie qu’on établi entre des choses
malconnues et des choses simples.

Every physical theory is based on the analogy which one establishes between
things not well known and things that are simple.

Simone Weil

1.1 Views of the Nucleus

In the atom, the nucleus provides the Coulomb field in which negatively charged
electrons (−e) move independently of each other in single-particle orbitals. The
filling of these orbitals explains Mendeleev’s periodic table. Thus the valence of the
chemical elements as well as the particular stability of the noble gases associated
with the closing of shells (2(He), 10(Ne), 18(Ar), 36(Kr), 54(Xe), 86(Ra)). The
dimension of the atom is measured in angstroms (Å=10−8cm) and typical energies
in eV, the electron mass being me ≈ 0.511 MeV (MeV=106eV).

The atomic nucleus is made out of positively charged protons (+e) and of
(uncharged) neutrons, nucleons, of mass ≈ 103 MeV (m p = 938.3 MeV, mn =
939.6 MeV). Nuclear dimensions are of the order of a few fermis (fm= 10−13 cm).
The stability of the atom is provided by a source external to the electrons, namely,
the atomic nucleus. On the other hand, this system is self-bound as a result of the
strong interaction of range a0 ≈ 0.9 fm and strength v0 ≈ −100 MeV that acts
among nucleons.

1.1.1 The Liquid Drop and the Shell Models

While most of the atom is empty space, the density of the atomic nucleus is
conspicuous (ρ = 0.17 nucleon/fm3). The “closed packed” nature of this system
implies, a priori, a short mean free path λ as compared to nuclear dimensions.
This can be estimated from classical kinetic theory λ ≈ (ρσ)−1 ≈ 1 fm, where
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2 Introduction

σ ≈ 2πa2
0 is the nucleon–nucleon cross section. It seems, then, natural to liken

the atomic nucleus to a liquid drop.1 This picture of the nucleus provided the
framework to describe the basic features of the fission process.2

The leptodermic properties of the atomic nucleus are closely connected with the
semi-empirical mass formula:3

m(N , Z) = (Nmn + Zm p) − 1

c2
B(N , Z), (1.1.1)

the binding energy being

B(N , Z) =
(

bvol A − bsur f A2/3 − 1

2
bsym

(N − Z)2

A
− 3

5

Z2e2

Rc

)

, (1.1.2)

where A = N + Z is the mass number, sum of the number of neutrons (N ) and of
protons (Z ). The first term is the volume energy representing the binding energy
in the limit of large A, for N = Z and in the absence of the Coulomb interaction
(bvol ≈ 15.6 MeV) . The second term represents the surface energy, where

bsur f = 4πr2
0γ. (1.1.3)

The nuclear radius is written as R = r0 A1/3, with r0 = 1.2 fm, the surface tension
energy being γ ≈ 0.95 MeV/fm2. The third term in (1.1.2) is the symmetry term,
which reflects the tendency toward stability for N = Z , with bsym ≈ 50 MeV.
The symmetry energy can be divided into a kinetic and a potential energy part. A
simple estimate of the kinetic energy part can be obtained by making use of the
Fermi gas model, which gives (bsym)kin ≈ (2/3)ǫF ≈ 25 MeV (ǫF ≈ 36 MeV).
Consequently,

V1 = (bsym)pot = bsym − (bsym)kin ≈ 25 MeV. (1.1.4)

The last term of (1.1.2) is the Coulomb energy corresponding to a uniformly
charged sphere of radius Rc = 1.25 A1/3 fm.

When, in a heavy ion reaction, two nuclei come within the range of the nuclear
forces, the Coulomb trajectory of relative motion will be changed by the attraction
that will act between the nuclear surfaces. This surface interaction is a fundamental
quantity in heavy ion reactions. Assuming two spherical nuclei at a relative distance
ra A = Ra + RA, where Ra and RA are the corresponding half-density radii, the
(maximum) force acting between the two surfaces is

(

∂U N
a A

∂r

)

ra A

= 4πγ
Ra RA

Ra + RA

. (1.1.5)

1 Bohr and Kalckar (1937).
2 Meitner and Frisch (1939); Bohr and Wheeler (1939).
3 Weizsäcker (1935).
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1.1 Views of the Nucleus 3

Figure 1.1.1 (a) Nucleon–nucleon (N N ) interaction in a scattering experiment;
emergent properties (collective nuclear modes). (b) Assembly of nucleons con-
densing into drops of nuclear matter displaying emergent properties, examples of
which are shown in (c) and (e). (c) Anelastic heavy ion reaction a + A → a + A∗

setting the nucleus A into an octupole surface oscillations (d). In inset (I) the
time-dependent nuclear plus Coulomb field associated with the reaction (c) is
represented by a cross followed by a dashed line, while the wavy line labeled λ
describes the propagation of the λπ = 3− surface vibration schematically shown
in (d), time running upward. (e) The (weakly) quadrupole deformed nucleus 223Ra
can rotate as a whole with a moment of inertia considerably smaller than the rigid
moment of inertia, a fact intimately connected with the role played by pairing
in nuclei. The role becomes overwhelming in the phenomenon of exotic decay
displayed in (f) in which the nuclear surface zero-point fluctuations (quadrupole
(λ = 2), octupole (λ = 3), etc.) can get, with a small but finite probability
(P≈10−10), spontaneously in phase and produce a neck-in (saddle conformation),
leading eventually to the (exotic) decay mode 223Ra→209Pb+14C, as experimen-
tally observed (g) (Rose and Jones (1984); see Brink and Broglia (2005), chapter
7 and refs. therein). As correctly explained in Matsuyanagi et al. (2013) for vibra-
tions in general, and valid also in the case of the ZPF leading to the saddle
(neck-in) configuration, such fluctuations are associated with genuine quantum
vibrations (where superfluidity and shell structure play a central role), and thus
are essentially different in character from surface oscillations of a classical liquid
drop. The intimate connection between pairing and collective vibrations reveals
itself through the inertial masses governing the collective kinetic energies.
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4 Introduction

This result allows for the calculation of the ion–ion (proximity) potential,
which, supplemented with a position-dependent absorption, can be used to accu-
rately describe heavy ion reactions.4 In such reactions, not only elastic processes
are observed, but also anelastic reactions in which one or both surfaces of the
interacting nuclei are set into vibration (Fig. 1.1.1).

The restoring force parameter of the leptodermous system associated with
surface oscillations of multipolarity λ is

Cλ = (λ − 1)(λ + 2)R2
0γ − 3

2π

λ − 1

2λ + 1

Z2e2

Rc

, (1.1.6)

where the second term corresponds to the contribution of the Coulomb energy to
Cλ. Assuming the flow associated with surface vibrations to be irrotational, the
associated inertia for small amplitude oscillations is

Dλ = 3

4π

1

λ
Am R2, (1.1.7)

the energy of the corresponding mode being

h̄ωλ = h̄

√

Cλ

Dλ

. (1.1.8)

The label λ stands for the angular momentum of the vibrational mode. Further-
more, the vibrations can be characterized by the parity quantum number π = (−1)λ

and the third component of λ, denoted μ. Aside from λ,μ, surface vibrations can
also be characterized by an integer n(= 1, 2, . . . ), an ordering number indicating
increasing energy. For simplicity, a single common label α will also be used.

A picture apparently antithetic to that of the liquid drop, the shell model,
emerged from the study of experimental data, plotting them against either the num-
ber of protons (atomic number) or the number of neutrons in nuclei, rather than
against the mass number. One of the main nuclear features that led to the devel-
opment of the shell model was the study of the stability and abundance of nuclear
species and the discovery of what are usually called magic numbers.5 What makes a
number magic is that a configuration of a magic number of neutrons, or of protons,
is unusually stable whatever the associated number of other nucleons is.6

The strong binding of a magic number of nucleons and weak binding for one
more reminds one of the results concerning the atomic stability of rare gases. In
the nuclear case, the spin–orbit coupling plays an important role, as can be seen

4 See, e.g., Broglia and Winther (2004) p. 110, and refs. therein.
5 Elsasser (1933); Mayer (1948); Haxel et al. (1949).
6 Mayer (1949); Mayer and Teller (1949).
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1.1 Views of the Nucleus 5

Figure 1.1.2 Sequence of levels of the harmonic oscillator potential labeled with
the principal oscillator quantum number (N (h̄ω) = 0(h̄ω), 1(h̄ω), 2(h̄ω), . . . ,
the parity being π = (−1)N ). The next column shows the splitting of major shell
degeneracies obtained using a more realistic potential (Woods–Saxon), the quan-
tum number being the number of radial nodes of the associated single-particle
s, p, d, etc. states. The levels shown at the center result when a spin-orbit term
is also considered, the quantum numbers nl j characterizing the states of degen-
eracy (2 j + 1) ( j = l ± 1/2). To the left we schematically (in particular in the
case of Li, which displays non-Meyer and Jensen sequence) indicate the Fermi
energy associated with a light (exotic), medium, and heavy nucleus, namely, 11

3 Li,
120
50 Sn, and 208

82 Pb. In the inset, a schematic graphical representation of the reaction
208Pb(d, p)209Pb(gs) is shown. A cross followed by a horizontal dashed line rep-
resents, in the present case, the (d, p) field, while a single arrowed line describes
the odd nucleon moving in the g9/2 orbital above the N = 126 shell closure drawn
as a bold line labeled 0+. After Mayer and Jensen (1955).

from the level scheme shown in Fig. 1.1.2, obtained by assuming that nucleons
move independently of each other in an average potential of spherical symmetry.

A closed shell, or a filled level, has angular momentum zero, in keeping with
the fact that, in such a case, there is a single way to arrange the fermions. Thus,
nuclei with one nucleon outside (missing from the) closed shell should have the
spin and parity of the orbital associated with the odd nucleon (nucleon hole), a
prediction confirmed by the data (available at that time) throughout the mass table.
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6 Introduction

Such a picture implies that the nucleon mean free path is large compared to nuclear
dimensions.

Systematic studies of the binding energies leading to the shell model found also
that the relation (1.1.2) had to be supplemented to take into account the fact that
nuclei with A odd, that is, with an odd number of either protons or neutrons, are
energetically unfavored compared with the neighboring even-even ones by a quan-
tity of the order of δ ≈ 33 MeV/A3/4, called the pairing energy7 and found at the
basis of the odd-even staggering effect.

1.1.2 Nuclear Excitations

In addition to the quantum numbers λ, μ, and π , one can characterize nuclear
excitations by additional quantum numbers, such as isospin τ and spin σ . Further-
more, one can assign a particle (baryon or transfer) quantum number8 β. For a
nucleon moving above the Fermi surface, one has β = +1, while for a hole in the
Fermi sea, β = −1. For (quasi-) bosonic excitations, β = 0 for a mode associated
with, for example, surface oscillations, which can also be viewed as a correlated
particle-hole (p-h) excitation (within this context, see Fig. 1.2.3). In particular, the
low-lying quadrupole and octupole vibrations of even-even nuclei (see Fig. 1.1.3)
have quantum numbers β = 0, λπ = 2+, 3−, τ = 0 (protons and neutrons oscillate
in phase), and σ = 0 (no spin-flip in the excitation).

For modes that involve the addition or substraction of two correlated nucleons
to the nucleus, β = +2 (Fig. 1.3.1) and β = −2, respectively. The excitation
that, around closed shells, connects the ground state of an even nucleus to the
ground state of the next even nucleus, which is a monopole pairing vibration (λπ =
0+, β = +2), is of this type (Fig. 1.3.2). Multipole pairing vibrations with quantum
numbers β = ±2 and9 λπ = 2+, 4+ . . . , have also been observed throughout the
mass table.10

The low-lying excited state of closed shell nuclei can be interpreted as a rule, as
a harmonic quadrupole, or as an octupole collective surface vibration (Fig. 1.1.3)
described by the collective Hamiltonian11

Hcoll =
∑

λμ

(

1

2Dλ

|�̂λμ|2 + Cλ

2
|α̂λμ|2

)

. (1.1.9)

7 Mayer and Jensen (1955) p. 9. Connecting with further developments associated with the BCS theory of
superconductivity (Bardeen et al. (1957a,b)) and its extension to the atomic nucleus (Bohr et al. (1958)), the
quantity δ is identified with the pairing gap � parameterized according to � = 12MeV/

√
A (Bohr and

Mottelson (1969)). It is of note that for typical superfluid nuclei like 120Sn, the expression of δ leads to a
numerical value that can be parameterized as δ ≈ 33 MeV/(A1/4 × A1/2) ≈ 10 MeV/

√
A.

8 Bohr (1964).
9 It is of note that the quantum numbers of pairing vibrations are β = ±2 and π = (−1)λ (see App. 7.D).

10 See, e.g., Flynn et al. (1971, 1972a); Brink and Broglia (2005) chapter 5. See also footnotes 42, 43, and 44 of
chapter 7, and references therein.

11 Classically, �λμ = Dλα̇λμ.
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1.1 Views of the Nucleus 7

Figure 1.1.3 Schematic representation of harmonic quadrupole and octupole
liquid drop collective surface vibrational modes.

Following Dirac (1930), one can describe the oscillatory motion introducing boson
creation (annihilation) operator Ŵ

†
λμ (Ŵλμ) obeying the commutation relation

[

Ŵα, Ŵ
†
α′

]

= δ(α, α′) (1.1.10)

and leading to

α̂λμ =
√

h̄ωλ

2Cλ

(

Ŵ
†
λμ + (−1)μŴλ−μ

)

. (1.1.11)

A similar expression is valid for the conjugate momentum variable �̂λμ, resulting
in

Ĥcoll =
∑

λμ

h̄ωλ

(

(−1)μŴ
†
λμŴλ−μ + 1/2

)

. (1.1.12)

The frequency of the mode is ωλ = (Cλ/Dλ)
1/2, while (h̄ωλ/2Cλ)

1/2 is the ampli-
tude of the zero-point fluctuation of the bosonic vacuum state |0〉B, |nλμ = 1〉 =
Ŵ

†
λμ|0〉B being the one-phonon state. To simplify the notation, in many cases, one

writes |nα = 1〉.
The ground and low-lying states of nuclei with one nucleon outside a closed

shell can be described by the single-particle Hamiltonian

Hsp =
∑

ν

ǫνa†
νaν, (1.1.13)

where a†
ν(aν) is the single-particle creation (annihilation) operator,

|ν〉 = a†
ν |0〉F (1.1.14)

being the single-particle state of quantum numbers ν(≡ nl jm, namely, number of
nodes, orbital and total angular momentum, and its third component) and energy
ǫν , |0〉F being the Fermion vacuum. It is of note that

[

Hcoll, Ŵ
†
λ′μ′

]

= h̄ωλ′Ŵ
†
λ′μ′ (1.1.15)

www.cambridge.org/9781108843546
www.cambridge.org


Cambridge University Press
978-1-108-84354-6 — The Nuclear Cooper Pair
Grégory Potel Aguilar , Ricardo A. Broglia 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction

and
[

Hsp, a
†
ν′

]

= ǫν′a
†
ν′ . (1.1.16)

This outcome results from the bosonic
[

Ŵα, Ŵ
†
α′

]

= δ(α, α′) (1.1.17)

and fermionic
{

aν, a
†
ν′

}

= δ(ν, ν ′) (1.1.18)

commutation (anti-commutation) relations.
The existence of drops of nuclear matter displaying both collective surface vibra-

tions and independent-particle motion are emergent properties not contained in the
particles forming the system, nor in the forces acting among them.

Expressed differently, generalized rigidity closely connected to the inertial
parameter Dλ implies that acting on a nucleus with an external β = 0, time-
dependent (nuclear/Coulomb) field, the system reacts as a whole (collective
vibrations; also rotations see Sect. 1.4), while acting with fields that change parti-
cle number by one (β = ±1; e.g. (d, p) and (p, d) reactions), the system reacts
in terms of independent particle motion, feeling the pushings and pullings of the
other nucleons only when trying to leave the nucleus. Such a behavior can hardly
be inferred from the study of the N N -forces in free space, being truly emergent
properties of the finite, quantum many-body nuclear system.

Collective surface vibrations and independent particle motion are examples of
what are called elementary modes of excitation in finite many-body physics and
collective variables in soft-matter physics.

1.2 The Particle–Vibration Coupling

The oscillation of the nucleus under the influence of the surface tension implies that
the potential U (r, R) in which nucleons move independently of each other changes
with time. For low-energy collective vibrations, this change is slow as compared
with single–particle motion. Within this scenario the nuclear radius can be written
as

R = R0

⎛

⎝1 +
∑

λμ

αλμY ∗
λμ(r̂)

⎞

⎠ . (1.2.1)

Assuming small-amplitude motion,

U (r, R) = U (r, R0) + δU (r), (1.2.2)
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1.2 The Particle–Vibration Coupling 9

Figure 1.2.1 Graphical representation of a process by which a nucleon, bouncing
inelastically off the nuclear surface, sets it into vibration. Particles are represented
by an arrowed line pointing upward, which is also the direction of time, while the
vibration is represented by a wavy line. In the cartoon to the right, the black dot
represents a nucleon moving in a spherical mean field of which it excites, through
the PVC vertex, an octupole vibration after bouncing inelastically off the surface.

where

δU = κα̂ F̂ = �α

(

Ŵ
†
λμ + (−1)μŴλ−μ

)

F̂ = Hc, (1.2.3)

with

�α = κ

√

h̄ωλ

2Cλ

, (1.2.4)

is the particle–vibration coupling (PVC) strength (Fig. 1.2.1), product of the
dynamic deformation

βλ =
√

2λ + 1

√

h̄ωλ

2Cλ

(1.2.5)

and of the strength κ , while

F̂ =
∑

ν1ν2

〈ν1|F |ν2〉a†
ν1

aν2 (1.2.6)

is a single-particle field with (dimensionless) formfactor

F = − R0

κ

∂U

∂r
Y ∗

λμ(r̂). (1.2.7)

An estimate of κ is given below (Eq. (1.2.13)).
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(a) (b) (c)

(d) (e)
(f)

(h)

(g)

αV|HF 〉 = 0;

|HF 〉
Vv

k

v

i

2

αV = bi = (−1)phasea
i
   (∈i < ∈F)

ak   (∈k > ∈F)

∼

Figure 1.2.2 Schematic representation of the processes characterizing the
Hartree–Fock ground state (single-particle vacuum), in terms of Feynman dia-
grams. (a) Nucleon–nucleon interaction through the bare (instantaneous) N N -
potential. (b) Hartree mean field contribution. (c) Fock mean field contribution.
(d,e) ground state correlations (ZPF) associated with the Hartree and Fock fields.
(f) There is, in HF (mean field) theory, a complete decoupling between occupied
and empty states, labeled i and k, respectively, and thus a sharp discontinuity
at the Fermi energy of the occupation probability, from the value of 1 to 0. (g)
This decoupling allows for the definition of two annihilation operators: ak(bi )
particle (hole) annihilation operators, implying the existence of hole (antipar-
ticle) states (b†

i |H F〉) with quantum numbers time reversed to that of particle
states (for details, see, e.g., Brink and Broglia (2005), App. A). In other words,
the |H F〉 ground (vacuum) state is filled up to the Fermi energy (ǫF ) with N
nucleons. The system with (N − 1) nucleons can, within the language of (Feyn-
man’s) field theory, be described in terms of the degrees of freedom of that of
the missing nucleon (hole-, antiparticle state). Such a description is considerably
more economic than that corresponding to an antisymmetric wavefunction with
(N − 1) spatial and spin coordinates (ri , σi ). Within the above scenario, a strip-
ping reaction N (d, p)(N + 1) can be viewed as the creation of a particle state
(a

†
k |H F〉 = |k〉) and that of a pickup reaction N (p, d)(N − 1) as that of a hole

state (b
†
i |H F〉 ≡ |ĩ〉). (h) Hartree, mean field contribution to the nuclear density,

the density operator being represented by a cross followed by a dashed horizontal
line (see also Fig. 1.8.1).

Diagonalizing δU making use of the graphical (Feynman) rules of nuclear
field theory (NFT) to be discussed in the following chapter, one obtains struc-
ture results that can be used in the calculation of absolute transition probabilities
and differential reaction cross sections, quantities that can be compared with the
experimental findings.
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