INDEX

Academic institutions. See Universities and academic institutions
African Regional Industrial Property Organization (ARIPO), 319
Aguamarina, 102
Alcan, 288
Aluminum in Australia, 308
in Brazil, 205, 206–7
environmental impacts, 142
processing stage, 7
"pull effect" of innovation, 11
Anglo American Exploration, 282
Anglo Gold Ashanti, 221
Angola, FDI in, 62
Aplik, 102–3
Argentina, mineral trade with Brazil, 207
Artisanal and small-scale miners (ASMs), 4–5
Austmine, 4
Australia generally, 323
automation, patent filings and, 44
automation subsector in, 316–18
blasting subsector in, 314, 316–18
Canadian company patent filings in, 289
clean patents in, 149–50
coal imports and exports, 121
cooperation in, 320–1, 336–8
Commonwealth Scientific and Industrial Research Organisation (CSIRO), 21, 312–14, 320, 322
Cooperative Research Centres (CRCs), 21, 45–6, 320–3
Deep Exploration Technologies CRC (DET CRC), 321–3
Department of Industry, Innovation and Science, 323
environmental impacts of mining industry in, 142
environmental technology, patent filings and, 44
environment subsector in, 316–18
exploration, patent filings and, 42
exploration subsector in, 314, 316–18
FDI and, 58
German company patent filings in, 309
government support of mining industry in, 178
Greenhouse Gas Technologies CRC (CO2CRC), 321–2
importance of mining industry in, 308–9
innovation in, 309
innovators, patent filings by, 312–13, 334–5
Japanese company patent filings in, 309
longer transit distances of mining products and, 121
measurement of environmental policy stringency in, 158
metallurgy subsector in, 314, 316–18
METS sector in, 4, 212
Mining and Technology CRC (CMTE), 321–2
mining boom in, 311–12
mining innovation ecosystem in, 14
mining patents as share of total patents, 39
mining specialization in, 183
mining subsector in, 314, 316–18
New South Wales, R&D expenditures in, 329

© in this web service Cambridge University Press www.cambridge.org
INDEX

origin of patent filings in, 333
patent filings in, 213, 309–10, 329, 338–9
priority countries for patent filings, 317–19
processing subsector in, 314, 316–18
productivity in, 10
publicly-funded entities in, 320
Queensland, R&D expenditures in, 328, 329
R&D Tax Incentive (See Australian R&D Tax Incentive)
refining subsector in, 314, 316–18
relative specialization index (RSI), 41–2, 49–50
Reserve Bank of Australia, 311
as source of innovation growth, 37–8, 47, 49
statistics on mining industry in, 308–9
success of mining industry in, 96
tax incentives in, 22 (See also Australian R&D Tax Incentive)
technology protection in, 213
technology specialization in, 314–18, 332
time, patent filings over, 310–11, 329–31
transport-related innovation in, 42–4, 135
transport subsector in, 316–18
universities and academic institutions, collaboration with, 320
US company patent filings in, 333–4, 336
Victoria, R&D expenditures in, 328, 329
Western Australia, R&D expenditures in, 327–8, 329
Australian and New Zealand Standard Industrial Classification (ANZSIC), 323, 325–6
Australian R&D Tax Incentive generally, 21, 323, 338
company size and, 324–5
mining industry and, 323–4
by mining industry subdivision, 325–6
patent filings and, 326–7
by State and Territory, 326–9
statistics, 323
Austria
clean patents in, 149–50
as source of innovation growth, 38
Automation subsector
in Australia, 316–18
in Brazil, 213–17
in Canada, 292–6
commodity prices and, 189–90
innovation in, 34, 49, 128
patent filings and, 35, 44
transport-related innovation and, 134–5, 139–40
Baker Hughes, 334–5
Bankable feasibility studies, 6
Barrick Gold Corporation, 300
Battelle, Gordon, 269
Battelle Memorial Institute, 269–72
Bauxite
in Australia, 308
in Brazil, 205–6
exploration stage, 7
transport issues, 118
Belgium
automation, patent filings and, 44
as source of innovation growth, 38
Beneficiation, 6
BHP-Billiton. See Broken Hill Proprietary Company Limited (BHP-Billiton)
Biotechnology, 102
Blasting subsector
in Australia, 314, 316–18
in Canada, 292–6
commodity prices and, 189–90
innovation in, 34, 184
Botswana
diversification of portfolios in, 80–1
FDI in, 62
Brazil
generally, 19
Brazil (cont.)
automation, patent filings and, 44
automation subsector in, 213–17
Bento Rodrigues accident, 209
Brazilian Development Bank, 225
Brazilian Mineral Production (PMB), 205–6
Canadian company patent filings in, 289
clean patents in, 149–50
competitiveness of mining industry, 206
concentration in mining industry, 202, 227, 228
costs of transport and, 123–4
dam management in, 209
environmental technology, patent filings and, 44
environment subsector in, 213–17
exploration, focus on, 228
exploration subsector in, 213–17
FDI and, 58
foreign trade, mining industry and, 207
historical background of mining industry, 204–5
importance of mining industry in, 202
innovation in, 100–3
Innovation Survey (PINTEC), 208, 227
Innovaxxion customers in, 252
Institute of Geography and Statistics (IBGE), 208
institutional collaboration for innovation, 210–12, 228
longer transit distances of mining products and, 121
metallic minerals in, 206–7
metallurgy subsector in, 213–17, 227–8
methodology of study, 204
METS sector in, 208, 211–12, 213–17
Mineral Resources Research Company (CPRM), 100–1
Mining Code, 210
Mining Institute (IBRAM), 205

mining patents as share of total patents, 39
mining subsector in, 213–17, 227–8
Ministry of Mines and Energy (MME), 210
National Council for Scientific and Technological Development (CPNPq), 225
National Mining Agency (ANM), 210
National Science and Technology System, 225
new deposits, focus on, 228
patent filings in, 204, 213–17
processing subsector in, 213–17, 227–8
productivity growth in, 208–9, 227–8
Provisional Presidential Decree No. 790 (MP 790), 210
refining subsector in, 213–17, 227–8
relative specialization index (RSI) in, 41–2
Samarco Fundão Dam, 209
social license to operate in, 208–9
as source of innovation growth, 37–8, 49
State Research Foundations (FAPs), 225
statistics on mining industry, 202, 205–6
tax incentives in, 22
technology protection in, 204, 213–17
technology transfer in, 204, 217–21
transport-related innovation in, 42–4
transport subsector in, 213–17, 227–8
trends in innovation in, 228–9
2030 National Mining Plan, 210
underdevelopment of mining industry, 206
universities and academic institutions, collaboration with, 211
Vale S.A. (See Vale S.A.)
INDEX

Bureau Van Dijk, 73, 188
Bush, George W., 262
Canada generally, 20–1, 280
Australian company patent filings in, 317
automation, patent filings and, 44
automation subsector in, 292–6
blasting subsector in, 292–6
Brazil, mineral trade with, 207
Calgary as mining industry cluster, 300, 302
Canada Mining Association, 279
Canada Mining Innovation Council (CMIC), 279, 283–4
Canadian Exploration Expense Claims (CEE), 297
challenges to innovation in, 284–5
clean patents in, 149–50
clusters in mining industry, 300–2
collaboration in, 280, 285, 295–9, 303
competitiveness of mining industry in, 283
cultural information in, 281–2
culture of mining industry, 284–5
Edmonton as mining industry cluster, 300, 302
environmental technology, patent filings and, 44
environment subsector in, 287, 292–7, 299
exploration, patent filings in, 42, 292–4, 295–7, 302
exploration subsector in, 16–17, 287, 292–7
FDI and, 58
importance of mining industry in, 278
innovation in, 279, 283–4, 303
Inovaxxion customers in, 252
Intellectual Property Office (CIPO), 279
interviews in study, 280
maps, use in study, 289–92, 293–4, 303
metallurgy subsector in, 292–6
methodology of study, 304–5
METS sector in, 282–3, 298–9
Mineral Exploration Tax Credit (METC), 297, 298
mining innovation ecosystem in, 14
mining patents as share of total patents, 39
mining subsector in, 287–8, 292–7
Montreal as mining industry cluster, 300
Natural Resources Canada, 278, 288
oil and gas in, 287
“open innovation” in, 284
Pan-Canadian Mining Research and Innovation Strategy, 283–4, 295
patent filings in, 213, 279, 280–1, 286–91, 303
priority countries for patent filings, 288–90
processing subsector in, 292–6
Prospectors & Developers Association of Canada, 298
R&D expenditures in, 27, 278–9
refining subsector in, 292–7, 299
relative specialization index (RSI) in, 41–2, 49–50, 302, 304–5
skills and technology development in, 79
as source of innovation growth, 37–8, 47, 49
specialization in mining industry, 292–6
statistics on mining industry in, 278
success of mining industry in, 96
sustainable development in, 278, 279
tax incentives in, 22
technology protection in, 213
Toronto as mining industry cluster, 300
trade secrets in, 281–2
transport-related innovation in, 42–4
transport subsector in, 292–6
universities and academic institutions in, 282
upstream linkages in, 79
Vancouver as mining industry cluster, 300, 302
Capital intensive nature of mining industry, 8, 94
Celedón, Enrique, 253–4
Centre for International Governance Innovation (CIGI), 279
Chile
generally, 19–20, 232–3
Alta Ley program, 17–18, 109–10, 111, 235
Brazil, mineral trade with, 207
Canadian company patent filings in, 289
case studies, 245–6, 250, 254
challenges in mining industry, 234
Chilean Copper Commission (COCHILCO), 236
Cluster Development Program, 110
collaboration in, 234–5
correlation between IP protection and innovation in, 231, 232
descriptive statistics, 241, 243
diversification of portfolios in, 81
environmental technology, patent filings and, 44
exploration, patent filings and, 42
Fundación Chile, 107, 111
government support of mining industry in, 178
importance of mining industry in, 231, 233
Industrial Mining Suppliers Association (APRIMIN), 236
in-house innovation in, 234–5
innovation in, 99–100, 101–3
linkages in, 234–5
machinery and equipment, innovation in, 212
METS sector in, 232, 235–7
mining patents as share of total patents, 39
mining specialization in, 183
Ministry of Economy, 110
Ministry of Mining, 110, 235
National Institute of Industrial Property (INAPI), 232, 239, 245, 253–4
nonreliance on IP protection in METS sector, reasons for, 246–50
patent filings in, 19–20, 237–40
Production Development Corporation (CORFO), 107, 110, 235, 239
R&D expenditures in, 89, 104, 108
Regional Development Agencies, 110
relative specialization index (RSI) in, 41–2, 49–50
reliance on IP protection in METS sector, 246–7
semi-structured interviews, 242–5
skills and technology development in, 79
as source of innovation growth, 37–8, 49
specialized suppliers in, 235–7
statistics on mining industry, 233
capacity for IP protection, 249–50
tax incentives in, 22
total factor productivity (TFP) in, 234
transport-related innovation in, 42–4
universities and academic institutions in, 242–5, 250, 254
World Class Suppliers (WCS) program (See World Class Suppliers (WCS) program (Chile))
Chile Foundation (FCH), 235, 236
China
automation, patent filings and, 44
Brazil, mineral trade with, 207
Canadian company patent filings in, 289
coal imports and exports, 121
commodity prices in, 146
container technologies in, 134
carrying technologies in, 131
costs of transport and, 123–4
environmental technology, patent filings and, 44
exploration, patent filings and, 42
FDI and, 58
global value chains in, 90
INDEX

longer transit distances of mining products and, 121, 128–9
METS sector in, 90
mining patents as share of total patents, 39
MNEs in, 53–4, 58, 76
patents in, 16
public research organizations (PROs) in, 46
railway technologies in, 133
R&D expenditures in, 27
relative specialization index (RSI) in, 41–2
road transport in, 132
as source of innovation growth, 36–8, 47, 49
technological change in, 21–2
transport-related innovation in, 18, 42–4, 129–30, 139
Ciber, 213
Clarivate’s Derwent Innovation database, 304
Clean patents, 143, 144, 147–50, 161, 166
Clean technologies, 144
Closure stage, 7
Coal
in Australia, 308
in Brazil, 207
costs of transport, 122–3
environmental impacts, 142
imports and exports, 121
“pull effect” of innovation, 11
transport issues, 118
Cobalt in Australia, 338–9
Codelco. See National Copper Corporation (Codelco)
Colombia, Canadian company patent filings in, 289
Commodity prices, innovation in mining industry and generally, 19, 146, 173
by category of mining activity, 188–90
correlation of, 184–6
counter-cyclical effect, 177, 178–9, 197, 198–9
data selection, 180–6, 197
empirical results, 186–96
exploration and, 175
hypotheses regarding, 179–80
methodology of study, 180–6
METS sector, mining firms versus, 172, 173, 175–8, 179, 184, 185, 188–91, 198
mineral rents and, 181–2, 184
mining specialization and, 183–4
panel estimation, 192–4
patent filings and, 182–3
pro-cyclical effect, 173, 177–8, 179, 188, 194–6, 197, 198
R&D expenditures and, 174, 175, 182–3
relative specialization index (RSI) and, 184
short-term cycles, effect of, 172, 187
Companhia Vale do Rio Doce (CVRD). See Vale S.A.
Confidential information in Canada, 281–2
Container technologies, 134
Conveying technologies, 131
Cooperative Patent Classification (CPC), 141, 147–8, 310, 314
Copper
in Australia, 308, 338–9
in Brazil, 205, 206–7
in Chile, 233
environmental impacts, 142
exploration stage, 7
increasing demand for, 1
innovation and, 12
“pull effect” of innovation, 11
transport issues, 118
Copyrights, 280, 281
Corporate Social Responsibility, 109
Creative internationalization, 71, 72, 74
De Beers, 62, 80–1
Denmark as source of innovation growth, 38
Development stage, 6
Diamonds, transport issues, 118
Double externality, 144
Drillco Tools, 104–5
"Dutch disease," 61, 97

Economics of mining industry
capital intensive nature of, 8, 94
local impacts, 8–9, 94, 95
non-renewability of minerals, 7–8
price takers, 8, 94–5
productivity growth, importance of, 9–10
uneven geographical distribution of minerals, 8
valuation (See Valuation in mining industry)

Ecosystem. See Mining innovation ecosystem
Elementos Industriales y Tecnologicos, 221
Emerging countries
global value chains in, 89, 90, 98–9
importance of mining industry in, 89–90
innovation in, 89, 96
mineral reserves in, 92
patent filings in, 90, 93
proportion of mineral production in, 90, 92

Empty running, 139
Enclaves, 97
Energy use in mining, increase in, 2
Environmental impacts of mining industry
generally, 95, 142–3
closure stage, 7
increase in, 2
innovation, reduction through, 143
transport-related innovation as driver of, 126

Environmental policy stringency, measurement of
generally, 166–7
baseline results, 160–2, 171
covariates, 156–8
descriptive statistics, 158, 170
empirical strategy for, 154–8

Environmental Policy Stringency (EPS) index and, 143, 150–4, 156, 162–6
future research, 166–7
market-based versus non-market-based instruments, 162–6
mineral price index and, 156–7, 158
patent filings and, 155–6, 158, 161
robustness checks, 161–2, 165

Environmental Policy Stringency (EPS) index, 143, 150–4, 156, 162–6
Environmental regulation of mining industry
generally, 18, 143, 166–7
clean patents and, 143, 144, 147–50, 161, 166
clean technologies, 144
effects of, 143
Environmental Policy Stringency (EPS) index, 143, 150–4, 156, 162–6
future research, 166–7
"green" products, limited opportunities for, 146
induced innovation hypothesis and, 144
literature review, 144–7
market-based versus non-market-based instruments, 145, 162–6
measurement of environmental policy stringency (See Environmental policy stringency, measurement of)
necessity of, 146
taxes, 165

Environmental technology, patent filings and, 35, 44

Environment subsector
in Australia, 316–18
in Brazil, 213–17
in Canada, 287, 292–7, 299
commodity prices and, 189–90
innovation in, 34

EPO. See European Patent Office (EPO)
Eurasian Patent Organisation (EAPO), 319

Europe. See also specific country
R&D expenditures in, 25–6, 27
**INDEX**

- as source of innovation growth, 47
- European Patent Office (EPO)
  - Canadian company patent filings and, 289
  - enforceability of patents, 319
- PATSTAT database, 71, 73, 147, 262–3, 280, 304, 310, 329, 332, 338
- Exclusive operation rights, 46–7
- Exploration companies, 4
- Exploration stage, 5
- Exploration subsector
  - in Australia, 314, 316–18
  - in Brazil, 213–17
  - in Canada, 16–17, 287, 292–7
- Canadian patent filings in, 292–4, 295–7, 302
- commodity prices and, 175, 189–90
- exclusive operation rights and, 46–7
- innovation in, 12–13, 28, 34, 49, 184
- patent filings and, 35, 42
- R&D and, 12–13
- Exports
  - coal, 121
  - contribution of mining industry to, 3
- Exsa, 103

- FDI. See Foreign direct investment (FDI)
- Federal University of Minas Gerais, 211
- Federico Santa María Technical University (UTSFM), 252

- Finland
  - METS sector in, 19
  - patent filings in, 237–9
  - as source of innovation growth, 38
- Fluorspar, innovation and, 12
- Foreign direct investment (FDI). See also specific country
generally, 17, 52–3
- contribution of mining industry to, 3
- cross-border investment, 55–8
- decline in, 55
- defined, 52
- development and, 58–63
- diversification of portfolios recommended, 80–1
- economic impact of, 60–2

- empirical assessment of technological impact, 67
- environmental impact of, 62
- framework for analysis of technological impact, 65–6
- global mining players, attracting recommended, 77–8
- greenfield investment, 55–8, 74–5
- growth in investors, 58
- importance to technological development, 75–6
- marginal nature of mining FDI, 57–8
- MNEs (See Multinational enterprises (MNEs))
- political impact of, 62–3
- R&D-intensive FDI, 66, 74–5, 76
- skills and technology development, promoting recommended, 79–80
- social impact of, 62–3
- social license to operate and, 62–3
- spillovers (See Spillovers)
  - upstream linkages, promoting recommended, 78–9
- Fourth Industrial Revolution, 21–2, 35–6

- France
  - measurement of environmental policy stringency in, 158
  - mining patents as share of total patents, 39
  - mining specialization in, 183
  - as source of innovation growth, 38
- General Electric, 334–5
- General Purpose Technology, 139–40
- Geoambiente, 101–3
- Germany
  - automation in, 135
  - Canadian company patent filings in, 289
  - METS sector in, 19
  - as source of innovation growth, 37–8
- Givens, Rick, 269
- Glencore, 300

- Globalization, effect on transport-related innovation, 129–30
- Global supply chains, 7
Global value chains

- generally, 17–18, 88–9, 112
- defined, 97
- demand-side incentive to innovation, 99–101
- diversification of, 99
- in emerging countries, 89, 90, 98–9
- governance of, 97–8
- innovation and, 49, 98–9
- in Latin America, 17–18, 90, 98, 112
- lead firms, 97
- local suppliers and, 103–6
- patent filings across, 34, 49, 90
- supply-side incentive to innovation, 101–3
- upgrading of, 99

Globerman, Steven, 64

Gold
- in Australia, 308
- in Brazil, 206–7
- environmental impacts, 142
- exploration stage, 7
- transport issues, 118

Goldcorp, 302

Government agencies in mining innovation ecosystem, 14

Gravel, environmental impacts, 142

Gypsum, environmental impacts, 142

Halliburton, 334, 335

Health and safety in mining industry
- generally, 257, 258
- fatalities in US, 257, 259, 261
- improvements in US, 257
- legislation in US, 259–62
- mine barrier survival system, 269–72
- MINER Act of 2006 and (See Mine Improvement and New Emergency Response (MINER) Act of 2006 (US))
- patents and, 257–8
- refuge chambers, 267–8, 276
- "through-the-earth" (TTE) wireless communications, 267–8, 270–3, 276
- transport-related innovation and, 125

High Service (Chilean company), 101

Holmes, Joseph A., 259–60

Human Development Index (HDI), 58–60

iFlux (Innovaxxion), 251–2

Imperial Oil, 287

Inco Limited, 147, 221–2, 225–7, 287–8, 298–9

India
- automation, patent filings and, 44
- FDI and, 58
- relative specialization index (RSI) in, 41–2
- as source of innovation growth, 37–8

Indonesia
- coal imports and exports, 121
- as source of innovation growth, 37–8

Induced innovation hypothesis, 144

Industrial designs, 246–7, 248–50, 279, 280, 281, 304

Industrial Revolution, 126

Industry 4.0, 21–2, 35–6

Innovation in mining industry
- generally, 16–17
- in automation subsector, 34, 49, 128
- biotechnology, 102
- in blasting subsector, 34, 184
- characteristics of, 146
- commodity prices and (See Commodity prices, innovation in mining industry and)
- cost reduction and, 146
- by country, 36–8
- defined, 90–4
- demand-side incentive to innovation, 99–101
- in emerging countries, 89, 96
- environmental impacts reduced through, 143
- in environment subsector, 34
- in exploration subsector, 12–13, 28, 34, 49, 184
- global value chains and, 34, 98–9
- governments, role of, 22
- historical background, 11
- importance of, 2, 21, 22
- increase in, 25, 26–30, 47
- induced innovation hypothesis, 144
lifecycle of mines, across, 34
in metallurgy subsector, 34
by METS sector, 146
mining innovation ecosystem, 13–14
(See also Mining innovation ecosystem)
mining operation countries, correlation with, 38–44, 49
mining patents as share of total patents, 39
in mining subsector, 34, 128
by MNEs, 66, 69, 76
new deposits, 12–13, 28
new materials, 102
new products and variations, 12
"open innovation," 284
organizational innovation, 13
patent filings as proxy indicator of, 16, 28–30, 119, 182–3, 264, 285–6, 303
patents and, 16
in processing subsector, 34
process innovation, 13
"pull effect," 11
in refining subsector, 34, 49
relative specialization index (RSI) and, 39–42, 49–50
supply-side incentive to innovation, 101–3
technological change, impact of, 21–2, 47–9
technology flows and, 15
tools and machinery, 103
traditionally less innovative, mining industry as, 25, 174–5, 234
transport-related innovation (See Transport-related innovation in mining industry)
types of innovation, 12–13
Innovaxxion, 102–3, 251–2
INPADOC patent families, 304, 310, 332, 338
Intellectual property (IP)
copyrights, 280, 281
industrial designs, 246–7, 248–50, 279, 280, 281, 304
patents (See Patents)
trademarks, 20, 246–7, 248–50, 279, 281
trade secrets, 20, 30, 246, 248–9, 281–2, 286
utility models, 31, 213, 246–7, 304
Intelligent skids (RIVET), 252–4
International Council on Mining and Metals (ICMM)
on corporate structure of mining industry, 4
on mineral-driven economies, 3
International Labour Organization, 257
International Monetary Fund (IMF), 156–7, 158
International Patent Classification (IPC), 141, 147–8, 290–2, 293–4, 303, 310, 314
Iraq as source of innovation growth, 37–8
Iron
in Australia, 308, 311
in Brazil, 205–7
environmental impacts, 142
"pull effect" of innovation, 11
transport issues, 118
Israel, patent filings in, 44
Italy as source of innovation growth, 38
Japan
automation in, 135
Brazil, mineral trade with, 207
Canadian company patent filings in, 289
clean patents in, 149–50
METS sector in, 19
mining specialization in, 183
railway technologies in, 133
relative specialization index (RSI) in, 42
road transport in, 132
as source of innovation growth, 36–8, 49
transport-related innovation in, 129

Kaolin, innovation and, 12
Kazakhstan as source of innovation growth, 37–8
Kennecott, 146–7
Kinross, 221
Komatsu, 221
Komatsu do Brasil, 221
Korea, Republic of, 38
automation, patent filings and, 44
automation in, 135
clean patents in, 149–50
environmental technology, patent filings and, 44
exploration, patent filings and, 42
innovation in, 16–17
mining specialization in, 183
relative specialization index (RSI) in, 49–50
road transport in, 132
as source of innovation growth, 38, 49
transport-related innovation in, 42–4, 129
Kuwait as source of innovation growth, 37–8
Landmark (US company), 334
Latin America. See also specific country
global value chains in, 17–18, 90, 98, 112
importance of mining industry in, 90
lack of local knowledge in, 89
Lead
in Australia, 308
in Brazil, 205
Lifecycle of mines generally, 32
closure stage, 7
development stage, 6
exploration stage, 5
innovation across, 49
patent filings across, 34, 49
processing stage, 6–7
Lithium
in Australia, 338–9
innovation and, 12
“pull effect” of innovation, 11
Local impacts of mining industry, 8–9, 94, 95
London Metals Exchange, 180

Manganese
in Australia, 338–9
in Brazil, 205, 206–7
transport issues, 118
Maritime technologies, 133–4
McGill University, 45–6
Metallurgy subsector
in Australia, 314, 316–18
in Brazil, 213–17, 227–8
in Canada, 292–6
commodity prices and, 189–90
innovation in, 34
Metso, 221
METS sector. See Mining, Equipment, Technology and Services (METS) sector
MetsTao Brasil, 221
Mexico
automation, patent filings and, 44
Canadian company patent filings in, 289
Innovavxion customers in, 252
as source of innovation growth, 37–8
Micomo, 101
Mine barrier survival system, 269–72
Mine Improvement and New Emergency Response (MINER) Act of 2006 (US)
generally, 20, 258
case studies, 269–73, 276
data selection and processing, 258, 262–4
effects on health and safety, 275–6
enactment of, 262
evidence in study, 258, 265–6, 276
graphical evidence, 266–8, 276
mine barrier survival system and, 269–72
patent filings and, 266–8
refuge chambers and, 267–8, 276
regression analysis and, 273–5, 276
text-based similarity analysis, 271–4, 276
“through-the-earth” (TTE) wireless communications and, 267–8, 270–3, 276
INDEX


Mineral-driven economies, 3

Mining, Equipment, Technology and Services (METS) sector. See also specific topic or country generally, 4
collaboration with, 95
commodity prices and, 172, 173, 175–8, 179, 188–91, 198
innovation by, 146
in mining innovation ecosystem, 13–14

Mining industry. See also specific topic artisanal and small-scale miners (ASMs), 4–5
corporate structure of, 4
diversity of, 2
economics of (See Economics of mining industry)
exploration companies, 4
health and safety in (See Health and safety in mining industry)
informal mining industry, 4–5
innovation in (See Innovation in mining industry)
METS sector (See Mining, Equipment, Technology and Services (METS) sector)
production-focused companies, 4
scope of, 2
transport-related innovation in (See Transport-related innovation in mining industry)
valuation in (See Valuation in mining industry)

Mining innovation ecosystem, 13–14
collaboration with, 95
government agencies in, 14
innovation-related institutions in, 14
METS sector in, 13–14
public research organizations (PROs) in, 14, 46, 50
universities and academic institutions in, 14, 45–6, 50

Mining subsector

in Australia, 314, 316–18
in Brazil, 213–17, 227–8
in Canada, 287–8, 292–7
commodity prices and, 189–90
innovation in, 34, 128
Mitsubishi, 213
MNEs. See Multinational enterprises (MNEs)
generally, 52
derivation and, 60
growth in, 58
innovation by, 66, 69, 76
investment and, 53
non-mining MNEs compared, 54–6
operational internationalization, 70–2, 73–4
patent filings by, 69
prominence of, 53–4
R&D by, 66, 67, 68–9, 76
technology diffusion and, 66, 69–70, 76

National Copper Corporation (Codelco)
collaboration and, 235
Expande program and, 241
innovation at, 240
as state-owned company, 233
transfer of IPRs and, 237
World Class Suppliers (WCS) program and, 106–7
Neptuno, 102–3, 104
Netherlands
Brazil, mineral trade with, 207
as source of innovation growth, 38
Nickel
in Australia, 338–9
in Brazil, 206–7
environmental impacts, 142
Niobium
in Australia, 207
in Brazil, 205, 206–7
in Canada, 207
Nippon Steel, 213
Nobel, Alfred, 11
Non-renewability of minerals, 7–8
Noranda Limited, 45–6, 298–9
Norway as source of innovation growth, 37–8, 49
Novawest, 282
Oil and gas in Canada, 287
transport issues, 118
“Open innovation,” 284
Operational internationalization, 70–2, 73–4
Orbis database, 73, 188
Organizational innovation, 13
Organization for Economic Co-operation and Development (OECD)
on Chile, 234
clean patents and, 144
Environmental Policy Stringency (EPS) index, 143, 150–4, 156, 162–6
environmental regulation of mining and, 18
on mining industry, 145
Outokumpu, 146–7
Panama Canal, 134
Patent Cooperation Treaty (PCT), 226–7, 289, 329
Patents. See also specific country
analysis of spillovers using patent statistics, 73
automation, patent filings and, 35, 44
clean patents, 143, 144, 147–50, 161, 166
commodity prices, patent filings and, 182–3
environmental technology, patent filings and, 35, 44
exploration, patent filings and, 35, 42
filings related to mining industry, 31–2
global value chains, patent filings across, 34, 49, 90
governments, role of, 22
health and safety and, 257–8
increase in, 26, 28–30
innovation and, 16
life cycle of mines, patent filings across, 34, 49
limitations of data, 286
measurement of environmental policy stringency and, 155–6, 158, 161
mining patents as share of total patents, 39
MNEs, patent filings by, 69
non-mining-related patent filings, 47
profits, correlation of patent filings with, 285–6
proportion of mining companies filing, 47
proxy indicator of innovation, patent filings as, 16, 28–30, 119, 182–3, 264, 285–6, 303
spillovers, patent licensing and, 64–5
transport-related innovation, patent filings and, 35, 42–4, 119, 126–9, 138
PatentsView, 263
PATSTAT database (EPO), 71, 73, 147, 262–3, 280, 304, 310, 329, 332, 338
Peru
Brazil, mineral trade with, 207
innovation in, 99–100, 103
Innovaxxion customers in, 252
La Rinconada mine, 99–100
R&D expenditures in, 104
Petro Canada, 287
Phosphate, environmental impacts, 142
Poland as source of innovation growth, 38
Potassium in Brazil, 207
Power Train Technologies, 101, 104
Price takers, 8, 94–5
Processing stage, 6–7
Processing subsector in Australia, 314, 316–18
in Brazil, 213–17, 227–8
in Canada, 292–6
commodity prices and, 189–90
innovation in, 34
Process innovation, 13
PROCHILE, 236
Production-focused companies, 4
Productivity growth
importance of, 9–10
innovation and, 11
Public finances, contribution of mining industry to, 3
Public research organizations (PROs) in mining innovation ecosystem, 14, 46, 50
"Pull effect" of innovation, 11
Qatar as source of innovation growth, 37–8
Railway technologies, 132–3
R&D. See Research and development (R&D)
Rare earth elements in Australia, 308
innovation and, 12
"pull effect" of innovation, 11
transport issues, 118
Refining subsector in Australia, 308
innovation and, 12
"pull effect" of innovation, 11
transport issues, 118
Refuge chambers, 267–8, 276
Relative specialization index (RSI), 39–42, 49–50, 184, 302, 304–5
Research and development (R&D). See also specific country commodity prices and, 174, 175, 182–3
exploration stage and, 12–13
increase in expenditures, 26–8
by MNEs, 66, 67, 68–9, 76
R&D-intensive FDI, 66, 74–5, 76
spillovers, R&D collaboration and, 64–5
traditionally less R&D-intensive, mining industry as, 145
Resemin, 103, 104
Reserves, establishing, 5–6
Resources, establishing, 5
Reuther, Jim, 269
Rio Tinto, 215, 288, 312, 320, 333–4
RIVET (Chilean company), 252–4
Road transport, 131–2
RoXplorer (DET CRC), 322–3
Russian Federation automation, patent filings and, 44
Brazil, mineral trade with, 207
container technologies in, 134
environmental technology, patent filings and, 44
exploration, patent filings and, 42
mining patents as share of total patents, 39
relative specialization index (RSI) in, 41–2
road transport in, 132
as source of innovation growth, 36–8, 49
transport-related innovation in, 42–4, 129
Safety in mining industry. See Health and safety in mining industry
Sand in Australia, 308
environmental impacts, 142
Sandvik AB, 335
Saudi Arabia as source of innovation growth, 37–8
Savery, Thomas, 126
SBVS Mine Engineering, 221
Schlumberger, 336
Shell, 287
Singapore, patent filings in, 44
Socio-economic impacts of mining industry, 95
South Africa Canadian company patent filings in, 289
costs of transport and, 123–4
FDI in, 62
government support of mining industry in, 178
machinery and equipment, innovation in, 212
mining patents as share of total patents, 39
mining specialization in, 185
South Africa (cont.)
relative specialization index (RSI) in, 41–2
as source of innovation growth, 37–8, 49
South American Management (SAMSA), 241, 245
South Korea. See Korea, Republic of
Soviet Union, public research organizations (PROs) in, 46. See also Russian Federation
Spain as source of innovation growth, 37
Spillovers generally, 52
absorptive capacity and, 63
creative internationalization, 71, 72, 74
empirical studies, 64–5
literature on, 64
operational internationalization, 70–2, 73–4
patent licensing and, 64–5
patent statistics, analysis using, 73
R&D collaboration and, 64–5
technology diffusion and, 66, 69–70, 76
theoretical background, 63–5
transport-related innovation and, 136–8
Steel in processing stage, 7
Stolar, Inc., 270–3
Stolarczyk, Larry, 270
Stone, environmental impacts, 142
Sweden
automation, patent filings and, 44
as source of innovation growth, 38
Switzerland
METS sector in, 38
as source of innovation growth, 38
Tanzania, FDI in, 62
Tax incentives
in Australia, 22 (See also Australian R&D Tax Incentive)
in Brazil, 22
in Canada, 22
in Chile, 22

INDEX

Technological Revolution, 126
Technology flows, innovation and, 15
Technology transfer in Brazil, 204, 217–21
Vale S.A. and, 221
Teck Resource Limited, 302
Terex Cifali, 213
Tesco, 287
"Through-the-earth" (TTE) wireless communications, 267–8, 270–3, 276
Tin in Brazil, 206–7
Toronto Stock Exchange (TSX), 278
Trademarks, 20, 246–7, 248–50, 279, 281
Trade secrets, 20, 30, 246, 248–9, 281–2, 286
Transport-related innovation in mining industry generally, 18, 34, 119
automation, 134–5, 139–40
challenges in, 140
container technologies, 134
cost as factor, 121–4
distance reduction as driver of, 125
efficiency as driver of, 125
empty running, 139
environmental impact as driver of, 126
focus of analysis, 118–19
future trends, 140
General Purpose Technology, 139–40
globalization, effect of, 129–30
historical background, 117–18
importance of, 118, 139
Industrial Revolution and, 126
knowledge flow and, 136–8
longer transit distances of mining products and, 121
maritime technologies, 133–4
mobility of mining output and, 119–21
operational time as driver of, 125
other transport-related innovation compared, 118

South Africa (cont.)
relative specialization index (RSI) in, 41–2
as source of innovation growth, 37–8, 49
South American Management (SAMSA), 241, 245
South Korea. See Korea, Republic of
Soviet Union, public research organizations (PROs) in, 46. See also Russian Federation
Spain as source of innovation growth, 37
Spillovers generally, 52
absorptive capacity and, 63
creative internationalization, 71, 72, 74
empirical studies, 64–5
literature on, 64
operational internationalization, 70–2, 73–4
patent licensing and, 64–5
patent statistics, analysis using, 73
R&D collaboration and, 64–5
technology diffusion and, 66, 69–70, 76
theoretical background, 63–5
transport-related innovation and, 136–8
Steel in processing stage, 7
Stolar, Inc., 270–3
Stolarczyk, Larry, 270
Stone, environmental impacts, 142
Sweden
automation, patent filings and, 44
as source of innovation growth, 38
Switzerland
METS sector in, 38
as source of innovation growth, 38
Tanzania, FDI in, 62
Tax incentives
in Australia, 22 (See also Australian R&D Tax Incentive)
in Brazil, 22
in Canada, 22
in Chile, 22
INDEX

patent filings and, 35, 42–4, 119, 126–9, 138
railway technologies, 132–3
relevance of, 126–9
road transport, 131–2
safety as driver of, 125
spillovers and, 136–8
Technological Revolution and, 126
working conditions as driver of, 125
Transport subsector
in Australia, 316–18
in Brazil, 213–17, 227–8
in Canada, 292–6
commodity prices and, 189–90
innovation in (See Transport-related innovation in mining industry)
TSX-Venture Exchange, 278
Tungsten in Brazil, 205
Uneven geographical distribution of minerals, 8
United Kingdom
Canadian company patent filings in, 289
FDI and, 58
as source of innovation growth, 37–8
Warren Spring Laboratory, 46
United Nations
Conference on Trade and Development (UNCTAD), 52, 54–6, 79
Economic Commission for Africa (UNECA), 61
United States
Aracoma Alma Mine disaster, 261, 270
Australian company patent filings in, 309, 317
automation, patent filings and, 44
automation in, 135
Brazil, mineral trade with, 207
Bureau of Mines, 46, 259–60
Canadian company patent filings in, 288–90
cost, costs of transport, 122–3
container technologies in, 134
Darby Mine disaster, 261
Department of Interior, 259–60, 261
Department of Labor, 261
employment in mining industry in, 258–9
Energy Information Administration (EIA), 122–3
environmental technology, patent filings and, 44
exploration, patent filings and, 42
fatalities in mining industry in, 257, 259, 261
Federal Coal Mine Health and Safety Act of, 1969, 260–1
Federal Coal Mine Safety Act of, 1952, 260
Federal Mine Safety and Health Act of, 1977, 261
importance of mining industry in, 258
improvements in health and safety in, 259–62
Innovaxxion customers in, 252
legislation regarding health and safety in, 259–62
machinery and equipment, innovation in, 212
maritime technologies in, 133–4
measurement of environmental policy stringency in, 158
METS sector in, 19
MINER Act of 2006 (See Mine Improvement and New Emergency Response (MINER) Act of 2006 (US))
Mine Safety and Health Administration (MSHA), 261, 270, 274
mining patents as share of total patents, 39
National Institute for Occupational Safety and Health (NIOSH), 261, 262, 269, 270, 271–4, 276
Occupational Safety and Health Act of, 1970, 261
Office of Mine Safety and Health, 262
Ohio Underground Mine Task Force, 269

United States (cont.)

Patent and Trademark Office (USPTO), 258, 263, 267, 270
patent filings in, 237–9, 264–5
productivity in, 10
R&D expenditures in, 27
relative specialization index (RSI), 41–2, 49–50
Sago Mine disaster, 261, 269, 270
Senate Health, Education, Labor, and Pensions (HELP) Committee, 261–2
as source of innovation growth, 36–8, 47, 49
Speculator Mine, 257
transport-related innovation in, 42–4, 129
United States Steel Company, 205
Universities and academic institutions. See also specific university or institution
Australia, collaboration in, 320
Brazil, collaboration in, 211
in Canada, 282
in Chile, 242–5, 250, 254
in mining innovation ecosystem, 14, 45–6, 50
University of British Columbia, 288
University of Manchester, 320
University of Queensland, 320
University of Sydney, 320
Upstream linkages, 78–9
Uranium
in Australia, 308
environmental impacts, 142
“pull effect” of innovation, 11
Utility models, 31, 213, 246–7, 304
Vale S.A.
generally, 19, 202
Ferrous Metals Technology Center (CTF), 224
founding of, 221–2
Inco Limited, acquisition of, 287–8
innovation at, 100–1, 222–4
institutional collaboration for innovation, 211, 224–7

Logistic Engineering Center (CEL), 224
methodology of study, 204
Mineral Development Center (CDM), 224
partnerships with, 225
patent filings by, 213–15, 225–7, 228, 229
renaming of, 221
technology transfer and, 221, 227
universities and academic institutions and, 45–6
Vale Canada Limited, 287–8, 300
Vale Institute of Technology (ITV), 224
Valuation in mining industry generally, 2–3
exports, contribution of mining industry to, 3
foreign direct investment (FDI), contribution of mining industry to, 3
public finances, contribution of mining industry to, 3
value adding, 3
Venezuela as source of innovation growth, 37–8
Verti, 102
Waste in mining, increase in, 2
WIPO. See World Intellectual Property Organization (WIPO)
World Bank on Brazilian mining industry, 206
Development Indicators, 181
Metals and Minerals Price Index, 172–3, 175, 180, 197
World Class Suppliers (WCS) program (Chile) generally, 17–18, 106
analysis, 108–9
collaboration and, 235
Corporate Social Responsibility and, 109
development of, 106–7
Expande program and, 241
implementation of projects, 107–8
innovation and, 236
Index

patent filings, 108
performance, 108–9
selection of projects, 107
World Intellectual Property Organization (WIPO)
clean patents and, 143, 166
Mining Database, 141, 304
non-mining-related patent filings and, 47
patent filings database, 16, 20, 69, 119, 172–3, 257–8,

Yamana Gold, 221
Zambia, FDI in, 77–8
Zinc
in Australia, 308
in Brazil, 206
innovation and, 12
transport issues, 118