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Introduction

1.1 Motivation

Geometric group theory, or the large-scale geometry of finitely generated

discrete groups and of compactly generated locally compact groups, is by

now a well-established theory (see [22, 68] for recent accounts). In the finitely

generated case, the starting point is the elementary observation that the word

metrics ρ� on a discrete group Ŵ given by finite symmetric generating sets

� ⊆ Ŵ are all mutually quasi-isometric, and thus any such metric may be

said to define the large-scale geometry of Ŵ. This has led to a very rich

theory weaving together combinatorial group theory, geometry, topology and

functional analysis stimulated by the impetus of M. Gromov (see, e.g., [36]).

To fix the language, let us recall that a map (X,dX)
φ

−→ (Y,dY ) between

two metric spaces is a quasi-isometry provided that there is a constant K so

that, for all x,x′ ∈ X,

1

K
dX(x,x′) − K � dY (φ(x),φ(x′)) � K · dX(x,x′) + K

and also

sup
y∈Y

inf
x∈X

dY (y,φ(x)) � K .

The existence of a quasi-isometry between metric spaces defines an equiva-

lence relation on the class of metric spaces, and hence the large-scale geometry

of a finitely generated group Ŵ is well defined up to this notion of equivalence.

In the locally compact setting, matters have not progressed equally swiftly,

even though the basic tools have been available for quite some time. Indeed,

by a result of R. Struble [84] dating back to 1951, every locally compact
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2 Introduction

second countable group admits a compatible left-invariant proper metric, i.e.,

so that the closed balls are compact. Struble’s theorem was based on an earlier

well-known result due independently to G. Birkhoff [11] and S. Kakutani

[43] characterising the metrisable topological groups as the first countable

topological groups and, moreover, stating that every such group admits a

compatible left-invariant metric. However, as is evident from the construction

underlying the Birkhoff–Kakutani theorem, if one begins with a compact

symmetric generating set � for a locally compact second countable group

G, then one may obtain a compatible left-invariant metric d that is quasi-

isometric to the word metric ρ� induced by �. By applying the Baire

category theorem and arguing as in the discrete case, one sees that any two

such word metrics ρ�1
and ρ�2

are quasi-isometric, which shows that the

compatible left-invariant metric d is uniquely defined up to quasi-isometry

by this procedure.

Thus far, there has been no satisfactory general method of studying large-

scale geometry of topological groups beyond the locally compact groups,

although, of course, certain subclasses such as Banach spaces arrive with a

naturally defined geometry. This state of affairs may be largely the result of the

presumed absence of canonical generating sets in general topological groups as

opposed to the finitely or compactly generated ones. In certain cases, substitute

questions have been considered, such as the boundedness or unboundedness

of specific metrics [27] or of all metrics [77]; growth type and distortion

of individual elements or subgroups [34, 72]; equivariant geometry [70] and

specific coarse structures [67].

In the present book, we offer a solution to this problem that, in many cases,

allows one to isolate and compute a canonical word metric on a topological

group G and thus to identify a unique quasi-isometry type of G. Moreover,

this quasi-isometry type agrees with that obtained in the finitely or compactly

generated settings and also verifies the main characteristics encountered

there, namely that it is a topological isomorphism invariant of G capturing

all possible large-scale behaviour of G. Furthermore, under mild additional

assumptions on G, this quasi-isometry type may also be implemented by a

compatible left-invariant metric on the group.

Although applicable to all topological groups, our main interest is in

the class of Polish groups, i.e., separable completely metrisable topological

groups. These include most interesting topological transformation groups, e.g.,

Homeo(M), Diffk(M),
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1.1 Motivation 3

for M a compact (smooth) manifold, and

Aut(A),

for a countable discrete structure A, along with all separable Banach spaces

and locally compact second countable groups. Another class that has recently

received much attention by geometric topologists is the mapping class groups

of infinite-type surfaces; that is, so that the mapping class group is not

finitely generated. In this case, the mapping class group can be viewed as the

automorphism group of an associated countable graph and thus falls into the

framework of automorphism groups of countable discrete structures. However,

it should be stressed that the majority of our results are directly applicable

in the greater generality of European groups, i.e., Baire topological groups,

countably generated over every identity neighbourhood. This includes, for

example, all σ -compact locally compact Hausdorff groups and all (potentially

non-separable) Banach spaces.

One central technical tool is the notion of coarse structure due to J. Roe

[74, 75], which may be viewed as the large-scale counterpart to uniform

spaces. Indeed, given an écart (also known as pre- or pseudo-metric) d on a

group G, let Ed be the coarse structure on G generated by the entourages

Eα = {(x,y) ∈ G × G | d(x,y) < α},

for α < ∞. That is, Ed is the ideal of subsets of G×G generated by the Eα . In

analogy with A. Weil’s result [94] that the left-uniform structure UL on a

topological group G can be written as the union

UL =
⋃

d

Ud

of the uniform structures Ud induced by the family of continuous left-invariant

écarts d on G, we define the left-coarse structure EL on G by

EL =
⋂

d

Ed .

This definition equips every topological group with a left-invariant coarse

structure, which, like a uniformity, may or may not be metrisable, i.e., be the

coarse structure associated to a metric on the group. To explain when that

happens, we say that a subset A ⊆ G is coarsely bounded in G if A has finite

diameter with respect to every continuous left-invariant écart on G. This may

be viewed as an appropriate notion of ‘geometric compactness’ in topological
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groups and, in the case of a Polish group G, has the following combinatorial

reformulation. Namely, A ⊆ G is coarsely bounded in G if, for every identity

neighbourhood V , there is a finite set F ⊆ G and a k so that A ⊆ (FV )k .

Theorem 1.1 The following conditions are equivalent for a Polish group G:

(1) the left-coarse structure EL is metrisable;

(2) G is locally bounded, i.e., has a coarsely bounded identity

neighbourhood;

(3) EL is generated by a compatible left-invariant metric d, i.e., EL = Ed ;

(4) a sequence (gn) eventually leaves every coarsely bounded set in G if and

only if there is some compatible left-invariant metric d on G for which

d(gn,1)−→
n

∞.

In analogy with proper metrics on locally compact groups, the metrics

appearing in condition (3) above are said to be coarsely proper. Indeed, these

are exactly the compatible left-invariant metrics all of whose bounded sets are

coarsely bounded. Moreover, by Struble’s result, on a locally compact second

countable group these are the proper metrics.

The category of coarse spaces may best be understood by its morphisms,

namely, the bornologous maps. In the case where (X,dX)
φ

−→ (Y,dY ) is a map

between pseudo-metric spaces, then φ is bornologous if there is an increasing

modulus θ : R+ → R+ so that, for all x,x′ ∈ X,

dY

(

φ(x),φ(x′)
)

� θ
(

dX(x,x′)
)

.

By using this, we may quasi-order the continuous left-invariant écarts on G

by setting ∂ ≪ d if the identity map (G,d) → (G,∂) is bornologous. One

then shows that a metric is coarsely proper when it is the maximum element of

this ordering. Although seemingly most familiar groups are locally bounded,

counterexamples exist, such as the infinite direct product of countably infinite

groups, e.g., ZN.

However, just as the word metric on a finitely generated group is well

defined up to quasi-isometry, we may obtain a similar canonicity provided that

the group G is actually generated by a coarsely bounded set A, that is, every

element of G can be written as a product of elements of A∪A−1 ∪{1}. In order

to do this, we refine the quasi-ordering ≪ on continuous left-invariant écarts

on G above by letting ∂ ≪ d if there is a constant K so that ∂ � K · d + K .

Again, if d is maximum in this ordering, we say that d is maximal. Obviously,

two maximal écarts are quasi-isometric, whence these induce a canonical
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quasi-isometry type on G. Moreover, as it turns out, the maximal écarts are

exactly those that are quasi-isometric to the word metric

ρ�(x,y) = min(k | ∃z1, . . . ,zk ∈ � : x = yz1 · · · zk)

given by a coarsely bounded generating set � ⊆ G.

Theorem 1.2 The following are equivalent for a Polish group G:

(1) G admits a compatible left-invariant maximal metric;

(2) G is generated by a coarsely bounded set;

(3) G is locally bounded and not the union of a countable chain of proper

open subgroups.

A reassuring fact about our definition of coarse structure and quasi-isometry

type is that it is a conservative extension of the existing theory. Namely, as

the coarsely bounded sets in a σ -compact locally compact group coincide

with the relatively compact sets, one sees that our definition of the quasi-

isometry type of a compactly generated locally compact group coincides with

the classical definition given in terms of word metrics for compact generating

sets. The same argument applies to the category of finitely generated groups

when these are viewed as discrete topological groups. Moreover, as will be

shown, if (X,‖·‖) is a Banach space, then the norm metric will be maximal on

the underlying additive group (X,+), whereby (X,+) will have a well-defined

quasi-isometry type, namely, that of (X,‖·‖). But even in the case of homeo-

morphism groups of compact manifolds M , as shown in [57, 62], the maximal

metric on the group Homeo0(M) of isotopically trivial homeomorphisms of

M is quasi-isometric to the fragmentation metric originating in the work of

R. D. Edwards and R. C. Kirby [26].

1.2 A Word on the Terminology

Some of the basic results presented here have previously been included in the

pre-print [79], which now is fully superseded by this book. Under the impetus

of T. Tsankov, we have changed the terminology from [79] to become less

specific and more in line with the general language of geometric group theory.

Thus, the coarsely bounded sets were originally called relatively (OB) sets to

keep in line with the terminology from [77]. Similarly, locally bounded groups

were denoted locally (OB) and groups generated by coarsely bounded sets

were called (OB) generated. For this reason, other papers based on [79],
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6 Introduction

such as [19], [57], [80] and [98], also use the language of relatively (OB)

sets. The translation between the two is straightforward and involves no

change in theory.

1.3 Summary of Findings

To aid the reader in the navigation of the new concepts appearing here,

we include Figure 1.1, depicting the main classes of Polish groups and a

few simple representative examples from some of these. Observe that in the

diagram the classes increase going up and from left to right.

Note that the shaded areas reflect the fact that every Polish group of bounded

geometry is automatically locally bounded, and that coarsely bounded groups

trivially have bounded geometry.

1.3.1 Coarse Structure and Metrisability

Chapter 2 introduces the basic machinery of coarse structures with its asso-

ciated morphisms of bornologous maps and analyses these in the setting of

topological groups. We introduce the canonical left-invariant coarse structure

Locally
compact

Bounded
geometry

Discrete

∪

∪

⊂ ⊂
Coarsely
bounded

Generated by
bounded set

Locally
bounded

Finite groups

Compact
groups

Finitely
generated

Compactly
generated

F∞

R × F∞

HomeoZ(R)

×F∞

Isom(U)

×F∞

∏
n
ZIsom(U)

HomeoZ(R(oemoH )S
n)

Figure 1.1 Main classes of Polish groups organised according to their coarse

geometry.
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EL with its ideal of coarsely bounded sets and compare this with other coarse

structures such as the group-compact coarse structure EK.

The main results of the chapter concern the identification of coarsely proper

and maximal metrics along with Theorems 1.1 and 1.2 characterising the

existence of these. This also leads to a version of the Milnor–Schwarz Lemma

[64, 83] adapted to our setting; this is the central tool in the computation of

actual quasi-isometry types of groups.

1.3.2 Basic Structure Theory

In Chapter 3 we provide some of the basic tools for the geometric study

of Polish groups and present a number of computations of the geometry

of specific groups. The simplest class to consider is that of the ‘metrically

compact’ groups, i.e., those quasi-isometric to a one-point space. These

are exactly those coarsely bounded in themselves. This class of groups

was extensively studied in [77] and includes a large number of topological

transformation groups of highly homogeneous mathematical structures such as

homeomorphism groups of spheres and the unitary group of separable infinite-

dimensional Hilbert space.

The locally Roelcke pre-compact groups comprise another particularly

interesting class. This class includes examples such as the automorphism group

of the countably regular tree Aut(T∞) and the isometry group of the Urysohn

metric space Isom(U) that turn out to be quasi-isometric to the tree T∞ and

the Urysohn space U, respectively. Because, by a recent result of J. Zielinski

[99], the locally Roelcke pre-compact groups have locally compact Roelcke

completions, they also provide us with an important tool for the analysis of

Polish groups of bounded geometry in Chapter 5.

Indeed, a closed subgroup H of a Polish group G is said to be coarsely

embedded if the inclusion map is a coarse embedding, or equivalently, a subset

A ⊆ H is coarsely bounded in H if and only if it is coarsely bounded in G.

Because, in a locally compact group, the coarsely bounded sets are simply the

relatively compact sets, every closed subgroup is coarsely embedded, although

not necessarily quasi-isometrically embedded in the compactly generated

case. However, this fails dramatically for Polish groups. Indeed, every Polish

group is isomorphic to a closed subgroup of the coarsely bounded group

Homeo([0,1]N). So this subgroup is coarsely embedded only if coarsely

bounded itself. This difference, along with the potential non-metrisability of

the coarse structure, accounts for a great deal of the additional difficulties

arising when investigating general Polish groups.
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8 Introduction

Theorem 1.3 Every locally bounded Polish group G is isomorphic to a

coarsely embedded closed subgroup of the locally Roelcke pre-compact group

Isom(U).

Via this embedding, every locally bounded Polish group can be seen to act

continuously on a locally compact space preserving its geometric structure.

The main structural theory of Chapter 3 is a byproduct of the analysis of

the coarse geometry of product groups. Indeed, we show that a subset A of a

product
∏

i Gi is coarsely bounded if and only if each projection proji(A) is

coarsely bounded in Gi . From this, we obtain a universal representation of all

Polish groups.

Theorem 1.4 Every Polish group G is isomorphic to a coarsely embedded

closed subgroup of the countable product
∏

n Isom(U).

This can be viewed as providing a product resolution of the coarse structure

on non-locally bounded Polish groups.

1.3.3 Coarse Geometry of Group Extensions

In Chapter 4 we address the fundamental and familiar problem of determining

the coarse geometry of a group G from those of a closed normal subgroup K

and the quotient group G/K . That is, we will reconstruct the coarse geometry

of the middle term G from those of K and G/K in the short exact sequence

1 −→ K −→ G −→ G/K −→ 1.

Although certain things can be said about the general situation, we mainly

focus on a more restrictive setting, which includes that of central extensions.

Namely, we suppose that K is a closed normal subgroup of a Polish group G,

where the latter is generated by K and the centraliser CG(K) = {g ∈ G | ∀k ∈

K gk = kg} of K in G, i.e., such that G = K · CG(K). Note that, in this case,

we also have that

G/K = CG(K)/Z(K),

where Z(K) = {h ∈ K | ∀k ∈ K hk = kh} is the centre of K . Assume fur-

thermore that K is coarsely embedded in G and that G/K
φ

−→ CG(K) is a

section for the quotient map that is bornologous as a map G/K
φ

−→ G. Then

the map
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K × G/K → G, (k,h) �→ kφ(h)

defines a coarse equivalence between K × G/K and G.

A common instance of this setup is seen when G is generated by a discrete

normal subgroup K = Ŵ and a connected closed subgroup F .

Theorem 1.5 Suppose G is a Polish group generated by a discrete normal

subgroup Ŵ and a connected closed subgroup F . Assume also that Ŵ ∩ F is

coarsely embedded in F and that G/Ŵ
φ

−→ F is a bornologous section for

the quotient map. Then G is coarsely equivalent to G/Ŵ × Ŵ.

In connection with these problems, several fundamental issues emerge:

• When is K coarsely embedded in G?

• When does the quotient map G
π

−→ G/K admit a bornologous section

G/K
φ

−→ G?

• Is G locally bounded provided that K and G/K are?

Indeed, to determine whether K is coarsely embedded in G or whether a

section G/K
φ

−→ G is bornologous both require some advance knowledge

of the coarse structure on G itself. However, the latter is exactly what we

are trying to determine. To circumvent this conumdrum, we study the cocycle

associated with a section φ. Indeed, given a section G/K
φ

−→ CG(K) for the

quotient map, one obtains an associated cocycle G/K × G/K
ωφ

−→ Z(K) by

the formula

ωφ(h1,h2) = φ(h1h2)
−1φ(h1)φ(h2).

Assuming that φ is Borel and G/K locally bounded, the coarse qualities of

the map G/K
φ

−→ G and whether K is coarsely embedded in G now become

intimately tied to the coarse qualities of ωφ . Let us state this for the case of

central extensions.

Theorem 1.6 Suppose K is a closed central subgroup of a Polish group G

so that G/K is locally bounded and that G/K
φ

−→ G is a Borel measurable

section of the quotient map. Assume also that, for every coarsely bounded set

B ⊆ G/K , the image

ωφ

[

G/K × B
]

is coarsely bounded in K . Then G is coarsely equivalent to K × G/K .
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The main feature here is, of course, that the assumptions make no reference

to the coarse structure of G, only to those of K and G/K .

We then apply our analysis to covering maps of manifolds or more general

locally compact spaces, which builds on a specific subcase from our joint work

with K. Mann [57]. Our initial setup is a proper, free and cocompact action

Ŵ � X

of a finitely generated group Ŵ on a path-connected, locally path-connected

and semi-locally simply connected, locally compact metrisable space X. Then

the normaliser NHomeo(X)(Ŵ) of Ŵ in the homeomorphism group Homeo(X)

is the group of all lifts of homeomorphisms of M = X/Ŵ to X, whereas the

centraliser CHomeo(X)(Ŵ) is an open subgroup of NHomeo(X)(Ŵ). Let

NHomeo(X)(Ŵ)
π

−→ Homeo(M)

be the corresponding quotient map and let

Q0 = π
[

CHomeo(X)(Ŵ)
]

be the subgroup of Homeo(M) consisting of homeomorphisms admitting lifts

in CHomeo(X)(Ŵ). We show that Q0 is open in Homeo(M). Also, assume H is

a subgroup of Q0 that is Polish in a finer group topology, say H is the trans-

formation group of some additional structure on M , e.g., a diffeomorphism

or symplectic group. Then the group of lifts G = π−1(H) � NHomeo(X)(Ŵ)

carries a canonical lifted Polish group topology and is related to H via the

exact sequence

1 → Ŵ → G
π

−→ H → 1.

By using only assumptions on the structure of Ŵ, we can relate the geometry

of G to those of H and Ŵ.

Theorem 1.7 Suppose Ŵ/Z(Ŵ)
ψ

−→ Ŵ is a bornologous section for the

quotient map, that H � Q0 is Polish in some finer group topology and that

G = π−1(H). Then G is coarsely equivalent to H × Ŵ.

Observe here that ψ is a section for the quotient map from the discrete group

Ŵ to its quotient by the centre, which a priori has little to do with H and G.

Nevertheless, a main feature of the proof is the existence of a bornologous

section H
φ

−→ CG(Ŵ) for the quotient map π , which is extracted from ψ .

Also, applying our result to the universal cover X = M̃ of a compact mani-

fold M , we arrive at the following result.
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